Incorporating Near-Infrared Information into Semantic Image Segmentation
Recent progress in computational photography has shown that we can acquire near-infrared (NIR) information in addition to the normal visible (RGB) band, with only slight modifications to standard digital cameras. Due to the proximity of the NIR band to visible radiation, NIR images share many properties with visible images. However, as a result of the material dependent reflectionin the NIR part of the spectrum, such images reveal different characteristics of the scene. We investigate how to effectively exploit these differences to improve performance on the semantic image segmentation task. Based on a state-of-the-art segmentation framework and a novel manually segmented image database (both indoor and outdoor scenes) that contain 4-channel images (RGB+NIR), we study how to best incorporate the specific characteristics of the NIR response. We show that adding NIR leads to improved performance for classes that correspond to a specific type of material in both outdoor and indoor scenes. We also discuss the results with respect to the physical properties of the NIR response.
The dataset
Semantic Image Segmentation Using Visible and Near-Infrared Channels
Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform. The owners of these pages are invited to recreate their publication list from Infoscience. For any assistance, please consult the Infoscience help or contact support.
Deep Semantic Segmentation Using Nir As Extra Physical Information
2019 Ieee International Conference On Image Processing (Icip)
2019-01-01
26th IEEE International Conference on Image Processing (ICIP), Taipei, TAIWAN, Sep 22-25, 2019.p. 2439-2443
DOI : 10.1109/ICIP.2019.8803242
Semantic Image Segmentation Using Visible and Near-Infrared Channels
Lecture Notes in Computer Science
2012
4th Workshop on Color and Photometry in Computer Vision at ECCV12, Florence, Italy, October 7-13, 2012.p. 461-471
DOI : 10.1007/978-3-642-33868-7_46
Supplementary material
Here is the link to more qualitative results. Supplementary material