Massachusetts Institute of Technology Department of Mathematics

Saturated fusion systems as stable retracts of groups

Sune Precht Reeh

1 Bisets as stable maps

2 Fusion systems and idempotents

3 An application to HKR character theory

Notes on the blackboard are in red.

Bisets I

Let S, T be finite *p*-groups. An (S, T)-biset is a finite set equipped with a left action of S and a free right action of T, such that the actions commute.

Transitive bisets: $[Q, \psi]_S^T := S \times T/(sq, t) \sim (s, \psi(q)t)$ for $Q \leq S$ and $\psi: Q \to T$. Q and ψ are determined up to preconjugation in S and postconjugation in T.

(S,T)-bisets form an abelian monoid with disjoint union. The group completion is the *Burnside biset module* A(S,T), consisting of "virtual bisets", i.e. formal differences of bisets.

The $[Q, \psi]$ form a \mathbb{Z} -basis for A(S, T).

Bisets II

We can compose bisets $\odot: A(R, S) \times A(S, T) \rightarrow A(R, T)$ given by $X \odot Y := X \times_S Y$ when X, Y are actual bisets. A(S, S) is the *double Burnside ring* of S.

Example for D_8 with subgroup diagram. With V_1 as one of the Klein four groups, Q_1 as a reflection contained in V_1 , and Z as the centre/half-rotation of D_8 , we for example have $[V_1, id] - 2[Q_1, Q_1 \rightarrow Z]$ as an element of $A(D_8, D_8)$.

Spectra

Properties that we need about the homotopy category of spectra:

- Suspension spectra $\Sigma^{\infty}: Top_* \to Sp$, where $\Sigma^{\infty}X$ has the same cohomology as X.
- It's where cohomology theories live.
- It's additive, so we have direct sums (and summands) of spectra.

and

Theorem (Segal conjecture. Carlsson, ...)

For p-groups S, T:

 $[\Sigma^\infty_+BS, \Sigma^\infty_+BT] \approx A(S,T)^\wedge_p \cong \{X \in A(S,T)^\wedge_p \mid |X|/|T| \in \mathbb{Z}\}.$

Fusion systems I

A fusion system over a finite *p*-group *S* is a category \mathcal{F} where the objects are the subgroups $P \leq S$ and the morphisms satisfy:

- $\operatorname{Hom}_{S}(P,Q) \subseteq \mathcal{F}(P,Q) \subseteq \operatorname{Inj}(P,Q)$ for all $P,Q \leq S$.
- Every $\varphi \in \mathcal{F}(P,Q)$ factors in \mathcal{F} as an isomorphism $P \to \varphi P$ followed by an inclusion $\varphi P \hookrightarrow Q$.

A *saturated* fusion system satisfies a few additional axioms that play the role of Sylow's theorems.

The canonical example of a saturated fusion system is $\mathcal{F}_S(G)$ defined for $S \in \operatorname{Syl}_p(G)$ with morphisms

```
\operatorname{Hom}_{\mathcal{F}_S(G)}(P,Q) := \operatorname{Hom}_G(P,Q).
```


Fusion systems II

Example for $D_8 \leq \Sigma_4$: If V_1 consists of the double transpositions in Σ_4 , then the fusion system $\mathcal{F} = \mathcal{F}_{D_8}(\Sigma_4)$ gains an automorphism α of V_1 of order 3, and $Q_1 \leq V_1$ becomes conjugate in \mathcal{F} to $Z \leq V_1$.

Characteristic bisets I

If G induces a fusion system on S, we can ask what properties G has as an (S, S)-biset in relation to $\mathcal{F}_S(G)$. Linckelmann-Webb wrote down the essential properties as the following definition:

An element $\Omega \in A(S,S)_p^{\wedge}$ is said to be \mathcal{F} -characteristic if

- Ω is left \mathcal{F} -stable: $\operatorname{res}_{\varphi} \Omega = \operatorname{res}_{P} \Omega$ in $A(P,S)_{p}^{\wedge}$ for all $P \leq S$ and $\varphi \in \mathcal{F}(P,S)$.
- Ω is right \mathcal{F} -stable.
- Ω is a linear combination of transitive bisets $[Q, \psi]_S^S$ with $\psi \in \mathcal{F}(Q, S)$.
- $|\Omega|/|S|$ is invertible in $\mathbb{Z}_{(p)}$.

Characteristic bisets II

G, as an (S, S)-biset, is $\mathcal{F}_S(G)$ -characteristic. Σ_4 as a (D_8, D_8) -biset is isomorphic to

$$\Sigma_4 \cong [D_8, id] + [V_1, \alpha].$$

This biset is $\mathcal{F}_{D_8}(\Sigma_4)$ -characteristic. On the other hand, the previous example $[V_1, id] - 2[Q_1, Q_1 \rightarrow Z]$ is generated by elements $[Q, \psi]$ with $\psi \in \mathcal{F}$, but it is not \mathcal{F} -stable and hence not characteristic.

We prefer a characteristic element that is idempotent in $A(S, S)_p^{\wedge}$.

Characteristic bisets III

Theorem (Ragnarsson-Stancu)

Every saturated fusion system \mathcal{F} has a unique \mathcal{F} -characteristic idempotent $\omega_{\mathcal{F}} \in A(S,S)_{(p)}$, and $\omega_{\mathcal{F}}$ determines \mathcal{F} .

For the fusion system $\mathcal{F} = \mathcal{F}_{D_8}(\Sigma_4)$, the characteristic idempotent takes the form

$$\omega_{\mathcal{F}} = [D_8, id] + \frac{1}{3}[V_1, \alpha] - \frac{1}{3}[V_1, id]$$

$B\mathcal{F}$ as a stable retract of BS

The characteristic idempotent $\omega_{\mathcal{F}} \in A(S, S)_p^{\wedge}$ for a saturated fusion system \mathcal{F} defines an idempotent selfmap

$$\Sigma^{\infty}_{+}BS \xrightarrow{\omega_{\mathcal{F}}} \Sigma^{\infty}_{+}BS.$$

This splits off a direct summand W of $\Sigma^{\infty}_{+}BS$, with properties:

- If $\mathcal{F} = \mathcal{F}_S(G)$, then $W \simeq \Sigma^{\infty}_+(BG_p^{\wedge})$.
- Each \mathcal{F} has a "classifying space" $B\mathcal{F}$, and $W \simeq \Sigma^{\infty}_{+} B\mathcal{F}$.
- Have maps $i: \Sigma^{\infty}_{+}BS \to \Sigma^{\infty}_{+}B\mathcal{F}$ and tr: $\Sigma^{\infty}_{+}B\mathcal{F} \to \Sigma^{\infty}_{+}BS$ s.t. $i \circ \text{tr} = id_{\Sigma^{\infty}_{+}B\mathcal{F}}$ and tr $\circ i = \omega_{\mathcal{F}}$.

$B\mathcal{F}$ as a stable retract of BS

Each saturated fusion system \mathcal{F} over a *p*-group S corresponds to the retract $\Sigma^{\infty}_{+}B\mathcal{F}$ of $\Sigma^{\infty}_{+}BS$.

Strategy

- Consider known results for finite *p*-groups.
- Apply $\omega_{\mathcal{F}}$ everywhere.
- Get theorems for saturated fusion systems, and *p*-completed classifying spaces.

HKR character theory for fusion systems (joint with Tomer Schlank & Nat Stapleton)

Hopkins-Kuhn-Ravenel constructed a generalization of group characters in Morava E-theory:

$$\chi_n \colon E_n^*(BG) \to Cl_{n,p}(G; L(E_n^*)).$$

 $L(E_n^*)$ is a certain algebra over E_n^* .

 $Cl_{n,p}(G; L(E_n^*))$ contains functions valued in $L(E_n^*)$ defined on G-conjugacy classes of *n*-tuples of commuting elements in G of *p*-power order.

Theorem (H-K-R)

$$L(E_n^*) \otimes_{E_n^*} E_n^*(BG) \xrightarrow{\simeq} Cl_{n,p}(G; L(E_n^*)).$$

We consider the HKR isomorphism for p-groups

$$L(E_n^*) \otimes_{E_n^*} E_n^*(BS) \xrightarrow{\simeq} Cl_n(S; L(E_n^*)).$$

We try to make $\omega_{\mathcal{F}}$ act on both sides in a way that commutes with the character map. As a result we get:

Pretheorem (R.-Schlank-Stapleton)

For every saturated fusion system \mathcal{F} we have

$$L(E_n^*) \otimes_{E_n^*} E_n^*(B\mathcal{F}) \xrightarrow{\simeq} Cl_{n,p}(\mathcal{F}; L(E_n^*)).$$

For $\mathcal{F} = \mathcal{F}_S(G)$ this recovers the theorem of H-K-R.

Part of proof I

The HKR character map is based on the evaluation map

$L^n BS \times B(\mathbb{Z}/p^k)^n \xrightarrow{eval} BS$

for $k \gg 0$.

The free loop space decomposes as

$$L^{n}BS \simeq \coprod_{\substack{\text{Commuting } n-\text{tuples } \underline{a} \text{ in } S\\ \text{up to } S\text{-conjugation}}} BC_{S}(\underline{a}),$$

and the evaluation map can be described algebraically as $C_S(\underline{a})\times (\mathbb{Z}/p^k)^n\to S$ given by

$$(z, t_1, \ldots, t_n) \mapsto z \cdot (a_1)^{t_1} \cdots (a_n)^{t_n}.$$

Part of proof II

Pretheorem (R.-S.-S.)

The characteristic idempotent $\omega_{\mathcal{F}} \in A(S, S)_p^{\wedge}$ lifts to a map (actually a matrix of bisets) M such that $L^nBS \times B(\mathbb{Z}/p^k)^n \xrightarrow{eval} BS$ $\downarrow M$ $L^nBS \times B(\mathbb{Z}/p^k)^n \xrightarrow{eval} BS$ --->: Stable maps

Bonus! (Not in the talk)

It is impossible for the lift M to have the form (?) $\times id_{(\mathbb{Z}/p^k)^n}$ and still commute with the evaluation maps. Hence the cyclic factor needs to be used nontrivially.

However the lift M that we construct still commutes with the projection

Thank you!

References

- Kári Ragnarsson and Radu Stancu, Saturated fusion systems as idempotents in the double Burnside ring, Geom. Topol. 17 (2013), no. 2, 839–904. MR3070516
- [2] Sune Precht Reeh, Transfer and characteristic idempotents for saturated fusion systems, 41 pp., preprint, available at arXiv:1306.4162.
- [3] Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000), no. 3, 553–594. MR1758754 (2001k:55015)
- [4] Nathaniel Stapleton, Transchromatic generalized character maps, Algebr. Geom. Topol. 13 (2013), no. 1, 171–203. MR3031640

