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Abstract

For compact hyperbolic 3-manifolds we lift the Bloch invariant defined by
Neumann and Yang to an integral class inK3.C/. Applying the Borel and the
Bloch regulators, one gets back the volume and the Chern-Simons invariant
of the manifold. We perform our constructions in stable homotopy theory,
pushing a generalized orientation of the manifold directly into K-theory. On
the way we give a purely homotopical construction of the Bloch-Wigner exact
sequence which allows us to explain the Q=Z ambiguity that appears in the
non-compact case.
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Introduction

Suppose that � is a discrete group such that the classifying space B� has a model
which is a closed orientable smooth manifold M of dimension m. Here as usual
closed means compact and without boundary. According to the Borel conjecture
for � , the homeomorphism type of M should be completely determined by the
isomorphism type of � . Therefore the question arises of how much of the smooth
geometry of M is encoded in the group � . Similarly, recall that by the celebrated
Mostow Rigidity, if M is a closed connected orientable hyperbolic manifold of
dimension n � 3, then not only the Borel conjecture holds for � , but the isometry
type of M is also completely determined by � . So, in this case, the question refines
to how the metric geometry of M , typically the hyperbolic volume vol.M/ or the
Chern-Simons invariant CS.M/, can be recovered from � .

Such questions have been addressed for instance by Goncharov [Gon99],
and Neumann and Yang [NY99]. In the three dimensional case, they obtained
respectively a rational algebraicK-theoretical invariant, and a Bloch invariant in the
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Bloch group which is in the scissors congruence group of hyperbolic 3-space P.C/.
The Bloch group is naturally a sub-quotient of K3.C/ and it is therefore natural to
try to lift the invariant to the latter group. A first attempt can be found in Cisneros-
Molina and Jones [CMJ03] where they revisited Neumann and Yang’s work from a
homotopical perspective. From the point of view of scissors-congruence theory,
lifts to extended Bloch groups are considered in [Neu04], and in the following
articles [DZ06] and [GZ07]. One of the objectives is, using tools from complex
analysis on Riemann surfaces, to get formulas leading to explicit computations. In
particular in [GZ07] the authors obtain a combinatorial description of the group
H3.SL2.C/IZ//. Our approach on the other side is purely homotopical.

There is one constant in all three approaches: the invariant is obtained basically
by pushing a fundamental class in ordinary homology into P.C/. The main tool
to relate P.C/ to K-theory is the Bloch-Wigner exact sequence first published
by Dupont-Sah [DS82] and by Suslin [Sus90]. One gets directly a class in the
homology of SL2C by considering a Spin-structure on the hyperbolic manifold, so,
to define the invariant in K-theory one has to lift this fundamental class through a
Hurewicz homomorphism, which leads to an ambiguity in the construction. One of
the motivations of this work is to shed some light on the origin of this ambiguity
and on the possibilities to reduce it. In [Gon99] for instance, it is removed by using
rational coefficients.

Our starting point is the observation that the classical Bloch-Wigner exact
sequence is a part of the long exact sequence in stable homotopy of a cofibration.
Thus instead of a Spin-structure, which yields a KO-orientation [ABS64], we are
lead to consider an orientation in stable homotopy theory, and this is provided
geometrically by a stable parallelization of the (hyperbolic) 3-manifold. The first
advantage of this point of view is that it gives directly a class in K-theory. It is
also possible to discuss the influence of the various choices that are involved in the
choice of a parallelization (Spin structure, p1-structure) on the final invariant. In
particular we show that the Q=Z-ambiguity that appears in the non-compact case is
irreducible from a purely homotopical point of view.

For compact manifolds our main result is:

Theorem A. Let M be a closed oriented hyperbolic manifold of dimension 3
with fundamental group � D 
1.M/. Then, to any stable parallelization of the
tangent bundle of M corresponds, in a canonical way, a K-theory class �.M/ 2
K3.C/, which depends only and effectively on the underlying Spin-structure.

There are two regulators defined on K3.C/, the Borel regulator and the Bloch
regulator. The insight of Goncharov and Neumann-Yang tells us that their values on
the invariant gives back the volume and the Chern-Simons invariant of the manifold.
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Corollary.(Neumann-Yang, [NY99, Theorem 1.3]) The hyperbolic volume of
M is determined by the equality

bo-reg.�.M//D vol.M/

2
2

of real numbers, where bo-reg W K3.C/! R is the Borel regulator for the field of
complex numbers C. Furthermore, for the Chern-Simons invariant CS.M/ of M
we have the congruence

�.�.M//
 �CS.M/C i 	 vol.M/

2
2
.mod Q/

of complex numbers. Here � stands for the composite

� W K3.C/ bw�! B.C/
bl-reg���!C=Q;

where bw is the Bloch-Wigner map for the field C, B.C/ is the Bloch group of C,
and bl-reg is the Bloch regulator for C.

In the non-compact case, the problem is more intricate. The main problem is
that one has to start with a fundamental class in a relative (generalized) homology
group, and this yields naturally a relative orientation class. Even if we do not have to
invert a Hurewicz homomorphism we still end up with a Q=Z ambiguity, compare
with [CMJ03, Remark 8.9].

Theorem B. Let M be a non-compact oriented hyperbolic manifold of dimen-
sion 3 with finite volume. Let � D 
1.M/ be its fundamental group. Then, to any
stable parallelization of the tangent bundle ofM correspond Q=Z naturalK-theory
classes �.M/ in K3.C/, which depend only on the underlying Spin-structure.

Again, as in the compact case, this class “computes" the volume, as previously
shown by Neumann and Yang.

The approach via orientations in generalized homology theories allows to extend
the construction to K-theory groups that retain a-priori more information on the
fundamental group � than K3.C/. Indeed, our original plan was to construct
an invariant in the algebraic K-theory of the group ring Z� . The fact that the
Bloch-Wigner exact sequence can be reformulated in stable homotopy simplified
the construction. However, we decided to include our original construction in Ap-
pendix A for two reasons: the intimate relation of KZ�.Z�/ with the Isomorphism
Conjectures, [FJ93], and because it might lead to explicit computations.

The plan of the article is the following. Section 1 is a short reminder on the
theory of orientations of manifolds. Section 2 is devoted to the Bloch-Wigner
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exact sequence. Theorem A and its corollary are proved in Section 3. The non-
compact case, Theorem B, is the object of Section 4. Finally Appendix A contains
the construction of an invariant inK3.Z�/. In this article all groups are discrete and
we freely identify the homology of the discrete group G with that of its classifying
space BG.

We started this project in February 2005, but the paper was completed only after
the first author’s death. It is dedicated to the memory of our friend Michel Matthey.

Acknowledgements. We would like to thank Joan Porti, José Burgos, and Johan
Dupont for enlightening discussions. We also would like to thank the referee and
the editors of the Journal of K-Theory, in particular Max Karoubi; their remarks and
questions helped us to clarify a number of points in the text.

1. Parallelizations and orientations

LetM be a closed compact connected smooth manifold of dimension d . We explain
in this section the relationship between stable parallelizations of the tangent bundle
of M and orientations of M with respect to the sphere spectrum S. For manifolds
there are two ways to view orientations. The first one, arising from orientations
of vector bundles, is cohomological in essence and the second one, arising from
patching local compatible orientations, is homological in essence. Both definitions
agree via the so-called S-duality. We call a manifold orientable if it is so in the
classical sense (i.e. with respect to the Eilenberg-McLane spectrum HZ). In this
section E denotes a ring spectrum with unit " W S!E.

1.1. Cohomological definition

Let �M be the stable normal bundle ofM and T h.�M / its Thom spectrum. For each
m 2 M , consider the map from the Thom spectrum of this point induced by the
inclusion jm W S ! T h.�M /. An E-orientation of M is a class t 2 E0.T h.�M //
such that for some (and hence every) point m 2M j �

m.t/D˙" 2 
0.E/ŠE0.S/.
A particularly convenient setting is when the manifold is stably parallelizable,

i.e. its normal bundle is stably trivial (and hence its tangent bundle also). A given
parallelization 	 provides a trivialization of the Thom spectrum of the normal bundle
of M :

DT.	/ W T h.�M / '�!†1MC :

By collapsing M to a point we obtain hence a map T h.�M / ! S to the sphere
spectrum representing a cohomology class in S0.T h.�M //. Composing with the
unit " W S!E we get an E-orientation.
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Example 1.1 Recall Stiefel’s result that any orientable 3-manifold is parallelizable
(see [MS74, Problem 12-B]) i.e., the tangent bundle � WM ! BO.3/ is trivial. As
these trivializations correspond to lifts of the map � to the universal cover EO.3/
up to homotopy, one can apply obstruction theory to count them. Lifts to the 1-
skeleton correspond to classical orientations and there are H 0.M IZ=2Z/ possible
choices. Further lifts to the 2-skeleton correspond to Spin-structures, and there are
H 1.M IZ=2Z/ choices at this stage. Finally, to lift further across the 3-skeleton one
gets H 3.M IZ/ choices, the so called p1-structures, where p1 stands for the first
Pontrjagin class.

1.2. Homological definition

A fundamental class for M with respect to the homology theory E is an element
t 2 Ed .M/ such that for some (and therefore every) point m 2M the image of t in
Ed .M;M �m/ ' QEd .Sd / ' QE0.S0/ D 
0.E/ is ˙". Notice in particular that the
unit " W S!E canonically provides fundamental classes for all spheres Sd .

Example 1.2 Consider the sphere spectrum S. Then the corresponding reduced
homology theory is stable homotopy, QSn.X/ Š 
sn.X/. An S-orientation for M is
thus an element in Sd .M/ with the property that its image in Ss

d
.M;M � m/ Š


s
d
.Sd /Š Z is a generator.

1.3. S-duality

We now turn to the connection between the homological and cohomological point
of view. We follow Rudyak’s treatment of S-duality, [Rud98], see also Switzer
[Swi02] or Adams [Ada74].

Definition 1.3 Let A;A� be two spectra. A duality morphism or duality between
A and A� is a map of spectra u W S! A^A� such that for every spectrum E the
following homomorphisms are isomorphisms :

uE W ŒA;E� �! ŒS;E ^A��
� 7�! .� ^ 1A�/ ıu

uE W ŒA�;E� �! ŒS;A^E�
� 7�! .1A ^�/ ıu

The spectra A and A� are said to be S-dual. Two spectra A and B are called n-dual,
where n 2 Z, if A and †nB are S-dual.
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Definition 1.4 Fixing two duality maps u W S! A^A� and v W S! B^B�, the S-
dual of a map f W A! B is the image f � W B�! A� of f under the isomorphism:

D W ŒA;B� uB
ŒS;B ^A�� .vA�

/�1

ŒB�;A��:

In particular f 2 ŒA;B� is S-dual to g 2 ŒB�;A�� if and only if uB.f /D vA�

.g/.

Example 1.5 For any integer n the spectra Sn and S�n are S-dual. The duality map
is simply the canonical equivalence S! Sn ^S�n.

1.4. Orientations and S-duality for manifolds

For closed manifolds S-duality was defined by Milnor and Spanier in [MS60]. As
we will need the precise form of the duality map we give it in detail. Choose
an embedding M ,! SN into a high-dimensional sphere and let U be a tubular
neighbourhood of M . The open manifold U can be viewed as the total space of the
normal disc bundle of M , and the quotient U=@U is therefore a Thom space for the
normal bundle. Denote by p W U !M the projection and by � W U ! U �M the
map �.a/D .a;p.a//. Then � induces a map �0 W U=@U ! U=@U ^MC. Denote
by C W SN ! U=@U the map induced by collapsing the complement of U into a

point. Then we have a map f W SN C�! U=@U
��!

0
.U =@U / ^MC. The duality

morphism is then

uD†�N†1f W S! T h�M ^†�d†1MC:

It induces the duality bijection uE W ŒT h.�M /;E� ! ŒS;E ^†�d†1MC� for any
spectrum E.

Theorem 1.6 [Rud98, Corollary V.2.6] Let M be a closed E-orientable manifold.
The duality map uE yields a bijective correspondence between cohomological
orientations of M and fundamental classes of M with respect to E.

1.5. The case of 3-manifolds

In Example 1.1 we have seen that 3-manifolds are orientable in the cohomological
sense. Therefore by Theorem 1.6 they admit fundamental classes. We describe
now the relationship between parallelizations and homological orientations for 3-
manifolds. Since we counted the former in Example 1.1 we will first count the
latter.

Lemma 1.7 Let M be an orientable closed manifold of dimension 3. The Atiyah-
Hirzebruch spectral sequence for the stable homotopy of M collapses at E2.
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Proof: The spectral sequence is concentrated on the first four columns of the first
quadrant. The first column H0.M ISq/ Š 
sq always survives to E1 since a point
is a retract of M . Since M is S-orientable, the suspension spectrum of the 3-sphere
is a retract of †1M , so that the fourth column H3.M ISq/ Š 
sq also survives.
Therefore all differentials must be zero.

Proposition 1.8 LetM be an orientable closed 3-manifold. Fundamental classes of
M with respect to S are parametrized by 
s3�H1.M IZ=2Z/�H2.M IZ=2Z/�f˙1g.
Proof: This follows from the previous lemma since the homomorphism S3.M/!
S3.M;M�m/ can be identified with the edge homomorphism S3.M/!H3.M IZ/.
Fixing an orientation tells us that the image of t must be a fixed generator of
H3.M IZ/.
Example 1.9 There are precisely 2 	 j
s3j D 48 different orientations of the sphere
S3 with respect to stable homotopy.

If an S-orientation of M is given, a change of trivialization can be used to
modify the class in S3.M/ via the Dold-Thom isomorphisms:

S3.M/
DT.�/�1

�����! S3.T h.�M //
DT.�0/����! S3.M/:

Lemma 1.10 Given two stable parallelizations of S3 which differ only by a p1-
structure ˛ 2H 3.S3IZ/, the corresponding S-orientations differ then by J˛, where
J W ZŠ 
3SO � 
s3 Š Z=24 is the stable J -homomorphism.

Proof: The change of trivialization is controlled by a map between total spaces
of trivial bundles S3 � RN ! S3 � RN , for some large integer N . At the level
of Thom spaces we get a homotopy equivalence f W SNC3 _ SN ! SNC3 _ SN .
Fix the canonical S-orientation t corresponding to the wedge summand inclusion
SNC3 ! SNC3 _ SN in 
NC3.SNC3 _ SN / Š 
s3.S

3C/ Š S3.S
3/ and modify it

by f . The edge homomorphism e W S3.S3/! 
s3.S
3/ takes both t and f t to 1, and

the corresponding element in Kere is given by the map

SNC3 i1�! SNC3 _SN f��! SNC3 _SN p2�! SN :

This map is determined by its homotopy cofiber, a two cell complex which is seen to
be homotopy equivalent to SN [J˛ eNC4, see [Ada66, Lemma 10.1]. We conclude
then since J is an epimorphism in dimension 3, [Ada66, Theorem 1.5].

Proposition 1.11 Let M be an oriented, closed 3-manifold. The S-orientations of
M obtained from the stable parallelizations may differ by an arbitrary element of
Z=24Š 
s3 � Kere.
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Proof: One obtains both stable parallelizations and S-orientations for S3 from the
ones for M by collapsing the 2-skeleton.

2. The Bloch-Wigner exact sequence

In this section we identify the Bloch-Wigner exact sequence with an exact sequence
in stable homotopy whereas the classical point of view is homological.

2.1. Scissors congruence group of hyperbolic 3-space

A standard reference for this section is Dupont-Sah [DS82], see also Dupont
[Dup01] or Suslin [Sus90]. Denote by IsomC.H3/ the group of orientation-
preserving isometries of the hyperbolic 3-space H3.

Definition 2.1 The scissors congruence group P.H3/ is the free abelian group of
symbols ŒP � for all polytopes P in H3, modulo the relations:

1. ŒP �� ŒP 0�� ŒP 00� if P D P 0[P 00 and P 0\P 00 has no interior points;

2. ŒgP �� ŒP � for g 2 IsomC.H3/.

One defines analogously P.H3
/ where one allows some vertices of the poly-

topes to be ideal points and P.@H3/ where the polytopes are all ideal polytopes
(actually there is a subtlety with the latter group, see [Dup01, Chapter 8]). Finally
there is a more algebraic description of these groups.

Definition 2.2 Let P.C/ denote the abelian group generated by z 2 C � f0;1g and
satisfying, for z1 ¤ z2, the relations:

z1� z2C z2
z1
� 1� z2
1� z1 C

1� z�1
2

1� z�1
1

:

The four groups are related by:

Theorem 2.3 [Dup01, Corollary 8.18] The natural inclusions induce isomorphisms

P.H3/Š P.H3
/Š P.@H3/:

Moreover these groups are isomorphic to P.C/�; the .�1/-eigenspace of P.C/ for
complex conjugation.
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2.2. The Bloch-Wigner exact sequence

Recall that the group IsomC.H3/ is isomorphic to PSL2C D SL2C=f˙Idg. It acts
naturally on the boundary of hyperbolic 3-space. Fix a point x 2 @H3 and denote by
Bo� SL2C the preimage of the stabilizer of x. As a group, Bo is isomorphic to the
semi-direct product CÌC�, where z 2C� acts on C by multiplication by z2. These
groups are all considered only as discrete groups. Let us then denote by Cof .iBo/
the homotopy cofibre of the map iBo W BBo! BSL2C. The following is an integral
analogue of [Gon99, Lemma 2.14].

Lemma 2.4 For n � 1 we have a commutative diagram where the vertical arrows
are the Hurewicz homomorphisms and the horizontal arrows are induced by the
projections C Ì C� � C�:


sn.B.C Ì C�//

o


sn.BC�/

Hn.B.C Ì C�/IZ/ �
Hn.BC�IZ/:

Proof: From the exact sequence of groups 1! C ! C Ì C� ! C� ! 1 we get
a fibration BC ! B.C Ì C�/! BC�. We will prove that the Atiyah-Hirzebruch
spectral sequence for stable homotopy

Hp.BC�I
sq.BC//) 
spCq.B.C Ì C�//

collapses. Since the stable stems 
sn are torsion groups in degree n � 1 and C is a
rational vector space, the Hurewicz homomorphism 
sn.BC/ ! Hn.BCIZ/ is an
isomorphism, which identifies this spectral sequence with the ordinary homological
spectral sequence. In particular the map 
sn.B.C ÌC�//!Hn.B.C ÌC�/IZ/ is an
isomorphism.

The idea of the second part of the proof goes back at least to Suslin’s [Sus84,
Corollary 1.8]. An element n 2 C� acts by multiplication by n2 on C, hence by
multiplication by n2q on Hq.BCIZ/ Š ƒqC for any q � 1. The map induced by
conjugation in a group G by an element g together with the action of the same g
on a G-module M induces the identity in homology with coefficients in M . As
C� is abelian, in our case we have that multiplication by n2q is the identity on
Hp.BC�IHq.BCIZ//. But multiplication by n2q � 1 is an isomorphism on the
C�-module Hq.BCIZ/, so that Hp.BC�IHq.BCIZ//D 0 for q � 1 and therefore
H�.B.C Ì C�/IZ/ŠH�.BC�IZ/.
Lemma 2.5 For n� 3, the Hurewicz homomorphism 
sn.BSL2C/!eHn.SL2CIZ/
is an isomorphism.
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Proof: The group SL2C is perfect and eH 2.SL2CIZ/ is a rational vector space
[Dup01, Corollary 8.20]. The result now follows from an easy Atiyah-Hirzebruch
spectral sequence argument.

Proposition 2.6 There is a commutative diagram with vertical isomorphisms and
exact rows

Q=Z 
s3.BSL2C/ 
s3.Cof .iBo// 
s2.BBo/ 
s2.BSL2C/

Q=Z H3.SL2CIZ/ P.C/ ƒ2.C�=�C/ H2.SL2CIZ/

where the bottom row is the Bloch-Wigner exact sequence.

Proof: The stable Hurewicz homomorphism permits us to compare the long exact
sequences of the cofibration BBo! BSL2C! Cof .iBo/ in stable homotopy and
in ordinary homology:


s3.BBo/

Š


s3.BSL2C/

Š


s3.Cof .iBo// 
s2.BBo/

Š


s2.BSL2C/

Š

H3.C
�IZ/ H3.SL2CIZ/ H3.Cof .iBo/IZ/ H2.C

�IZ/ H2.SL2CIZ/

The marked isomorphisms are given by Lemmas 2.4 and 2.5. It remains thus to
compare the bottom exact sequence with the Bloch-Wigner exact sequence. We
have to return to its computation by Suslin, [Sus90].

Let P� be a projective resolution of Z over SL2C and consider the complex
C� of .nC 1/-uples of distinct points in @H3, [Dup01, Chapter 2]. The naturally
augmented complex � W C� ! Z is acyclic. Let us consider �C� D .Ker � ! C0/

the truncated complex concentrated in degrees 1 and 0. The natural quotient
map C� ! �C� allows to compare two spectral sequences. The first one is
associated to the double complex P� ˝SL2C �C� and converges to the homology
of SL2C (use the vertical differential first). As it is concentrated on the two bottom
lines it yields a long exact sequence, like the Wang sequence. Unscrewing the
connecting homomorphism one recognizes the long exact sequence in homology
of the cofibration BBo ! BSL2C ! Cof .iBo/. The second one, associated to
the double complex P�˝SL2CC�, yields in low degrees the classical Bloch-Wigner
sequence (see [DS82]). In particular we get isomorphisms H3.Cof .iBo/IZ/ Š
P.C/ and Im.H3.C�IZ/!H3.SL2CIZ//ŠQ=Z.
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3. Lifting the Bloch invariant, the compact case

We construct in this section a class in K3.C/ for every closed, compact, oriented
hyperbolic 3-manifold and show it coincides with the Neumann-Yang Bloch
invariant, [NY99].

3.1. Spin structures on hyperbolic manifolds

Usually, a Spin structure on a 3-dimensional oriented metric manifold M is a
lift of the classifying map M ! BSO.3/ to BSpin.3/. Equivalently, since the
inclusions of the maximal compact subgroups SO.3/ � PSL2.C/ and Spin.3/ �
SL2.C/ are homotopy equivalences, one can consider lifts of the composite map
M ! BSO.3/ ! BPSL2.C/ to BSL2.C/. Now, in the case M is an oriented
hyperbolic manifold, M has the homotopy type of the classifying space of the
discrete group � D 
1M and its structural map is a canonical representation of
� as a discrete and cocompact subgroup of PSL2.C/. Fixing such an inclusion we
get a map M D B� ! BPSL2.C/, which is a representative of the classifying
map of the tangent bundle. In this context, a Spin structure on M is a lift of
this map to BSL2.C/. Hence, the set of Spin structures which are compatible
with the hyperbolic structure is in one-to-one correspondence with the set of group
homomorphisms � ! SL2.C/ that lift the structural morphism � ,! PSL2.C/,
[CS83]. Let us fix such a Spin structure � W �! SL2C.

3.2. The invariant �.M/

We start with an S-orientation t 2 S3.B�/ coming from a stable parallelization that
extends over the 3-skeleton the Spin-structure � (recall from Example 1.1 that �
corresponds to a trivialization of the normal bundle over the 2-skeleton ofM ). Note
that the reduced homology groups are canonical direct factors of the unreduced ones
for pointed spaces, so we have a projection S3.M/�eS3.M/Š 
s3.M/, sending a
given orientation t 2 S3.M/ to a reduced orientation class Qt in 
s3.M/.

The idea is to use the structural map � to obtain an element in 
s3.BSL2C/.
Then include SL2C into the infinite special linear group SLC. This defines for us
an element in


s3.BSLC/Š 
s3.BSLCC/:

Lemma 3.1 The stabilization map 
3BSLCC! 
s3BSLCC is an isomorphism.

Proof: Since BSLCC is simply connected, Freudenthal’s suspension theorem
tells us that the stabilization homomorphism 
3BSLCC � 
s3BSLCC is an
epimorphism. The infinite loop space BSLCC is the universal cover of BGLCC
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and its associated spectrum KCh1i is the 1-connected cover of the K-theory
spectrum KC. The map of spectra †1BSLCC ! KCh1i, adjoint to the
identity, yields a right inverse to the stabilization map, which must therefore be
a monomorphism.

Definition 3.2 Let M be a closed, compact, orientable hyperbolic 3-manifold with
fundamental group � (thus M ' B�). Fix a Spin-structure � W � ! SL2C

and a reduced stable orientation t 2 
s3.B�/ coming from a stable parallelization
extending �. The element �.M/ is then the image of Qt by the homomorphism


s3.B�/
���! 
s3.BSL2C/

i�! 
s3.BSLC/Š 
s3.BSLCC/ Š�!K3.C/:

3.3. Independence from the p1-structure

The preceding definition apparently depends on the choice of the orientation. We
prove here that �.M/ is completely determined by the Spin-structure only.

Lemma 3.3 Let M be a closed orientable manifold of dimension d and c.2/ W
T h.�M / ! †dS be the map obtained by collapsing the 2-skeleton of M . The
S-dual map of c.2/ is then, up to sign, the map ic W †�NS! †�d†1MC induced
by the inclusion of the center of the top-dimensional cell.

Proof: The two duality maps we consider are u W S ! T h.�M / ^ †�d†1MC
and v W S ! Sd ^ S�d . By Definition 1.3, we have to prove that the two maps
.c.2/ ^ 1†�d†1MC

/ ıu and .1Sd ^ ic/ ı v are homotopic, i.e. coincide in

ŒS;Sd ^†�d†1MC�D ŒS;†1MC�D 
s0.MC/Š Z:

The collapse map M ! pt induces an isomorphism 
s0.MC/! 
s0.S
0/ so we may

post–compose with this collapse map. Let us compute the homotopy class of the
map .1Sd ^ ic/ ı v

S Sd ^S�d

Id

Sd ^†�dMC Sd ^†�dS0:

Since the duality map v is an equivalence this is a generator of 
s0.S
0/D 
s0.MC/.

To compare it with .C ^ 1†�d†1MC/ ı u, we turn back to the definition of the
duality map u. One sees that the above composite is the desuspension of the stable
map induced by the following map of spaces, whereN stands for a sufficiently large
integer:

SdCN c.2/

T h.�M /
�0

T h.�M /^MCId^C
T h.�M /^S0

c.2/

SdCN ^S0 ' SdCN
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This map is equal to the map induced by the collapse of the complement of the tubular
neighbourhood of M restricted to the top-dimensional cell. The tubular neighbourhood
restricted to the n-th cell is a trivial disc bundle, therefore the collapse map SdCN !
Dd �DN =@.Dd �DN /D SdCN is of degree ˙1.

Proposition 3.4 Let M be a closed, compact, orientable hyperbolic 3-manifold.
The reduced orientation class Qt 2 
s3.B�/ is independent of the p1-structure.
Consequently the element �.M/ depends only on the Spin-structure.

Proof: We have a cofibre sequence T h.�M jM .2//! T h.�M /
c.2/��! †3S of spectra

of finite type. Therefore, by [Rud98, Lemma II.2.10], we have an S-dual cofibre
sequence of spectra of finite type †�3S!†�3†1MC! .T h.�M /jM .2//�, where
the first map has been identified in Lemma 3.3.

As a consequence we have a commutative diagram, where the vertical arrows
are induced by S-duality:

S0.S3/ S0.T h�M / S0.T h.�mjM .2///


s3.S/ 
s3.MC/ S0.T h.�M jM .2//�/

The map S ! †1MC splits so that the bottom row is a short exact sequence
and we can identify S0.T h.�M jM .2//�/ with 
s3.M/. The diagram shows that the
reduced orientation class Qt 2 
s3.M/ is S-dual to the cohomological orientation
class restricted to the 2-skeleton, which is unaffected by a change of p1-structure.

Remark 3.5 At this point the class �.M/ could be independent of the Spin
structure, even though its construction is not. We will return to this question in
Proposition 3.7 hereafter.

3.4. Comparison with the Bloch invariant

Let us recall how Neumann and Yang construct in [NY99] the Bloch invariant
ˇ.M/ 2 B.C/. The later is the kernel of the morphism P.C/ ! ƒ2.C�=�C/ in
the Bloch-Wigner exact sequence, Proposition 2.6. Since M is oriented hyperbolic,
� � PSL2C and M can be identified with the quotient H3=� . There is a preferred
cohomology class in H 3.PSL2CIP.C// constructed as follows. Pick a point
� 2 @H and to each symbol ŒAjBjC � with A;B;C 2 PSL2C associate the class of
the ideal tetrahedron .�;A�;AB�;ABC�/ (if this happens to be flat, its class is 0).
The defining relation in P.C/ implies exactly that this is a 3-cocycle on the group
PSL2C. An easy computation shows that its cohomology class is independent
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of the choice of � in @H (see for instance [Dup01, Chapter 8]). By the universal
coefficient theorem this gives a map H3.PSL2CIZ/! P.C /.

By [NY99, Proposition 4.3] the invariant ˇ.M/ coincides with the image of the
fundamental class through the composite

H3.M IZ/ �!H3.PSL2CIZ/ �! P.C/:

This proves that ˇ.M/ is well-defined, and lies indeed in B.C/.
Theorem 3.6 Let M be a closed, compact, orientable hyperbolic 3-manifold. The
element �.M/ lifts the Bloch invariant ˇ.M/.

Proof: It is well-known that the cokernel of the natural map from Milnor’s
K-theory KM3 .C/ ! K3.C/ provides a splitting for H3.SL2CIZ/ ! K3.C/.
Moreover the morphism H3.SL2CIZ/ ! P.C/ factors through H3.PSL2CIZ/.
According to the construction of the Bloch-Wigner map bw W K3.C/! P.C/ (see
[Sus90, Section 5]) we have a commutative diagram


s3.M/
�


s3.BSL2C/ K3.C/

H3.M IZ/ H3.PSL2CIZ/ P.C/

and obviously the reduced S-orientation Qt maps to an orientation inH3.M IZ/.
As a consequence of Proposition 3.4 the class �.M/ 2 K3.C/ depends at most

on the Spin structure chosen onM . A change of Spin structure is parametrized by a
Z=2 cohomology class and, as the following proposition shows, this results at most
in the addition to �.M/ of the unique non trivial Z=2 class in K3.C/.

Proposition 3.7 Choose two different Spin structures �;�0 W 
1.M/! SL2.C/ that
extend the same homological orientation of M . Apply the preceding constructions
to two parallelizations of M extending these Spin structures and call �.M/ and
� 0.M/ the resulting K-theory classes. Then �.M/�� 0.M/ 2 Z=2�K3.C/ and by
suitably changing the Spin structure one can make the difference non–zero.

Proof: Let Qt 2 
s3.M/ denote any reduced orientation class of M . Since by
Lemma 2.5 
s3.SL2C/'H3.SL2CIZ/ the following commutative diagram


s3.M/ 
s3.SL2C/

o

H3.M/ H3.SL2CIZ/
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shows that the class �.M/ D ��.Qt / depends on Spin structure only via the
morphism �. Since � and �0 extend the same homological orientation there exists
a non-trivial homomorphism � W 
1.M/! Z=2 such that � D �0C � (notice that
this notation makes sense since Z=2 � SL2C is central). Denote by t 2H3.M IZ/
the homological orientation that both � and �0 extend. Then .�� � �0�/.t/D ��.t/ 2
H3.SL2CIZ/ factors via H3.Z=2IZ/ D Z=2 ,! H3.SL2CIZ/. To show that this
difference may not be zero it is enough to prove that one can choose the Spin
structure, i.e. the morphism 
1.M/ ! Z=2 in such a way that the image of the
fundamental class of M is non-zero in H3.Z=2IZ/. An explicit construction may
be given as follows: the 3-skeleton of BZ=2 is the projective space RP 3, and
the non-zero class of H3.BZ=2ZIZ/ is represented by the orientation class of the
projective space. SinceM is (homologically) oriented the collapse of the 2-skeleton
map M !M=M .2/ ' S3 is an orientation-preserving map. The composition with
the canonical maps S3 ! RP 3 ,! BZ=2 is a map K.
1.M/;1/ D M ! BZ=2

which by construction sends the fundamental class of M onto the non-zero class in
H3.BZ=2IZ/.
Remark 3.8 Our approach can be applied in higher dimensions, since the same
definition can be used in a straightforward manner to define a class in Kn.C/

associated to an n-dimensional S-oriented hyperbolic manifold. This definition
might of course depend on the chosen orientation in general, if it exists.

Borel defined in [Bor77] the Borel regulator bo-reg WK3.C/!R. Likewise the
Bloch regulator is a map bl-reg W B.C/!C=Q and the image of the Bloch-Wigner
map bw WK3.C/! P.C/ lies in B.C/ (see [Sus90]).

Corollary 3.9 Let M be a closed compact oriented hyperbolic manifold of
dimension 3 with fundamental group � . Then, to a Spin-structure � corresponds, in
a canonical way, a class �.M/ 2 K3.C/ such that the hyperbolic volume of M is
determined by the equality

bo-reg.�.M//D vol.M/

2
2
:

Furthermore the Chern-Simons invariant CS.M/ is determined by the congruence

�.�.M//
 �CS.M/C i 	 vol.M/

2
2
.mod Q/:

Proof: This follows directly from Theorem 3.6. Neumann and Yang prove in
[NY99, Theorem 1.3] that one can recover the volume and the Chern-Simons
invariant via the Borel and Bloch regulators.
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4. Lifting the Bloch invariant, the non-compact case

Let M be a non-compact, orientable, hyperbolic 3-manifold of finite volume with
� D 
1.M/. Since M has finite volume it has a finite number of cusps and all
of them are toroidal, [Rat94, Theorem 10.2.1]. Choose such a cusp x 2 M and
denote by Bo� SL2C the preimage of the stabilizer of x. As in Subsection 2.2, iBo
denotes the map BBo! BSL2C. Notice that since the stabilizers of all cusp points
are conjugate in SL2C, the homotopy type of the cofibre Cof .iBo/, is independent
of the choice of x. Choose a Spin-structure on M , i.e. a homomorphism � W
� ! SL2C lifting the canonical representation in PSL2.C/. The representation
� contains parabolic elements, i.e. elements fixing a point in the boundary @H3

.
Choose a sufficiently small ı-horosphere around each cusp of M and denote by Mı

the compact submanifold obtained by removing these horospheres from the cusps of
M , [Thu97, Theorem 4.5.7]. The inclusion Mı ,!M is a homotopy equivalence.

4.1. A first indeterminacy for �.M/

Let T � @Mı denote any component of the boundary, so T ' S1 � S1. Consider
the composite

T D B.Z2/ @Mı Mı
B�

BSL2C Cof .iBo/:

As the action of SL2C is transitive on the boundary of the hyperbolic space, all
stabilizers of points in @H3 are conjugate. The inclusion of Z˚Z into SL2C is then
conjugate to an inclusion intoBo, so that the map T ! Cof .iBo/ is null-homotopic.
The difference between two null-homotopies induced by such conjugations is given
by conjugating by an element of the Borel groupBo and this latter map is homotopic
to the identity, as a self-map of the pair .BSL2C;BBo/.

So, from the choice of the Spin-structure, we get a map Mı=@Mı ! Cof .iBo/,
which is well-defined up to homotopy. A stable parallelization of the tangent bundle
of Mı gives rise to a fundamental class t 2 S3.Mı ;@Mı/Š 
s3.Mı=@Mı/. Pushing
this class by the above map, we get a well-defined class �P .M/ 2 
s3.Cof .iBo//.
Theorem 4.1 Let M be a non-compact, orientable, hyperbolic 3-manifold of finite
volume. It is then always possible to lift the class �P .M/ to a class �.M/ 2K3.C/,
and there are Q=Z possible lifts.

Proof: According to Proposition 2.6, the class �P .M/ lives in
P.C/Š 
s3.Cof .iBo//. Thus our invariant �P .M/ coincides in fact with the Bloch
invariant ˇ.M/, defined in an analogous way to the compact case. We wish to lift it
through the connecting homomorphism ı W 
s3.BSL2C/! 
s3.Cof .iBo//.



Generalized orientations and the Bloch invariant 257

According to Neumann and Yang, [NY99, Section 5] the Bloch invariant is the
scissors congruence class of any hyperbolic ideal triangulation of M and this class
belongs to the kernel B.C/ of P.C/!ƒ2.C�=�C/.

The existence of the lift follows at once from Proposition 2.6. This explains the
Q=Z indeterminacy: the image of the map 
s3.BBo/! 
s3.BSL2C/ is isomorphic
to Q=Z. Now it suffices to push any lift to 
s3.BSLC/, a group isomorphic to
K3.C/ by Lemma 3.1.

Remark 4.2 The fact that the Bloch invariant lies in B.C/ has a nice geometrical
interpretation. Hyperbolic tetrahedra up to isometry are in one to one correspon-
dence with elements of C � f0;1g , the modulus of the tetrahedron. If one starts
with a collection of such tetrahedra and wants to glue them to a hyperbolic space
then a theorem of Thurston says that the moduli of the tetrahedra have to satisfy a
compatibility relation in ƒ2.C � f0;1g/, namely †.z ^ .1 � z// D 0. The above
morphism P.C/ ! ƒ2.C�=�C/ is z 7! 2.z ^ .1 � z//. In particular the image
under this morphism of an ideal triangulation of the hyperbolic manifold M will be
trivially 0 since we started with a hyperbolic manifold.

Theorem 4.1 immediately provides the following.

Corollary 4.3 [Gon99, Theorem 1.1] Let M be a non-compact, orientable,
hyperbolic 3-manifold of finite volume. Then M defines naturally a class �.M/ 2
K3.C/˝Q such that bo-reg.�.M//D vol.M/

2�2 .

A. Orientation with respect to algebraic K-theory

To generalize this approach to higher dimensional manifolds, one cannot follow the
same strategy, as it is not known whether or not all hyperbolic manifolds are stably
parallelizable. There is however an intermediate homology theory, between stable
homotopy and ordinary homology. What we have done in the three dimensional
situation was to start with an S-orientation, whereas the former approaches [Gon99],
[NY99], and [CMJ03] all roughly started from the fundamental class in homology.

The first author’s original insight to the question of lifting the Bloch invariant
was to work with KZ-orientation, where KZ denotes the connective spectrum of
the algebraic K-theory of the integers. We believe that this is a point of view which
is close enough to ordinary homology (or topological K-theory) so as to be able to
do computations, but at the same time not too far away from the stable homotopy
so that the above techniques to construct an invariant in K3.C/ can go through.

In his foundational paper [Lod76] Loday defines a product in algebraic K-
theory by means of a pairing of spectra (in the sense of Whitehead). Given two
rings R and S , consider the connective �-spectra KR and KS corresponding to
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the infinite loop spaces BGLRC � K0R and BGLSC � K0S respectively (the
deloopings are given by the spaces BGL.SnR/C where SR denotes the suspension
of the ring R). Then there exists a pairing

? WKS ^KR!K.S ˝R/:
We will be interested in the case when S D Z. In this case the pairing goes to KR.
The pairing includes in particular compatible maps

BGL.SnZ/C ^BGLRC! BGL.SnZ˝R/C D BGL.SnR/C

which yield a map of spectra ? W KZ^BGLRC ! KR. In order to compare the
present construction with the previous one based on an S-orientation, we will need
to understand the map obtained by precomposing with "^ 1, where " W S! KZ is
the unit of the ring spectrum KZ. We first look at the global pairing of spectra.

Lemma A.1 The composite map S^KR "^1��!KZ^KR ?�!KR is the identity.

Proof: We learn from May, [May80], that KR is a ring spectrum. In particular the

composite S^KR "^1��!KR^KR ?�!K.R˝R/ 
�!KR is the identity. By naturality
and using the inclusion Z ,!C we see that the map in question must be the identity
as well.

We are interested in the infinite loop space BGLRC and wish to compare it to
the spectrum KR. For that purpose we use the pair of adjoint functors

†1 W Spaces � Spect ra W�1;

where †1X D S ^X is the suspension spectrum of the space X and �1E is the
0th term of the �-spectrum representing the cohomology theory E�. If E is an
�-spectrum, then �1E D E0 and we write a W S ^E0 ! E for the adjoint of the
identity.

Proposition A.2 The composite map S ^BGLRC "^1��! KZ^BGLRC ?�! KR is
homotopic to a W S^BGLRC!KR.

Proof: We consider the commutative diagram

S^S^BGLRC "^1^1

1^a
KZ^S^BGLRC

1^a ?

S^KR
"^1 KZ^KR ? KR:

The square is obviously commutative and the triangle commutes up to homotopy
since the Loday product ? forms a Whitehead pairing, [Lod76, p.346].
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Thus we can recover the invariant �.M/ as follows. Consider the composite

h WKZ^M 1^B����!KZ^BSL2C �!KZ^BGLCC ?�!KC:

Proposition A.3 Let M be a closed, compact, orientable hyperbolic 3-manifold
and choose a KZ-orientation s 2KZ3.M/Š 
3.KZ^M/. The invariant �.M/ 2
K3.C/ is then equal to h�.s/.

Between theKZ-orientation and the invariant �.M/ there is an interesting class
in K3.Z�/. It is obtained as the image of the KZ-orientation under the composite

KZ3.B�/ �!KZ3.BGL.Z�/
C/ �!K3.Z�/;

where the first arrow is induced by the canonical inclusion � ,! GL1.Z�/ and the
second is a Loday product. It is not difficult to see that we recover �.M/ by further
composing with

K3.Z�/
���!K3.ZSL2C/ �!K3.M2C/ŠK3.C/:

The second arrow is the fusion map, which takes the formal sum of invertible
matrices to the actual sum inM2C. The final isomorphism is just Morita invariance.
In particular if we turn back to the general questions stated in the introduction, we
may say that the scissor congruence class of a compact hyperbolic three manifold
M D B� is encoded as an orientation class inKZ3.B�/. Moreover this might lead
to explicit computations of volumes, and maybe Chern-Simons invariants, for, as
the Borel regulator is “known” and the above maps are explicit, it remains to find
an explicit representative for the “orientation class” in KZ3.B�/, which could be
done along the lines of [MO02].
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