Warning Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform.
The owners of these pages are invited to recreate their publication list from Infoscience .
For any assistance, please consult the Infoscience help or contact support .
× Collective relational inference for learning heterogeneous interactions Z. Han ; O. Fink ; D. S. Kammer
Nature Communications . 2024-04-12. Vol. 15 , num. 1 , p. 3191. DOI : 10.1038/s41467-024-47098-7. Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction I. Nejjar ; F. Geissmann ; M. Zhao ; C. Taal ; O. Fink
Reliability Engineering & System Safety . 2024. Vol. 242 , p. 109718. DOI : 10.1016/j.ress.2023.109718. Federated learning with uncertainty-based client clustering for fleet-wide fault diagnosis H. Lu ; A. Thelen ; O. Fink ; C. Hu ; S. Laflamme
Mechanical Systems and Signal Processing . 2024. Vol. 210 , p. 111068. DOI : 10.1016/j.ymssp.2023.111068. Non-contact sensing for anomaly detection in wind turbine blades: A focus-SVDD with complex-valued auto-encoder approach G. M. Frusque ; D. Mitchell ; J. Blanche ; D. Flynn ; O. Fink
Mechanical Systems and Signal Processing . 2024. Vol. 208 , p. 111022. DOI : 10.1016/j.ymssp.2023.111022. A Study on Gradient-based Meta-learning for Robust Deep Digital Twins R. P. Theiler ; M. Viscione ; O. Fink
2023-09-01. The 33rd European Safety and Reliability Conference (ESREL 2023), Southampton, UK, September 3-7,2023. p. 2419-2420. DOI : 10.3850/978-981-18-8071-1. Learning Dynamics of Spring-Mass Models with Physics-Informed Graph Neural Networks V. Sharma ; M. Manav ; L. De Lorenzis ; O. Fink
2023. 33rd European Safety and Reliability Conference (ESREL 2023), Southampton, UK, 3–8 September 2023. p. 2421-2422. DOI : 10.3850/978-981-18-8071-1_P508-cd. Controlled physics-informed data generation for deep learning-based remaining useful life prediction under unseen operation conditions J. Xiong ; O. Fink ; J. Zhou ; Y. Ma
Mechanical Systems and Signal Processing . 2023. Vol. 197 , p. 110359. DOI : 10.1016/j.ymssp.2023.110359. Uncertainty quantification in machine learning for engineering design and health prognostics: A tutorial V. Nemani ; L. Biggio ; X. Huan ; Z. Hu ; O. Fink et al.
Mechanical Systems and Signal Processing . 2023. Vol. 205 , p. 110796. DOI : 10.1016/j.ymssp.2023.110796. Smart filter aided domain adversarial neural network for fault diagnosis in noisy industrial scenarios B. Dai ; G. M. Frusque ; T. Li ; Q. Li ; O. Fink
Engineering Applications of Artificial Intelligence . 2023. Vol. 126 , p. 107202. DOI : 10.1016/j.engappai.2023.107202. Vibrational NDT with Under-sampled Data through Physics-informed Neural Networks S. Hedayatrasa ; O. Fink ; M. Kersemans
2023-08-01. 13th European Conference on Non-Destructive Testing (ECNDT) 2023, Lisbon, July 3-7, 2023. Generating Controlled Physics-Informed Time-to-failure Trajectories for Prognostics in Unseen Operational Conditions J. Xiong ; J. Zhou ; Y. Ma ; O. Fink
2023. ESREL, Southampton, UK, September 3-8, 2023. p. 2417-2418. DOI : 10.3850/978-981-18-8071-1_P732-cd. Segmenting Without Annotating: Crack Segmentation and Monitoring via Post-Hoc Classifier Explanations F. E. Forest ; H. L. P. Porta ; D. Tuia ; O. Fink
2023. ESREL 2023, Southampton, UK, September 3-8, 2023. p. 1392-1393. DOI : 10.3850/978-981-18-8071-1_P290-cd. Exploiting Explanations to Detect Misclassifications of Deep Learning Models in Power Grid Visual Inspection G. Floreale ; P. Baraldi ; E. Zio ; O. Fink
2023. 33rd European Safety and Reliability Conference, Southampton, UK, September 3-8, 2023. p. 3123-3124. DOI : 10.3850/978-981-18-8071-1_P662-cd. Calibrated Adaptive Teacher for Domain Adaptive Intelligent Fault Diagnosis F. E. Forest ; O. Fink
2023. DOI : 10.48550/arxiv.2312.02826. Learnable Wavelet Transform and Domain Adversarial Learning for Enhanced Bearing Fault Diagnosis B. Dai ; G. M. Frusque ; Q. Li ; O. Fink
2023. 33rd European Safety and Reliability Conference, Southampton, UK, September 3-8, 2023. DOI : 10.3850/978-981-18-8071-1_P208-cd. Complex-Valued-Autoencoder for Structural Health Monitoring with Frequency Modulated Continuous Wave Radar G. M. Frusque ; D. Mitchell ; J. Blanche ; D. Flynn ; O. Fink
2023. ESREL European Safety & Reliability Conference 2023, Southampton, UK, September 3-8, 2023. p. 3064-3065. DOI : 10.3850/978-981-18-8071-1_P600-cd. Learning Linearized Degradation of Health Indicators using Deep Koopman Operator Approach S. Garmaev ; O. Fink
2023. ESREL, Southampton, UK, September 3-8, 2023. p. 2423-2424. DOI : 10.3850/978-981-18-8071-1_P470-cd. A Comparison of Residual-based Methods on Fault Detection C-C. Hsu ; G. M. Frusque ; O. Fink
2023. 15th Annual Conference of the Prognostics and Health Management Society (PHM 2023), Salt Lake City, Utah , October 28 – November 2, 2023. DOI : 10.36001/phmconf.2023.v15i1.3444. Graph neural networks for dynamic modeling of roller bearings V. Sharma ; J. Ravesloot ; C. Taal ; O. Fink
2023. Annual Conference of the Prognostics and Health Management Society. Proceedings, Salt Lake City, Utah , October 28 – November 2, 2023. DOI : 10.36001/phmconf.2023.v15i1.3467. Spatial-Temporal Graph Attention Fuser for Calibration in IoT Air Pollution Monitoring Systems K. Faghih Niresi ; M. Zhao ; H. Bissig ; H. Baumann ; O. Fink
2023. IEEE SENSORS, Vienna, Austria, October 29-November 01, 2023. DOI : 10.1109/SENSORS56945.2023.10325090. DARE-GRAM : Unsupervised Domain Adaptation Regression by Aligning Inverse Gram Matrices I. Nejjar ; Qin Wang ; O. Fink
2023. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, June 17-24, 2023. p. 11744-11754. DOI : 10.1109/CVPR52729.2023.01130. SimMMDG: A Simple and Effective Framework for Multi-modal Domain Generalization H. Dong ; I. Nejjar ; H. Sun ; E. Chatzi ; O. Fink
2023. Thirty-seventh Conference on Neural Information Processing Systems, New Orleans, Louisiana, USA, December 10-16, 2023. Learning Physics-Consistent Particle Interactions O. Fink ; Z. Han ; D. S. Kammer
2023. International Conference on Particle-Based Methods. Fundamentals and Applications, Milan, Italy, October 9-11, 2023. Domain knowledge-informed synthetic fault sample generation with health data map for cross-domain planetary gearbox fault diagnosis J. M. Ha ; O. Fink
Mechanical Systems And Signal Processing . 2023-11-01. Vol. 202 , p. 110680. DOI : 10.1016/j.ymssp.2023.110680. Multi-agent reinforcement learning with graph convolutional neural networks for optimal bidding strategies of generation units in electricity markets P. Rokhforoz ; M. Montazeri ; O. Fink
Expert Systems With Applications . 2023-04-13. Vol. 225 , p. 120010. DOI : 10.1016/j.eswa.2023.120010. Incentive Mechanism in the Sponsored Content Market With Network Effects M. Montazeri ; P. Rokhforoz ; H. Kebriaei ; O. Fink
Ieee Transactions On Computational Social Systems . 2023-03-27. DOI : 10.1109/TCSS.2023.3257233. Filter-Informed Spectral Graph Wavelet Networks for Multiscale Feature Extraction and Intelligent Fault Diagnosis T. Li ; C. Sun ; O. Fink ; Y. Yang ; X. Chen et al.
Ieee Transactions On Cybernetics . 2023-03-23. DOI : 10.1109/TCYB.2023.3256080. Fusing physics-based and deep learning models for prognostics M. Arias Chao ; C. kulkarni ; K. Goebel ; O. Fink
Reliability Engineering & System Safety . 2023-01-22. Vol. 217 , p. 107961. DOI : 10.1016/j.ress.2021.107961. Fully learnable deep wavelet transform for unsupervised monitoring of high-frequency time series G. Michau ; G. M. Frusque ; O. Fink
Proceedings of the National Academy of Sciences . 2023-02-18. Vol. 119 , num. 8 , p. e2106598119. DOI : 10.1073/pnas.2106598119. Controlled generation of unseen faults for Partial and Open-Partial domain adaptation K. Rombach ; G. Michau ; O. Fink
Reliability Engineering & System Safety . 2023-02-01. Vol. 230 , p. 108857. DOI : 10.1016/j.ress.2022.108857. A comprehensive review of digital twin-part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives (vol 66, 1, 2022) A. Thelen ; X. Zhang ; O. Fink ; Y. Lu ; S. Ghosh et al.
Structural And Multidisciplinary Optimization . 2023-01-01. Vol. 66 , num. 1 , p. 23. DOI : 10.1007/s00158-022-03476-7. Safe multi-agent deep reinforcement learning for joint bidding and maintenance scheduling of generation units P. Rokhforoz ; M. Montazeri ; O. Fink
Reliability Engineering & System Safety . 2023-01-10. Vol. 232 , p. 109081. DOI : 10.1016/j.ress.2022.109081. A comprehensive review of digital twin-part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives A. Thelen ; X. Zhang ; O. Fink ; Y. Lu ; S. Ghosh et al.
Structural And Multidisciplinary Optimization . 2023-01-01. Vol. 66 , num. 1 , p. 1. DOI : 10.1007/s00158-022-03410-x. DG-Mix: Domain Generalization for Anomalous Sound Detection Based on Self-Supervised Learning I. Nejjar ; J. Meunier-Pion ; G. M. Frusque ; O. Fink
2022. DCASE 2022 Workshop: Workshop on Detection and Classification of Acoustic Scenes and Events, Nancy, France, 3-4 November 2022. Multi-agent maintenance scheduling of generation unit in electricity market using safe deep reinforcement learning algorithm P. Rokhforoz ; O. Fink
2022-09-01. 32nd European Safety and Reliability Conference (ESREL 2022), Dublin, Ireland, August 28 – September 1, 2022. Contrastive Feature Learning for Railway Infrastructure Fault Diagnostic O. Fink ; K. Rombach ; G. Michau ; K. Ratnasabapathy ; W. Bürzle et al.
2022-08-22. 32nd European Safety and Reliability Conference (ESREL 2022), Dublin, Ireland, August 28 – September 1, 2022. p. 1875 – 1881. DOI : 10.3850/978-981-18-5183-4_S02-07-645-cd. Vacuum Circuit Breaker Closing Time Key Moments Detection via Vibration Monitoring: A Run-to-Failure Study C-C. Hsu ; G. M. Frusque ; M. Muratovic ; C. M. Franck ; O. Fink
2022-08-16. IEEE International Conference on Systems, Man and Cybernetics, Prague, Czech Republic, October 9-12, 2022. p. 254-260. DOI : 10.1109/SMC53654.2022.9945354. Learnable Wavelet Packet Transform for Data-Adapted Spectrograms G. M. Frusque ; O. Fink
2022-04-27. ICASSP 2022 – IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, May 23-27, 2022. p. 3119-3123. DOI : 10.1109/ICASSP43922.2022.9747491. Artificial intelligence across company borders O. Fink ; T. Netland ; S. Feuerriegelc
Communications of the ACM . 2022-01-03. Vol. 65 , num. 1 , p. 34-36. DOI : 10.1145/3470449. Maintenance scheduling of manufacturing systems based on optimal price of the network P. Rokhforoz ; O. Fink
Reliability Engineering & System Safety . 2022-01-03. Vol. 217 , p. 108088. DOI : 10.1016/j.ress.2021.108088. Real-time model calibration with deep reinforcement learning Y. Tian ; M. A. Chao ; C. Kulkarni ; K. Goebel ; O. Fink
Mechanical Systems and Signal Processing . 2022-02-15. Vol. 165 , p. 108284. DOI : 10.1016/j.ymssp.2021.108284. Learning physics-consistent particle interactions Z. Han ; D. S. Kammer ; O. Fink
PNAS Nexus . 2022-11-18. Vol. 1 , num. 5 , p. 264. DOI : 10.1093/pnasnexus/pgac264. Acceleration-Guided Acoustic Signal Denoising Framework Based on Learnable Wavelet Transform Applied to Slab Track Condition Monitoring B. Dai ; G. Frusque ; Q. Li ; O. Fink
Ieee Sensors Journal . 2022-12-15. Vol. 22 , num. 24 , p. 24140-24149. DOI : 10.1109/JSEN.2022.3218182. Generalization of an Encoder-Decoder LSTM model for flood prediction in ungauged catchments Y. Zhang ; S. Ragettli ; P. Molnar ; O. Fink ; N. Peleg
Journal Of Hydrology . 2022-11-01. Vol. 614 , p. 128577. DOI : 10.1016/j.jhydrol.2022.128577. A comprehensive review of digital twin – part 1: modeling and twinning enabling technologies A. Thelen ; X. Zhang ; O. Fink ; Y. Lu ; S. Ghosh et al.
Structural And Multidisciplinary Optimization . 2022-12-01. Vol. 65 , num. 12 , p. 354. DOI : 10.1007/s00158-022-03425-4. Continual Test-Time Domain Adaptation Q. Wang ; O. Fink ; L. Van Gool ; D. Dai
2022-01-01. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, Jun 18-24, 2022. p. 7191-7201. DOI : 10.1109/CVPR52688.2022.00706. A prescriptive Dirichlet power allocation policy with deep reinforcement learning Y. Tian ; M. Han ; C. Kulkarni ; O. Fink
Reliability Engineering & System Safety . 2022-08-01. Vol. 224 , p. 108529. DOI : 10.1016/j.ress.2022.108529.