16. A. Tomasino, A. Shams-Ansari, M. Loncar, I.-C. Benea-Chelmus, “Large area photonic circuits for terahertz detection and beam profiling“, arxiv.org/abs/2410.20407
Alessandro and team demonstrate plug-and-play coherent terahertz detectors at 500 GHz, a 6G band. They argue that the low loss of thin film lithium niobate platform is a key asset to enable integration of a two-dimensional array of terahertz antennas with the photonic circuit to conceptualize, implement and demonstrate selectivity to this desired 6G band through a novel type of quasi-phase matching, robustness to illumination and beam profiling capabilities.
15. Y. Lampert, A. Shams-Ansari, A. Gaier, A. Tomasino, S. Rajabali, L. Magalhaes, M. Loncar, I.-C. Benea-Chelmus, “Photonics-integrated terahertz transmission lines“, arxiv:2406.15651
Yazan and team publish the first-ever photonics integrated terahertz transmission lines that operate up to 3.5 THz.
14. S. Mason, I.-C. Benea-Chelmus, “Hybrid silicon-organic Huygens metasurfaces for phase modulation“, Optics Express 31, 22 (2023).
Sydney publishes her computational study on Hybrid silicon-organic Huygens metasurface for phase modulation.
13. S. Rajabali, I.-C. Benea-Chelmus, “Present and future of terahertz integrated photonic devices”, APL Photonics 8, 8 as a featured article, selected for AIP’s Publishing showcase (2023).
Shima and Cristina publish an invited paper about the current state of the art and milestones ahead for miniaturised terahertz devices co-habiting with integrated photonic circuits.
12. I.-C. Benea-Chelmus and A. Tomasino, “Resolving subcycle signatures: Perspective on hallmarks of terahertz field metrology”, Frontiers in Photonics 4 (2023)
Alessandro and Cristina publish a perspective on Hallmarks of terahertz field metrology, and the advantages offered by possibilities to resolve sub-cycle signatures down to the quantum level
11. A. Herter*, A. Shams-Ansari*, F.F. Settembrini, H.Warner, J. Faist, M. Loncar and I.C. Benea-Chelmus, “Terahertz waveform synthesis from lithium niobate integrated circuits”, Nature Communications 14, 11 (2023)
In collaboration with colleagues at Harvard and ETHZ, we demonstrate on-chip terahertz waveform synthesis from lithium niobate circuits. Read EPFL press release here.
10. V. Ginis*, I.C. Benea-Chelmus*, J. Lu, M. Piccardo and F. Capasso, “Resonators with tailored optical path by cascaded mode conversions”, Nature Communications 14, 495 (2023).
In collaborators from VU Brussels, Harvard and IIT, we demonstrate resonators with tailored optical path by cascaded mode conversions.
9. I.-C. Benea-Chelmus, S. Mason, M. Meretska, D. Elder, D. Kazakov, A. Shams-Ansari, L. Dalton and F. Capasso, “Gigahertz free-space electro-optic modulators based on Mie resonances”, Nature Communications 13, 3170 (2023)
In collaboration with colleagues at Harvard and University of Washington, we demonstrate metasurface modulators reach gigahertz speeds. Read Harvard SEAS press release here.
8. Electro-optic spatial light modulator from an engineered organic layer
I.-C. Benea-Chelmus, M. Meretska, D. Elder, M. Tamagnone, L. Dalton and F. Capasso,
US patent application
Nature Communications 12, 5928 (2021)
Harvard SEAS press release: “Bridging optics and electronics“
Top 25 most read papers in Nature Communications in 2021.
7. Terahertz generation from thin film lithium niobate platform
A. Herter*, A. Shams-Ansari*, F.F.Settembrini, H. Warner, J. Faist, M. Loncar and I.-C. Benea-Chelmus,
CLEO US postdeadline paper SF1B.3 (2021)
6. Electro-optic coherent interface for ultra-sensitive intracavity electric field measurements at microwave and terahertz frequencies
I.-C. Benea-Chelmus*, Y. Salamin*, F. F. Settembrini, J. Fedoryshyn, W. Heni, D. Elder, L. Dalton, J. Leuthold and J. Faist,
5. Compact and ultra-efficient broadband terahertz field detector
Y. Salamin*, I.-C. Benea-Chelmus*, J. Fedoryshyn, W. Heni, D. Elder, L. Dalton, J. Faist and J. Leuthold,
Nature Communications 10, 5550 (2019) , ETH News
4. Electric field correlation measurements on the electromagnetic vacuum state
I.-C. Benea-Chelmus, F. F. Settembrini, G. Scalari, and J. Faist,
Nature 568, 202-206 (2019)
Related to the work on vacuum field fluctuations:
Nature podcast interview with I.-C. Benea-Chelmus
3. Three-dimensional phase modulator at telecom wavelength acting as a Terahertz detector with an electro-optic bandwidth of 1.25 Terahertz
I.-C. Benea-Chelmus, T. Zhu, F. F. Settembrini, C. Bonzon, E. Mavrona, D. Elder, W. Heni, J. Leuthold, L. Dalton, and J. Faist, ACS Photonics 5 (4), pp 1398-1403 (2018)
2. Intensity autocorrelation measurements of frequency combs in the terahertz range
I.-C. Benea-Chelmus, M. Roesch, G. Scalari, M. Beck, and J. Faist, Phys. Rev. A 96, 033821(2017)
1. Subcycle measurement of intensity correlations in the terahertz frequency range
I.-C. Benea-Chelmus, C. Bonzon, C. Maissen, G. Scalari, M. Beck, and J. Faist, Phys. Rev. A 93, 043812 (2016)