Publications

Download the list of publications in PDF format

2024

A fully hybrid integrated erbium-based laser

Y. Liu; Z. Qiu; X. Ji; A. Bancora; G. Lihachev et al. 

Nature Photonics. 2024-06-10. DOI : 10.1038/s41566-024-01454-7.

Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms

S. Kono; J. Pan; M. Chegnizadeh; X. Wang; A. Youssefi et al. 

Nature Communications. 2024-05-10. Vol. 15, num. 1, p. 3950. DOI : 10.1038/s41467-024-48230-3.

Lithium tantalate photonic integrated circuits for volume manufacturing

C. Wang; Z. Li; J. Riemensberger; G. Lihachev; M. Churaev et al. 

Nature. 2024-05-08. Vol. 629, p. 784–790. DOI : 10.1038/s41586-024-07369-1.

Photonic-electronic integrated circuit-based coherent LiDAR engine

A. Lukashchuk; H. K. Yildirim; A. Bancora; G. Lihachev; Y. Liu et al. 

Nature Communications. 2024-04-11. Vol. 15, num. 1, p. 3134. DOI : 10.1038/s41467-024-47478-z.

Room-temperature quantum optomechanics using an ultralow noise cavity

G. Huang; A. Beccari; N. J. Engelsen; T. J. Kippenberg 

Nature. 2024-02-15. Vol. 626, num. 7999. DOI : 10.1038/s41586-023-06997-3.

2023

Towards efficient broadband parametric conversion in ultra-long Si3N4 waveguides

A. Ayan; J. Liu; T. J. Kippenberg; C-S. Bres 

Optics Express. 2023-11-20. Vol. 31, num. 24, p. 40916-40927. DOI : 10.1364/OE.502648.

Voltage-tunable optical parametric oscillator with an alternating dispersion dimer integrated on a chip

D. Pidgayko; A. Tusnin; J. Riemensberger; A. Stroganov; A. Tikan et al. 

Optica. 2023-11-20. Vol. 10, num. 11, p. 1582-1586. DOI : 10.1364/OPTICA.503022.

Nonlinear dynamics and Kerr frequency comb formation in lattices of coupled microresonators

A. Tusnin; A. Tikan; K. Komagata; T. J. Kippenberg 

Communications Physics. 2023-11-02. Vol. 6, num. 1, p. 317. DOI : 10.1038/s42005-023-01438-z.

Space-time wave packets with reduced divergence and tunable group velocity generated in free space after multi-mode fiber propagation

K. Zou; K. Pang; H. Song; M. Karpov; X. Su et al. 

Optics Letters. 2023-11-01. Vol. 48, num. 21, p. 5695-5698. DOI : 10.1364/OL.504531.

High density lithium niobate photonic integrated circuits

Z. Li; R. N. Wang; G. Lihachev; J. Zhang; Z. Tan et al. 

Nature Communications. 2023-08-10. Vol. 14, num. 1. DOI : 10.1038/s41467-023-40502-8.

A squeezed mechanical oscillator with millisecond quantum decoherence

A. Youssefi; S. Kono; M. Chegnizadeh; T. J. Kippenberg 

Nature Physics. 2023-08-10. DOI : 10.1038/s41567-023-02135-y.

Non-sliced optical arbitrary waveform measurement (OAWM) using soliton microcombs

D. Drayss; D. Fang; C. Fullner; G. Lihachev; T. Henauer et al. 

Optica. 2023-07-20. Vol. 10, num. 7, p. 888-896. DOI : 10.1364/OPTICA.484200.

Chaotic microcomb-based parallel ranging

A. Lukashchuk; J. Riemensberger; A. Tusnin; J. Liu; T. J. Kippenberg 

Nature Photonics. 2023-07-20. DOI : 10.1038/s41566-023-01246-5.

Electron-Photon Quantum State Heralding Using Photonic Integrated Circuits

G. Huang; N. J. Engelsen; O. Kfir; C. Ropers; T. J. Kippenberg 

Prx Quantum. 2023-06-26. Vol. 4, num. 2, p. 020351. DOI : 10.1103/PRXQuantum.4.020351.

A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform

M. Churaev; R. N. Wang; A. Riedhauser; V. Snigirev; T. Blesin et al. 

Nature Communications. 2023-06-13. Vol. 14, num. 1, p. 3499. DOI : 10.1038/s41467-023-39047-7.

Sub-kHz-Linewidth External-Cavity Laser (ECL) With Si3N4 Resonator Used as a Tunable Pump for a Kerr Frequency Comb

P. Maier; Y. Chen; Y. Xu; Y. Bao; M. Blaicher et al. 

Journal Of Lightwave Technology. 2023-06-01. Vol. 41, num. 11, p. 3479-3490. DOI : 10.1109/JLT.2023.3243471.

Single-frequency violet and blue laser emission from AlGaInN photonic integrated circuit chips

T. Wunderer; A. Siddharth; N. M. Johnson; C. L. Chua; M. Teepe et al. 

Optics Letters. 2023-06-01. Vol. 48, num. 11, p. 2781-2784. DOI : 10.1364/OL.486758.

Integrated photon-pair source with monolithic piezoelectric frequency tunability

T. Brydges; A. S. Raja; A. Gelmini; G. Lihachev; A. Petitjean et al. 

Physical Review A. 2023-05-03. Vol. 107, num. 5, p. 052602. DOI : 10.1103/PhysRevA.107.052602.

Chaotic microcomb inertia-free parallel ranging

A. Lukashchuk; J. Riemensberger; A. Stroganov; G. Navickaite; T. J. Kippenberg 

Apl Photonics. 2023-05-01. Vol. 8, num. 5, p. 056102. DOI : 10.1063/5.0141384.

Dissipative Solitons and Switching Waves in Dispersion-Modulated Kerr Cavities

M. H. Anderson; A. Tikan; A. Tusnin; J. Riemensberger; A. Davydova et al. 

Physical Review X. 2023-03-16. Vol. 13, num. 1, p. 011040. DOI : 10.1103/PhysRevX.13.011040.

Ultrafast tunable lasers using lithium niobate integrated photonics

V. Snigirev; A. Riedhauser; G. Lihachev; M. Churaev; J. Riemensberger et al. 

Nature. 2023-03-15. Vol. 615, num. 7952, p. 411-+. DOI : 10.1038/s41586-023-05724-2.

Time-Resolved Hanbury Brown-Twiss Interferometry of On-Chip Biphoton Frequency Combs Using Vernier Phase Modulation

K. V. Myilswamy; S. Seshadri; H-H. Lu; M. S. Alshaykh; J. Liu et al. 

Physical Review Applied. 2023-03-07. Vol. 19, num. 3, p. 034019. DOI : 10.1103/PhysRevApplied.19.034019.

A chip-scale second-harmonic source via self-injection-locked all-optical poling

M. Clementi; E. Nitiss; J. Liu; E. Durán-Valdeiglesias; S. Belahsene et al. 

Light: Science & Applications. 2023. Vol. 12, num. 96. DOI : 10.1038/s41377-023-01329-6.

Architecture for integrated RF photonic downconversion of electronic signals

N. p. O’malley; K. a. Mckinzie; M. s. Alshaykh; J. U. N. Q. I. U. Liu; D. e. Leaird et al. 

Optics Letters. 2023-01-01. Vol. 48, num. 1, p. 159-162. DOI : 10.1364/OL.474710.

2022

Topological lattices realized in superconducting circuit optomechanics

A. Youssefi; S. Kono; A. Bancora; M. Chegnizadeh; J. Pan et al. 

Nature. 2022-12-22. Vol. 612, num. 7941, p. 666-+. DOI : 10.1038/s41586-022-05367-9.

Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators

J. Hu; E. Nitiss; J. He; J. Liu; O. Yakar et al. 

Science Advances. 2022-12-16. Vol. 8, num. 50, p. eadd8252. DOI : 10.1126/sciadv.add8252.

Generation of OAM-carrying space-time wave packets with time-dependent beam radii using a coherent combination of multiple LG modes on multiple frequencies

A. Minoofar; K. Zou; K. Pang; H. Song; M. Karpov et al. 

Optics Express. 2022-12-05. Vol. 30, num. 25, p. 45267-45278. DOI : 10.1364/OE.472745.

A photonic integrated continuous-travelling-wave parametric amplifier

J. Riemensberger; N. Kuznetsov; J. Liu; J. He; R. N. Wang et al. 

Nature. 2022-12-01. Vol. 612, num. 7938, p. 56-+. DOI : 10.1038/s41586-022-05329-1.

Tunability of space-time wave packet carrying tunable and dynamically changing OAM value

K. Zou; X. Su; M. Yessenov; K. Pang; N. Karapetyan et al. 

Optics Letters. 2022-11-01. Vol. 47, num. 21, p. 5751-5754. DOI : 10.1364/OL.472363.

Experimental demonstration of dynamic spatiotemporal structured beams that simultaneously exhibit two orbital angular momenta by combining multiple frequency lines, each carrying multiple Laguerre-Gaussian modes

K. Pang; K. Zou; Z. Zhao; H. Song; Y. Zhou et al. 

Optics Letters. 2022-08-15. Vol. 47, num. 16, p. 4044-4047. DOI : 10.1364/OL.466058.

Zero dispersion Kerr solitons in optical microresonators

M. H. Anderson; W. Weng; G. Lihachev; A. Tikan; J. Liu et al. 

Nature Communications. 2022-08-13. Vol. 13, num. 1, p. 4764. DOI : 10.1038/s41467-022-31916-x.

Cavity-mediated electron-photon pairs

A. Feist; G. Huang; G. Arend; Y. Yang; J-W. Henke et al. 

Science. 2022-08-12. Vol. 377, num. 6607, p. 777-780. DOI : 10.1126/science.abo5037.

Reduced material loss in thin-film lithium niobate waveguides

A. Shams-Ansari; G. Huang; L. He; Z. Li; J. Holzgrafe et al. 

Apl Photonics. 2022-08-01. Vol. 7, num. 8, p. 081301. DOI : 10.1063/5.0095146.

Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements

H-H. Lu; K. Myilswamy; R. S. Bennink; S. Seshadri; M. S. Alshaykh et al. 

Nature Communications. 2022-07-27. Vol. 13, num. 1, p. 4338. DOI : 10.1038/s41467-022-31639-z.

Low-noise frequency-agile photonic integrated lasers for coherent ranging

G. Lihachev; J. Riemensberger; W. Weng; J. Liu; H. Tian et al. 

Nature Communications. 2022-06-20. Vol. 13, num. 1, p. 3522. DOI : 10.1038/s41467-022-30911-6.

A photonic integrated circuit-based erbium-doped amplifier

Y. Liu; Z. Qiu; X. Ji; A. Lukashchuk; J. He et al. 

Science. 2022-06-17. Vol. 376, num. 6599, p. eabo2631. DOI : 10.1126/science.abo2631.

Probing material absorption and optical nonlinearity of integrated photonic materials

M. Gao; Q-F. Yang; Q-X. Ji; H. Wang; L. Wu et al. 

Nature Communications. 2022-06-09. Vol. 13, num. 1, p. 3323. DOI : 10.1038/s41467-022-30966-5.

Dual chirped microcomb based parallel ranging at megapixel-line rates

A. Lukashchuk; J. Riemensberger; M. Karpov; J. Liu; T. J. Kippenberg 

Nature Communications. 2022-06-07. Vol. 13, num. 1, p. 3280. DOI : 10.1038/s41467-022-30542-x.

Hierarchical tensile structures with ultralow mechanical dissipation

M. J. Bereyhi; A. Beccari; R. Groth; S. A. Fedorov; A. Arabmoheghi et al. 

Nature Communications. 2022-06-02. Vol. 13, num. 1, p. 3097. DOI : 10.1038/s41467-022-30586-z.

Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding 10(9) at Room Temperature

M. J. Bereyhi; A. Arabmoheghi; A. Beccari; S. A. Fedorov; G. Huang et al. 

Physical Review X. 2022-05-12. Vol. 12, num. 2, p. 021036. DOI : 10.1103/PhysRevX.12.021036.

Synthesis of near-diffraction-free orbital-angular-momentum space-time wave packets having a controllable group velocity using a frequency comb

K. Pang; K. Zou; H. Song; M. Karpov; M. Yessenov et al. 

Optics Express. 2022-05-09. Vol. 30, num. 10, p. 16712-16724. DOI : 10.1364/OE.456781.

Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity

L. Qiu; G. Huang; I. Shomroni; J. Pan; P. Seidler et al. 

Prx Quantum. 2022-04-13. Vol. 3, num. 2, p. 020309. DOI : 10.1103/PRXQuantum.3.020309.

Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits

X. Ji; J. Liu; J. He; R. N. Wang; Z. Qiu et al. 

Communications Physics. 2022-04-07. Vol. 5, num. 1, p. 84. DOI : 10.1038/s42005-022-00851-0.

Near ultraviolet photonic integrated lasers based on silicon nitride

A. Siddharth; T. Wunderer; G. Lihachev; A. S. Voloshin; C. Haller et al. 

Apl Photonics. 2022-04-01. Vol. 7, num. 4, p. 046108. DOI : 10.1063/5.0081660.

Protected generation of dissipative Kerr solitons in supermodes of coupled optical microresonators

A. Tikan; A. Tusnin; J. Riemensberger; M. Churaev; X. Ji et al. 

Science Advances. 2022-04-01. Vol. 8, num. 13, p. eabm6982. DOI : 10.1126/sciadv.abm6982.

Platicon microcomb generation using laser self-injection locking

G. Lihachev; W. Weng; J. Liu; L. Chang; J. Guo et al. 

Nature Communications. 2022-04-01. Vol. 13, num. 1, p. 1771. DOI : 10.1038/s41467-022-29431-0.

Strained crystalline nanomechanical resonators with quality factors above 10 billion

A. Beccari; D. A. Visani; S. A. Fedorov; M. J. Bereyhi; V. Boureau et al. 

Nature Physics. 2022-02-28. Vol. 18, p. 436–441. DOI : 10.1038/s41567-021-01498-4.

Microresonator Dissipative Kerr Solitons Synchronized to an Optoelectronic Oscillator

W. Weng; J. He; A. Kaszubowska-Anandarajah; P. M. Anandarajah; T. J. Kippenberg 

Physical Review Applied. 2022-02-10. Vol. 17, num. 2, p. 024030. DOI : 10.1103/PhysRevApplied.17.024030.

Polarization selective ultra-broadband wavelength conversion in silicon nitride waveguides

A. Ayan; F. Mazeas; J. Liu; T. J. Kippenberg; C-S. Bres 

Optics Express. 2022-01-31. Vol. 30, num. 3, p. 4342-4350. DOI : 10.1364/OE.446357.

Roadmap on multimode light shaping

M. Piccardo; V. Ginis; A. Forbes; S. Mahler; A. A. Friesem et al. 

Journal Of Optics. 2022-01-01. Vol. 24, num. 1, p. 013001. DOI : 10.1088/2040-8986/ac3a9d.

2021

Integrated photonics enables continuous-beam electron phase modulation

J-W. Henke; A. S. Raja; A. Feist; G. Huang; G. Arend et al. 

Nature. 2021-12-23. Vol. 600, num. 7890, p. 653-658. DOI : 10.1038/s41586-021-04197-5.

Continuous-wave frequency upconversion with a molecular optomechanical nanocavity

W. Chen; P. Roelli; H. Hu; S. Verlekar; S. P. Amirtharaj et al. 

Science. 2021-12-03. Vol. 374, num. 6572, p. 1264-1267. DOI : 10.1126/science.abk3106.

Quantum coherent microwave-optical transduction using high-overtone bulk acoustic resonances

T. Blesin; H. Tian; S. A. Bhave; T. J. Kippenberg 

Physical Review A. 2021-11-03. Vol. 104, num. 5, p. 052601. DOI : 10.1103/PhysRevA.104.052601.

Magnetic-free silicon nitride integrated optical isolator

H. Tian; J. Liu; A. Siddharth; R. N. Wang; T. Blesin et al. 

Nature Photonics. 2021-10-21. Vol. 15, p. 828–836. DOI : 10.1038/s41566-021-00882-z.

Ultrafast optical circuit switching for data centers using integrated soliton microcombs

A. S. Raja; S. Lange; M. Karpov; K. Shi; X. Fu et al. 

Nature Communications. 2021-10-15. Vol. 12, num. 1, p. 5867. DOI : 10.1038/s41467-021-25841-8.

Entanglement swapping between independent and asynchronous integrated photon-pair sources

F. Samara; N. Maring; A. Martin; A. S. Raja; T. J. Kippenberg et al. 

Quantum Science And Technology. 2021-10-01. Vol. 6, num. 4, p. 045024. DOI : 10.1088/2058-9565/abf599.

Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls

W. Weng; M. H. Anderson; A. Siddharth; J. He; A. S. Raja et al. 

Physical Review A. 2021-08-16. Vol. 104, num. 2, p. 023511. DOI : 10.1103/PhysRevA.104.023511.

Nanofabrication meets open science

M. J. Bereyhi; T. J. Kippenberg 

Nature Nanotechnology. 2021-07-26. Vol. 16, p. 850–852. DOI : 10.1038/s41565-021-00944-x.

Dissipative Kerr solitons in a photonic dimer on both sides of exceptional point

K. Komagata; A. Tusnin; J. Riemensberger; M. Churaev; H. Guo et al. 

Communications Physics. 2021-07-14. Vol. 4, num. 1, p. 159. DOI : 10.1038/s42005-021-00661-w.

Laser soliton microcombs heterogeneously integrated on silicon

C. Xiang; J. Liu; J. Guo; L. Chang; R. N. Wang et al. 

Science. 2021-07-02. Vol. 373, num. 6550, p. 99-103. DOI : 10.1126/science.abh2076.

Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons

M. H. Anderson; R. Bouchand; J. Liu; W. Weng; E. Obrzud et al. 

Optica. 2021-06-20. Vol. 8, num. 6, p. 771-779. DOI : 10.1364/OPTICA.403302.

Intrinsic luminescence blinking from plasmonic nanojunctions

W. Chen; P. A. Rölli; A. Ahmed; S. S. Verlekar; H. Hu et al. 

Nature Communications. 2021-05-21. Vol. 12, num. 1, p. 2731. DOI : 10.1038/s41467-021-22679-y.

A cryogenic electro-optic interconnect for superconducting devices

A. Youssefi; I. Shomroni; Y. J. Joshi; N. R. Bernier; A. Lukashchuk et al. 

Nature Electronics. 2021-05-10. Vol. 4, num. 5, p. 326–332. DOI : 10.1038/s41928-021-00570-4.

Difference-frequency generation in optically poled silicon nitride waveguides

E. Sahin; B. Zabelich; O. Yakar; E. Nitiss; J. Liu et al. 

Nanophotonics. 2021-05-01. Vol. 10, num. 7, p. 1923-1930. DOI : 10.1515/nanoph-2021-0080.

High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits

J. Liu; G. Huang; R. N. Wang; J. He; A. S. Raja et al. 

Nature Communications. 2021-04-16. Vol. 12, num. 1, p. 2236. DOI : 10.1038/s41467-021-21973-z.

Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials

J. He; I. Paradisanos; T. Liu; A. R. Cadore; J. Liu et al. 

Nano Letters. 2021-04-14. Vol. 21, num. 7, p. 2709-2718. DOI : 10.1021/acs.nanolett.0c04149.

Gain-switched semiconductor laser driven soliton microcombs

W. Weng; A. Kaszubowska-Anandarajah; J. He; P. D. Lakshmijayasimha; E. Lucas et al. 

Nature Communications. 2021-03-03. Vol. 12, num. 1, p. 1425. DOI : 10.1038/s41467-021-21569-7.

Automated wide-ranged finely tunable microwave cavity for narrowband phase noise filtering

Y. J. Joshi; N. Sauerwein; A. Youssefi; P. Uhrich; T. J. Kippenberg 

Review Of Scientific Instruments. 2021-03-01. Vol. 92, num. 3, p. 034710. DOI : 10.1063/5.0034696.

Emergent nonlinear phenomena in a driven dissipative photonic dimer

A. Tikan; J. Riemensberger; K. Komagata; S. Honl; M. Churaev et al. 

Nature Physics. 2021-02-15. Vol. 17, p. 604–610. DOI : 10.1038/s41567-020-01159-y.

Soliton microcomb based spectral domain optical coherence tomography

P. J. Marchand; J. Riemensberger; J. C. Skehan; J-J. Ho; M. H. P. Pfeiffer et al. 

Nature Communications. 2021-01-18. Vol. 12, num. 1, p. 427. DOI : 10.1038/s41467-020-20404-9.

Dynamics of soliton self-injection locking in optical microresonators

A. S. Voloshin; N. M. Kondratiev; G. Lihachev; J. Liu; V. E. Lobanov et al. 

Nature Communications. 2021-01-11. Vol. 12, num. 1, p. 235. DOI : 10.1038/s41467-020-20196-y.

Parallel convolutional processing using an integrated photonic tensor core

J. Feldmann; N. Youngblood; M. Karpov; H. Gehring; X. Li et al. 

Nature. 2021-01-07. Vol. 589, num. 7840, p. 52-58. DOI : 10.1038/s41586-020-03070-1.

2020

Thermal intermodulation noise in cavity-based measurements

S. A. Fedorov; A. Beccari; A. Arabmoheghi; D. J. Wilson; N. J. Engelsen et al. 

Optica. 2020-11-20. Vol. 7, num. 11, p. 1609-1616. DOI : 10.1364/OPTICA.402449.

Molecular Platform for Frequency Upconversion at the Single-Photon Level

P. Roelli; D. Martin-Cano; T. J. Kippenberg; C. Galland 

Physical Review X. 2020-09-14. Vol. 10, num. 3, p. 031057. DOI : 10.1103/PhysRevX.10.031057.

Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy

H. Guo; W. Weng; J. Liu; F. Yang; W. Hänsel et al. 

Optica. 2020-09-08. Vol. 7, num. 9, p. 1181-1188. DOI : 10.1364/OPTICA.396542.

Frequency division using a soliton-injected semiconductor gain-switched frequency comb

W. Weng; A. Kaszubowska-Anandarajah; J. Liu; P. M. Anandarajah; T. J. Kippenberg 

Science Advances. 2020-09-01. Vol. 6, num. 39, p. eaba2807. DOI : 10.1126/sciadv.aba2807.

Reconfigurable radiofrequency filters based on versatile soliton microcombs

J. Hu; J. He; J. Liu; A. S. Raja; M. Karpov et al. 

Nature Communications. 2020-09-01. Vol. 11, num. 1, p. 4377. DOI : 10.1038/s41467-020-18215-z.

Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides

E. Nitiss; B. Zabelich; O. Yakar; J. Liu; R. N. Wang et al. 

Photonics Research. 2020-09-01. Vol. 8, num. 9, p. 1475-1483. DOI : 10.1364/PRJ.396489.

Nonlinear states and dynamics in a synthetic frequency dimension

A. K. Tusnin; A. M. Tikan; T. J. Kippenberg 

Physical Review A. 2020-08-13. Vol. 102, num. 2, p. 023518. DOI : 10.1103/PhysRevA.102.023518.

Monolithic piezoelectric control of soliton microcombs

J. Liu; H. Tian; E. Lucas; A. S. Raja; G. Lihachev et al. 

Nature. 2020-07-16. Vol. 583, num. 7816, p. 385-390. DOI : 10.1038/s41586-020-2465-8.

Integrated turnkey soliton microcombs

B. Shen; L. Chang; J. Liu; H. Wang; Q-F. Yang et al. 

Nature. 2020-06-18. Vol. 582, num. 7812, p. 365-369. DOI : 10.1038/s41586-020-2358-x.

Hybrid integrated photonics using bulk acoustic resonators

H. Tian; J. Liu; B. Dong; J. C. Skehan; M. Zervas et al. 

Nature Communications. 2020-06-17. Vol. 11, num. 1, p. 3073. DOI : 10.1038/s41467-020-16812-6.

Controlling free electrons with optical whispering-gallery modes

O. Kfir; H. Lourenco-Martins; G. Storeck; M. Sivis; T. R. Harvey et al. 

Nature. 2020-06-04. Vol. 582, num. 7810, p. 46-49. DOI : 10.1038/s41586-020-2320-y.

Heteronuclear soliton molecules in optical microresonators

W. Weng; R. Bouchand; E. Lucas; E. Obrzud; T. Herr et al. 

Nature Communications. 2020-05-14. Vol. 11, num. 1, p. 2402. DOI : 10.1038/s41467-020-15720-z.

Massively parallel coherent laser ranging using a soliton microcomb

J. Riemensberger; A. Lukashchuk; M. Karpov; W. Weng; E. Lucas et al. 

Nature. 2020-05-01. Vol. 581, num. 7807, p. 164-170. DOI : 10.1038/s41586-020-2239-3.

Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy

L. Qiu; I. Shomroni; P. Seidler; T. J. Kippenberg 

Physical Review Letters. 2020-04-29. Vol. 124, num. 17, p. 173601. DOI : 10.1103/PhysRevLett.124.173601.

Performance of chip-scale optical frequency comb generators in coherent WDM communications

P. Marin-Palomo; J. N. Kemal; T. J. Kippenberg; W. Freude; S. Randel et al. 

Optics Express. 2020-04-27. Vol. 28, num. 9, p. 12897-12910. DOI : 10.1364/OE.380413.

Formation and Collision of Multistability-Enabled Composite Dissipative Kerr Solitons

W. Weng; R. Bouchand; T. J. Kippenberg 

Physical Review X. 2020-04-23. Vol. 10, num. 2, p. 021017. DOI : 10.1103/PhysRevX.10.021017.

Photonic microwave generation in the X- and K-band using integrated soliton microcombs

J. Liu; E. Lucas; A. S. Raja; J. He; J. Riemensberger et al. 

Nature Photonics. 2020-04-20. Vol. 14, p. 486–491. DOI : 10.1038/s41566-020-0617-x.

Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si3N4 waveguide

E. Tagkoudi; D. Grassani; F. Yang; C. Herkommer; T. Kippenberg et al. 

Optics Letters. 2020-04-07. Vol. 45, num. 8, p. 2195-2198. DOI : 10.1364/OL.390086.

Kramers Kronig detection of four 20 Gbaud 16-QAM channels using Kerr combs for a shared phase estimation

K. Zou; P. Liao; Y. Cao; A. Kordts; A. Almaiman et al. 

Optics Letters. 2020-04-01. Vol. 45, num. 7, p. 1794-1797. DOI : 10.1364/OL.387360.

Optomechanical generation of a mechanical catlike state by phonon subtraction

I. Shomroni; L. Qiu; T. J. Kippenberg 

Physical Review A. 2020-03-11. Vol. 101, num. 3, p. 033812. DOI : 10.1103/PhysRevA.101.033812.

Chip-based soliton microcomb module using a hybrid semiconductor laser

A. S. Raja; J. Liu; N. Volet; R. N. Wang; J. He et al. 

Optics Express. 2020-02-03. Vol. 28, num. 3, p. 2714-2721. DOI : 10.1364/OE.28.002714.

Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator

E. Lucas; P. Brochard; R. Bouchand; S. Schilt; T. Suedmeyer et al. 

Nature Communications. 2020-01-17. Vol. 11, num. 1, p. 374. DOI : 10.1038/s41467-019-14059-4.

Fractal-like Mechanical Resonators with a Soft-Clamped Fundamental Mode

S. A. Fedorov; A. Beccari; N. J. Engelsen; T. J. Kippenberg 

Physical Review Letters. 2020-01-16. Vol. 124, num. 2, p. 025502. DOI : 10.1103/PhysRevLett.124.025502.

Demonstration of Tunable Optical Aggregation of QPSK to 16-QAM Over Optically Generated Nyquist Pulse Trains Using Nonlinear Wave Mixing and a Kerr Frequency Comb

A. Fallahpour; H. Zhou; P. Liao; C. Liu; M. Tur et al. 

Journal Of Lightwave Technology. 2020-01-15. Vol. 38, num. 2, p. 359-365. DOI : 10.1109/JLT.2019.2959803.

Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides

F. Gyger; J. Liu; F. Yang; J. He; A. S. Raja et al. 

Physical Review Letters. 2020-01-03. Vol. 124, num. 1, p. 1-7, 013902. DOI : 10.1103/PhysRevLett.124.013902.

Integrated gallium phosphide nonlinear photonics

D. J. Wilson; K. Schneider; S. Hoenl; M. Anderson; Y. Baumgartner et al. 

Nature Photonics. 2020-01-01. Vol. 14, num. 1, p. 57-+. DOI : 10.1038/s41566-019-0537-9.

Formation Rules and Dynamics of Photoinduced χ(2) Gratings in Silicon Nitride Waveguides

E. Nitiss; T. Liu; D. Grassani; M. H. P. Pfeiffer; T. Kippenberg et al. 

ACS Photonics. 2020. Vol. 7, num. 1, p. 147–153. DOI : 10.1021/acsphotonics.9b01301.

2019

Polychromatic Cherenkov Radiation Induced Group Velocity Symmetry Breaking in Counterpropagating Dissipative Kerr Solitons

W. Weng; R. Bouchand; E. Lucas; T. J. Kippenberg 

Physical Review Letters. 2019-12-17. Vol. 123, num. 25, p. 253902. DOI : 10.1103/PhysRevLett.123.253902.

Floquet dynamics in the quantum measurement of mechanical motion

L. Qiu; I. Shomroni; M. A. Ioannou; N. Piro; D. Malz et al. 

Physical Review A. 2019-11-25. Vol. 100, num. 5, p. 053852. DOI : 10.1103/PhysRevA.100.053852.

Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements

I. Shomroni; A. Youssefi; N. Sauerwein; L. Qiu; P. Seidler et al. 

Physical Review X. 2019-10-30. Vol. 9, num. 4, p. 041022. DOI : 10.1103/PhysRevX.9.041022.

Dynamics of soliton crystals in optical microresonators

M. Karpov; M. H. P. Pfeiffer; H. Guo; W. Weng; J. Liu et al. 

Nature Physics. 2019-10-01. Vol. 15, num. 10, p. 1071-1077. DOI : 10.1038/s41567-019-0635-0.

Thermally stable access to microresonator solitons via slow pump modulation

T. Wildi; V. Brasch; J. Liu; T. J. Kippenberg; T. Herr 

Optics Letters. 2019-09-15. Vol. 44, num. 18, p. 4447-4450. DOI : 10.1364/OL.44.004447.

In memory of Mikhail Gorodetsky

I. Bilenko; V. Ilchenko; F. Khalili; T. J. Kippenberg 

Nature Photonics. 2019-08-01. Vol. 13, num. 8, p. 506-508. DOI : 10.1038/s41566-019-0490-7.

High-rate photon pairs and sequential Time-Bin entanglement with Si3N4 microring resonators

F. Samara; A. Martin; C. Autebert; M. Karpov; T. J. Kippenberg et al. 

Optics Express. 2019-07-08. Vol. 27, num. 14, p. 19309-19318. DOI : 10.1364/OE.27.019309.

Thermorefractive noise in silicon-nitride microresonators

G. Huang; E. Lucas; J. Liu; A. S. Raja; G. Lihachev et al. 

Physical Review A. 2019-06-24. Vol. 99, num. 6, p. 061801. DOI : 10.1103/PhysRevA.99.061801.

Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide

D. Martyshkin; V. Fedorov; T. Kesterson; S. Vasilyev; H. Gu et al. 

Optical Materials Express. 2019-06-01. Vol. 9, num. 6, p. 2553-2559. DOI : 10.1364/OME.9.002553.

Optical backaction-evading measurement of a mechanical oscillator

I. Shomroni; L. Qiu; D. Malz; A. Nunnenkamp; T. J. Kippenberg 

Nature Communications. 2019-05-07. Vol. 10, p. 2086. DOI : 10.1038/s41467-019-10024-3.

Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum

D. Grassani; E. Tagkoudi; H. Guo; C. Herkommer; F. Yang et al. 

Nature Communications. 2019-04-04. Vol. 10, p. 1553. DOI : 10.1038/s41467-019-09590-3.

Electrically pumped photonic integrated soliton microcomb (vol 10, 680, 2018)

A. S. Raja; A. S. Voloshin; H. Guo; S. E. Agafonova; J. Liu et al. 

Nature Communications. 2019-04-03. Vol. 10, p. 1623. DOI : 10.1038/s41467-019-09529-8.

Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb

F. Alishahi; A. Fallahpour; A. Mohajerin-Ariaei; Y. Cao; A. Kordts et al. 

Optics Letters. 2019-04-01. Vol. 44, num. 7, p. 1852-1855. DOI : 10.1364/OL.44.001852.

Clamp-Tapering Increases the Quality Factor of Stressed Nanobeams

M. J. Bereyhi; A. Beccari; S. A. Fedorov; A. H. Ghadimi; R. Schilling et al. 

Nano Letters. 2019-04-01. Vol. 19, num. 4, p. 2329-2333. DOI : 10.1021/acs.nanolett.8b04942.

Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation

C. Bao; P. Liao; A. Kordts; L. Zhang; A. Matsko et al. 

Optics Letters. 2019-03-15. Vol. 44, num. 6, p. 1472-1475. DOI : 10.1364/OL.44.001472.

Generalized dissipation dilution in strained mechanical resonators

S. A. Fedorov; N. J. Engelsen; A. H. Ghadimi; M. J. Bereyhi; R. Schilling et al. 

Physical Review B. 2019-02-28. Vol. 99, num. 5, p. 054107. DOI : 10.1103/PhysRevB.99.054107.

Electrically pumped photonic integrated soliton microcomb

A. S. Raja; A. S. Voloshin; H. Guo; S. E. Agafonova; J. Liu et al. 

Nature Communications. 2019-02-08. Vol. 10, p. 680. DOI : 10.1038/s41467-019-08498-2.

Demonstration of Multiple Kerr-Frequency-Comb Generation Using Different Lines From Another Kerr Comb Located Up To 50 km Away

P. Liao; C. Bao; A. Almaiman; A. Kordts; M. Karpov et al. 

Journal Of Lightwave Technology. 2019-01-15. Vol. 37, num. 2, p. 579-584. DOI : 10.1109/JLT.2019.2895851.

Spectral Purification of Microwave Signals with Disciplined Dissipative Kerr Solitons

W. Weng; E. Lucas; G. Lihachev; V. E. Lobanov; H. Guo et al. 

Physical Review Letters. 2019-01-03. Vol. 122, num. 1, p. 013902. DOI : 10.1103/PhysRevLett.122.013902.

A microphotonic astrocomb

E. Obrzud; M. Rainer; A. Harutyunyan; M. H. Anderson; J. Liu et al. 

Nature Photonics. 2019-01-01. Vol. 13, num. 1, p. 31-35. DOI : 10.1038/s41566-018-0309-y.

Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide

D. Grassani; M. H. R. Pfeiffer; T. J. Kippenberg; C-S. Bres 

Optics Letters. 2019-01-01. Vol. 44, num. 1, p. 106-109. DOI : 10.1364/OL.44.000106.

2018

Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb

A. N. Willner; P. Liao; K. Zou; Y. Cao; A. Kordts et al. 

Optics Letters. 2018-11-15. Vol. 43, num. 22, p. 5563-5566. DOI : 10.1364/OL.43.005563.

Nonreciprocity in Microwave Optomechanical Circuits

N. R. Bernier; L. D. Toth; A. K. Feofanov; T. J. Kippenberg 

Ieee Antennas And Wireless Propagation Letters. 2018-11-01. Vol. 17, num. 11, p. 1983-1987. DOI : 10.1109/LAWP.2018.2856622.

Spatial multiplexing of soliton microcombs

E. Lucas; G. Lihachev; R. Bouchand; N. G. Pavlov; A. S. Raja et al. 

Nature Photonics. 2018-11-01. Vol. 12, num. 11, p. 699-705. DOI : 10.1038/s41566-018-0256-7.

Ultralow-power chip-based soliton microcombs for photonic integration

J. Liu; A. S. Raja; M. Karpov; B. Ghadiani; M. H. P. Pfeiffer et al. 

Optica. 2018-10-20. Vol. 5, num. 10, p. 1347-1353. DOI : 10.1364/OPTICA.5.001347.

Evidence for structural damping in a high-stress silicon nitride nanobeam and its implications for quantum optomechanics

S. Fedorov; V. Sudhir; R. D. Schilling; H. Schütz; D. J. Wilson et al. 

Physics Letters A. 2018-08-25. Vol. 382, num. 33, p. 2251-2255. DOI : 10.1016/j.physleta.2017.05.046.

Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins

M. Pfeiffer; J. Liu; A. Raja; T. Morais; B. Ghadiani et al. 

OPTICA. 2018. Vol. 5, num. 7, p. 884-892. DOI : 10.1364/OPTICA.5.000884.

Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides

M. Pfeiffer; C. Herkommer; J. Liu; T. Morais; M. Zervas et al. 

IEEE Journal of Selected Topics in Quantum Electronics. 2018. Vol. 24, num. 4, p. 6101411. DOI : 10.1109/JSTQE.2018.2808258.

Level attraction in a microwave optomechanical circuit

N. Bernier; L. Toth; A. Feofanov; T. Kippenberg 

Physical Review A. 2018. Vol. 98, num. 2, p. 023841. DOI : 10.1103/PhysRevA.98.023841.

Double inverse nanotapers for efficient light coupling to integrated photonic devices

J. Liu; A. Raja; M. Pfeiffer; C. Herkommer; H. Guo et al. 

OPTICS LETTERS. 2018. Vol. 43, num. 14, p. 3200-3203. DOI : 10.1364/OL.43.003200.

Dissipative Kerr solitons in optical microresonators

T. Kippenberg; A. Gaeta; M. Lipson; M. Gorodetsky 

Science. 2018. Vol. 361, num. 6402, p. 567. DOI : 10.1126/science.aan8083.

A maser based on dynamical backaction on microwave light

L. Toth; N. Bernier; A. Feofanov; T. Kippenberg 

PHYSICS LETTERS A. 2018. Vol. 382, num. 33, p. 2233-2237. DOI : 10.1016/j.physleta.2017.05.045.

Quantum-Limited Directional Amplifiers with Optomechanics

D. Malz; L. D. Tóth; N. R. Bernier; A. K. Feofanov; T. J. Kippenberg et al. 

Physical Review Letters. 2018. Vol. 120, num. 2, p. 3601. DOI : 10.1103/PhysRevLett.120.023601.

Effects of erbium-doped fiber amplifier induced pump noise on soliton Kerr frequency combs for 64-quadrature amplitude modulation transmission

P. Liao; C. Bao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2018. Vol. 43, num. 11, p. 2495. DOI : 10.1364/OL.43.002495.

Elastic strain engineering for ultralow mechanical dissipation

A. H. Ghadimi; S. A. Fedorov; N. J. Engelsen; M. J. Bereyhi; R. Schilling et al. 

Science. 2018. Vol. 360, num. 6390, p. 764-768. DOI : 10.1126/science.aar6939.

Highly efficient coupling of crystalline microresonators to integrated photonic waveguides

M. Anderson; N. G. Pavlov; J. D. Jost; G. Lihachev; J. Liu et al. 

Optics Letters. 2018. Vol. 43, num. 9, p. 2106. DOI : 10.1364/OL.43.002106.

Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides

H. Guo; C. Herkommer; A. Billat; D. Grassani; C. Zhang et al. 

Nature Photonics. 2018. Vol. 12, num. 6, p. 330-335. DOI : 10.1038/s41566-018-0144-1.

Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators

C. Javerzac-Galy; A. Kumar; R. D. Schilling; N. Piro; S. Khorasani et al. 

Nano Letters. 2018. Vol. 18, num. 5, p. 3138-3146. DOI : 10.1021/acs.nanolett.8b00749.

An optical-frequency synthesizer using integrated photonics

D. T. Spencer; T. Drake; T. C. Briles; J. Stone; L. C. Sinclair et al. 

Nature. 2018. Vol. 557, num. 7703, p. 81-85. DOI : 10.1038/s41586-018-0065-7.

Ultrafast optical ranging using microresonator soliton frequency combs

P. Trocha; M. Karpov; D. Ganin; M. H. P. Pfeiffer; A. Kordts et al. 

Science. 2018. Vol. 359, num. 6378, p. 887-891. DOI : 10.1126/science.aao3924.

Photonic chip-based soliton frequency combs covering the biological imaging window

M. Karpov; M. H. P. Pfeiffer; J. Liu; A. Lukashchuk; T. Kippenberg 

Nature Communications. 2018. Vol. 9, num. 1, p. 1146. DOI : 10.1038/s41467-018-03471-x.

2017

Intermode Breather Solitons in Optical Microresonators

H. Guo; E. Lucas; M. H. P. Pfeiffer; M. Karpov; M. Anderson et al. 

Physical Review X. 2017. Vol. 7, num. 4, p. 041055. DOI : 10.1103/PhysRevX.7.041055.

Tunable insertion of multiple lines into a Kerr frequency comb using electro-optical modulators

C. Bao; P. Liao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2017. Vol. 42, num. 19, p. 3765-3768. DOI : 10.1364/Ol.42.003765.

Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasiphase- matching

A. Billat; D. Grassani; M. H. P. Pfeiffer; S. Kharitonov; T. Kippenberg et al. 

Nature Communications. 2017. Vol. 8, p. 1016. DOI : 10.1038/s41467-017-01110-5.

Quantum Correlations of Light from a Room-Temperature Mechanical Oscillator

V. Sudhir; R. Schilling; S. A. Fedorov; H. Schutz; D. J. Wilson et al. 

Physical Review X. 2017. Vol. 7, num. 3, p. 031055-1. DOI : 10.1103/PhysRevX.7.031055.

Pump-linewidth-tolerant wavelength multicasting using soliton Kerr frequency combs

P. Liao; C. Bao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2017. Vol. 42, num. 16, p. 3177-3180. DOI : 10.1364/Ol.42.003177.

Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators

M. H. P. Pfeiffer; C. Herkommer; J. Liu; H. Guo; M. Karpov et al. 

Optica. 2017. Vol. 4, num. 7, p. 684-691. DOI : 10.1364/OPTICA.4.000684.

Microresonator-based solitons for massively parallel coherent optical communications

P. Marin-Palomo; J. N. Kemal; M. Karpov; A. Kordts; J. Pfeifle et al. 

Nature. 2017. Vol. 546, num. 7657, p. 274-279. DOI : 10.1038/nature22387.

Nonreciprocal reconfigurable microwave optomechanical circuit

N. R. Bernier; L. D. Toth; A. Koottandavida; M. A. Ioannou; D. Malz et al. 

Nature Communications. 2017. Vol. 8, p. 604. DOI : 10.1038/s41467-017-00447-1.

Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators

E. Lucas; H. Guo; J. D. Jost; M. Karpov; T. J. Kippenberg 

Physical Review A. 2017. Vol. 95, num. 4, p. 043822. DOI : 10.1103/PhysRevA.95.043822.

Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon

L. Chang; M. H. P. Pfeiffer; N. Volet; M. Zervas; J. D. Peters et al. 

Optics Letters. 2017. Vol. 42, num. 4, p. 803-806. DOI : 10.1364/Ol.42.000803.

Dependence of a microresonator Kerr frequency comb on the pump linewidth

P. Liao; C. Bao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2017. Vol. 42, num. 4, p. 779-782. DOI : 10.1364/Ol.42.000779.

Coupling Ideality of Integrated Planar High-Q Microresonators

M. H.  . Pfeiffer; J. Liu; M. Geiselmann; T. J. Kippenberg 

Physical Review Applied. 2017. Vol. 7, num. 2, p. 024026. DOI : 10.1103/PhysRevApplied.7.024026.

Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator

V. Sudhir; D. J. Wilson; R. Schilling; H. Schuetz; S. A. Fedorov et al. 

Physical Review X. 2017. Vol. 7, num. 1, p. 011001. DOI : 10.1103/PhysRevX.7.011001.

Soliton dual frequency combs in crystalline microresonators

N. G. Pavlov; G. Lihachev; S. Koptyaev; E. Lucas; M. Karpov et al. 

Optics Letters. 2017. Vol. 42, num. 3, p. 514. DOI : 10.1364/OL.42.000514.

Dual-pump generation of high-coherence primary Kerr combs with multiple sub-lines

C. Bao; P. Liao; A. Kordts; L. Zhang; M. Karpov et al. 

Optics Letters. 2017. Vol. 42, num. 3, p. 595. DOI : 10.1364/OL.42.000595.

A dissipative quantum reservoir for microwave light using a mechanical oscillator

L. D. Toth; N. R. Bernier; A. Nunnenkamp; A. Feofanov; T. Kippenberg 

Nature Physics. 2017. Vol. 13, p. 787-793. DOI : 10.1038/Nphys4121.

Breathing dissipative solitons in optical microresonators

E. Lucas; M. Karpov; H. Guo; M. Gorodetsky; T. Kippenberg 

Nature Communications. 2017. Vol. 8, num. 1, p. 736. DOI : 10.1038/s41467-017-00719-w.

Self-referenced photonic chip soliton Kerr frequency comb

V. Brasch; E. Lucas; J. D. Jost; M. Geiselmann; T. J. Kippenberg 

Light: Science & Applications. 2017. Vol. 6, num. 1, p. e16202. DOI : 10.1038/lsa.2016.202.

2016

Mid-infrared ultra-high-Q resonators based on fluoride crystalline materials

C. Lecaplain; C. Javerzac-Galy; M. L. Gorodetsky; T. J. Kippenberg 

Nature Communications. 2016-11-21. Vol. 7, p. 13383. DOI : 10.1038/ncomms13383.

Study on the detuning-dependent properties of a temporal dissipative Kerr soliton in an optical microresonator

E. G. A. Lucas; J. D. Jost; T. Kippenberg 

arXiv. 2016. 

Harmonization of chaos into a soliton in Kerr frequency combs

V. E. Lobanov; G. V. Lihachev; N. G. Pavlov; A. V. Cherenkov; T. J. Kippenberg et al. 

Optics Express. 2016. Vol. 24, num. 24, p. 27382-27394. DOI : 10.1364/Oe.24.027382.

Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state

V. Brasch; M. Geiselmann; M. H. P. Pfeiffer; T. J. Kippenberg 

Optics Express. 2016. Vol. 24, num. 25, p. 29313-29321. DOI : 10.1364/Oe.24.029312.

On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator

C. Javerzac-Galy; K. Plekhanov; N. R. Bernier; L. D. Toth; A. K. Feofanov et al. 

Physical Review A. 2016. Vol. 94, num. 5, p. 053815. DOI : 10.1103/PhysRevA.94.053815.

Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators

H. Guo; M. Karpov; E. Lucas; A. Kordts; M. Pfeiffer et al. 

Nature Physics. 2016. Vol. 13, num. 1, p. 94-102. DOI : 10.1038/nphys3893.

Demonstration of optical multicasting using Kerr frequency comb lines

C. Bao; P. Liao; A. Kordts; M. Karpov; M. H. P. Pfeiffer et al. 

Optics Letters. 2016. Vol. 41, num. 16, p. 3876-3879. DOI : 10.1364/Ol.41.003876.

Frequency comb generation in the green using silicon nitride microresonators

L. Wang; L. Chang; N. Volet; M. H. P. Pfeiffer; M. Zervas et al. 

Laser & Photonics Reviews. 2016. Vol. 10, num. 4, p. 631-638. DOI : 10.1002/lpor.201600006.

Near-Field Integration of a SiN Nanobeam and a SiO2 Microcavity for Heisenberg-Limited Displacement Sensing

R. Schilling; H. Schutz; A. H. Ghadimi; V. Sudhir; D. J. Wilson et al. 

Physical Review Applied. 2016. Vol. 5, num. 5, p. 054019. DOI : 10.1103/PhysRevApplied.5.054019.

A strongly coupled K-type micromechanical system

H. Okamoto; R. Schilling; H. Schuetz; V. Sudhir; D. J. Wilson et al. 

Applied Physics Letters. 2016. Vol. 108, num. 15, p. 153105. DOI : 10.1063/1.4945741.

Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers

J. Liu; V. Brasch; M. H. P. Pfeiffer; A. Kordts; A. N. Kamel et al. 

Optics Letters. 2016. Vol. 41, num. 13, p. 3134. DOI : 10.1364/OL.41.003134.

Dissipation engineering of high-stress silicon nitride nanobeams

A. H. Ghadimi; D. J. Wilson; T. Kippenberg 

ArXiv. 2016. 

Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator

M. Karpov; H. Guo; A. Kordts; V. Brasch; M. H. Pfeiffer et al. 

Physical Review Letters. 2016. Vol. 116, num. 10, p. 103902. DOI : 10.1103/PhysRevLett.116.103902.

Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics

M. H. P. Pfeiffer; A. Kordts; V. Brasch; M. Zervas; M. Geiselmann et al. 

Optica. 2016. Vol. 3, num. 1, p. 20. DOI : 10.1364/OPTICA.3.000020.

Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation

A. Kordts; M. H. P. Pfeiffer; H. Guo; V. Brasch; T. J. Kippenberg 

Optics Letters. 2016. Vol. 41, num. 3, p. 452. DOI : 10.1364/OL.41.000452.

2015

Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering

P. Roelli; C. Galland; N. Piro; T. J. Kippenberg 

Nature Nanotechnology. 2015. Vol. 11, num. 2, p. 164-169. DOI : 10.1038/nnano.2015.264.

All-optical stabilization of a soliton frequency comb in a crystalline microresonator

J. D. Jost; E. Lucas; T. Herr; C. Lecaplain; V. Brasch et al. 

Optics Letters. 2015. Vol. 40, num. 20, p. 4723-4726. DOI : 10.1364/Ol.40.004723.

Photonic chip-based optical frequency comb using soliton Cherenkov radiation

V. Brasch; M. Geiselmann; T. Herr; G. Lihachev; M. H. P. Pfeiffer et al. 

Science. 2015. Vol. 351, num. 6271, p. 357-360. DOI : 10.1126/science.aad4811.

Counting the cycles of light using a self-referenced optical microresonator

J. D. Jost; T. Herr; C. Lecaplain; V. Brasch; M. H. P. Pfeiffer et al. 

Optica. 2015. Vol. 2, num. 8, p. 706-711. DOI : 10.1364/Optica.2.000706.

Plasmomechanical Resonators Based on Dimer Nanoantennas

R. Thijssen; T. J. Kippenberg; A. Polman; E. Verhagen 

Nano Letters. 2015. Vol. 15, num. 6, p. 3971-3976. DOI : 10.1021/acs.nanolett.5b00858.

Measurement-based control of a mechanical oscillator at its thermal decoherence rate

D. J. Wilson; V. Sudhir; N. Piro; R. Schilling; A. Ghadimi et al. 

Nature. 2015. Vol. 524, num. 7565, p. 325-329. DOI : 10.1038/nature14672.

Frequency combs and platicons in optical microresonators with normal GVD

V. E. Lobanov; G. Lihachev; T. J. Kippenberg; M. L. Gorodetsky 

Optics Express. 2015. Vol. 23, num. 6, p. 7713-7721. DOI : 10.1364/Oe.23.007713.

2014

Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics

V. Brasch; Q-F. Chen; S. Schiller; T. J. Kippenberg 

Optics Express. 2014. Vol. 22, num. 25, p. 30786-30794. DOI : 10.1364/Oe.22.030786.

Cavity optomechanics

M. Aspelmeyer; T. J. Kippenberg; F. Marquard 

Reviews Of Modern Physics. 2014. Vol. 86, num. 4, p. 1391-1452. DOI : 10.1103/RevModPhys.86.1391.

Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators

R. Thijssen; T. J. Kippenberg; A. Polman; E. Verhagen 

Acs Photonics. 2014. Vol. 1, num. 11, p. 1181-1188. DOI : 10.1021/ph500262b.

Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer

F. Hocke; M. Pernpeintner; X. Zhou; A. Schliesser; T. J. Kippenberg et al. 

Applied Physics Letters. 2014. Vol. 105, num. 13, p. 133102. DOI : 10.1063/1.4896785.

Quantum-Limited Amplification and Parametric Instability in the Reversed Dissipation Regime of Cavity Optomechanics

A. Nunnenkamp; V. Sudhir; A. K. Feofanov; A. Roulet; T. J. Kippenberg 

Physical Review Letters. 2014. Vol. 113, num. 2, p. 023604. DOI : 10.1103/PhysRevLett.113.023604.

Mode Spectrum and Temporal Soliton Formation in Optical Microresonators

T. Herr; V. Brasch; J. D. Jost; I. Mirgorodskiy; G. Lihachev et al. 

Physical Review Letters. 2014. Vol. 113, num. 12, p. 123901. DOI : 10.1103/PhysRevLett.113.123901.

Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics

C. Galland; N. Sangouard; N. Piro; N. Gisin; T. J. Kippenberg 

Physical Review Letters. 2014. Vol. 112, num. 14, p. 143602. DOI : 10.1103/PhysRevLett.112.143602.

Coherent terabit communications with microresonator Kerr frequency combs

J. Pfeifle; V. Brasch; M. Lauermann; Y. Yu; D. Wegner et al. 

Nature Photonics. 2014. Vol. 8, num. 5, p. 375-380. DOI : 10.1038/nphoton.2014.57.

Temporal solitons in optical microresonators

T. Herr; V. Brasch; J. D. Jost; C. Y. Wang; N. M. Kondratiev et al. 

Nature Photonics. 2014. Vol. 8, num. 2, p. 145-152. DOI : 10.1038/Nphoton.2013.343.

2013

Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics

X. Zhou; F. Hocke; A. Schliesser; A. Marx; H. Huebl et al. 

Nature Physics. 2013. Vol. 9, num. 3, p. 179-184. DOI : 10.1038/nphys2527.

Stabilization of a linear nanomechanical oscillator to its thermodynamic limit

E. Gavartin; P. Verlot; T. J. Kippenberg 

Nature Communications. 2013. Vol. 4, p. 2860. DOI : 10.1038/ncomms3860.

Reply to ‘Dissipative feedback does not improve the optimal resolution of incoherent force detection’

E. Gavartin; P. Verlot; T. J. Kippenberg 

Nature Nanotechnology. 2013. Vol. 8, num. 10, p. 692-692. DOI : 10.1038/nnano.2013.200.

Plasmon Nanomechanical Coupling for Nanoscale Transduction

R. Thijssen; E. Verhagen; T. J. Kippenberg; A. Polman 

Nano Letters. 2013. Vol. 13, num. 7, p. 3293-3297. DOI : 10.1021/nl4015028.

Nonlinear Quantum Optomechanics via Individual Intrinsic Two-Level Defects

T. Ramos; V. Sudhir; K. Stannigel; P. Zoller; T. J. Kippenberg 

Physical Review Letters. 2013. Vol. 110, num. 19, p. 193602. DOI : 10.1103/PhysRevLett.110.193602.

Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat

R. Riviere; O. Arcizet; A. Schliesser; T. J. Kippenberg 

Review Of Scientific Instruments. 2013. Vol. 84, num. 4, p. 043108. DOI : 10.1063/1.4801456.

Mid-infrared optical frequency combs at 2.5 mu m based on crystalline microresonators

C. Y. Wang; T. Herr; P. Del’Haye; A. Schliesser; J. Hofer et al. 

Nature Communications. 2013. Vol. 4, p. 1345. DOI : 10.1038/ncomms2335.

Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of GHz mechanical modes

T. J. Kippenberg; A. Schliesser; M. L. Gorodetsky 

New Journal Of Physics. 2013. Vol. 15, p. 015019. DOI : 10.1088/1367-2630/15/1/015019.

2012

Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition

J. Riemensberger; K. Hartinger; T. Herr; V. Brasch; R. Holzwarth et al. 

Optics Express. 2012. Vol. 20, num. 25, p. 27661-27669. DOI : 10.1364/OE.20.027661.

Electromechanically induced absorption in a circuit nano-electromechanical system

F. Hocke; X. Zhou; A. Schliesser; T. J. Kippenberg; H. Huebl et al. 

New Journal Of Physics. 2012. Vol. 14, p. 123037. DOI : 10.1088/1367-2630/14/12/123037.

A hybrid on-chip optomechanical transducer for ultrasensitive force measurements

E. Gavartin; P. Verlot; T. J. Kippenberg 

Nature Nanotechnology. 2012. Vol. 7, num. 8, p. 509-514. DOI : 10.1038/Nnano.2012.97.

 

2007

  –  Cavity Opto-Mechanics
T.J. Kippenberg and K.J. Vahala
Optics Express 15, 17172 (2007)
  –  Optical frequency comb generation from a monolithic microresonator
P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T.J. Kippenberg
Nature 450, 1214 (2007)
  –  Theory of ground state cooling of a mechanical oscillator using dynamical back-action
I. Wilson-Rae, N. Nooshi, W. Zwerger and T.J. Kippenberg
Physical Review Letters 99, 093901 (2007)
  –  Radiation pressure driven vibrational modes in ultra-high-Q silica microspheres
R. Ma, A. Schliesser, P. Del’Haye, A. Dabirian, G. Anetsberger and T.J. Kippenberg
Optics Letters 32, 2200 (2007)

2006
A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala and T. J. Kippenberg
“Radiation pressure cooling of a micromechanical oscillator using dynamical backaction”
Physical Review Letters 97, 243905 (2006)
 

In the group of Professor Kerry J. VahalavCalifornia Institute of Technology USA:

2006
T.J. Kippenberg, J. Kalkman, A. Polman, K.J. Vahala
“Demonstration of an erbium doped microdisk laser on a silicon chip”
Physical Review A, Rapid Communication, Vol. 74, Art. No. 051802 (November 2006)
T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala and H. J. Kimble
“Observation of strong coupling between one atom and a monolithic microresonator”
Nature 443, 671-674(12 October 2006)
J. Kalkman,A. Tchebotareva, A. Polman, T. J. Kippenberg, B. Min, K. J. Vahala
“Fabrication and characterization of erbium-doped toroidal microcavity lasers”
Journal of Applied Physics, No. 99, 083103 (2006)
H. Rokhsari,T. J. Kippenberg, T. Carmon and K. J. Vahala
“Theoretical analysis of radiation pressure induced mechanical oscillations (parametric oscillation instability) in optical microcavities”
IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No.1 (2006)

2005
T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer and K. J. Vahala
“Analysis of radiation pressure induced mechanical oscillations of an optical microcavity ”
Physical Review Letters 95, Art. No. 033901 (2005)
H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala
“Radiation Pressure driven micromechanical oscillator”
Optics Express, No. 13, p. 5293 (2005)
T. Carmon, T. J. Kippenberg, L. Yang, H. Rokhsari, S. M. Spillane, and K. J. Vahala
“Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators”
Optics Express, Volume 13, No. 9 (2005)
S. M. Spillane, T. J. Kippenberg, K.J. Vahala, K.W. Goh, E. Wilcut, H.J. Kimble
“Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics”
Phys. Rev. A 71, 013817 (2005)

2004
T. J. Kippenberg, S. M. Spillane, B. Min and K. J. Vahala
“Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip”
Applied Physics Letters, Vol. 85, No. 25 (December 2004)
T. J. Kippenberg, S. M. Spillane, B. Min and K. J. Vahala
“Theoretical and Experimental Study of Stimulated Raman Scattering in Ultra-high-Q Optical Microcavities”
Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 10, “Special Issue: Nonlinear Optics”, (October 2004)
B.Min, T. J. Kippenberg, L. Yang, K.J. Vahala, J. Kalkman and A. Polman
“Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip”
Phys. Rev. A 70, 033803 (2004)
T. J. Kippenberg, S. M. Spillane, D. K. Armani and K. J. Vahala
“Kerr-nonlinearity optical parametric oscillation in a toroid microcavity”
Physical Review Letters, Vol. 8, No. 93, Art. No. 083904, August 2004.
T. J. Kippenberg, S. M. Spillane, D. K. Armani and K. J. Vahala
“Ultralow-threshold microcavity Raman laser on a microelectronic chip”
Optics Letters, Volume 29, No. 11, 1224-1227, June 2004.
A. Polman, B. Min, J. Kalkman, T. J. Kippenberg and K. J. Vahala
“Compact, fiber-compatile cascaded Raman laser”
Applied Physics Letters, vol 84, No. 7, pp. 1037, February 2004.

2003
B. Min, T. J. Kippenberg and K. J. Vahala
“Compact, fiber-compatile cascaded Raman laser”
Optics Letters, vol. 28, No. 17, 1507, September 2003.
T. J. Kippenberg, S. M. Spillane, D. K. Armani and K. J. Vahala
“Fabrication and coupling to planar high-Q silica disk microcavities”
Applied Physics Letters, vol. 83, No. 4, 797-799, July 2003.
S. M. Spillane, T. J. Kippenberg, O. J. Painter and K. J. Vahala
“Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics”
Physical Review Letters, vol. 91, No. 4, 043902, July 2003.
 
D.K. Armani, T.J. Kippenberg, S.M. Spillane and K.J. Vahala
“Ultra-high-Q toroid microcavity on a chip”
Nature, vol. 421, pp. 925-929, 27 February 2003.

2002
  T.J. Kippenberg, S.M. Spillane and K.J. Vahala,
“Modal coupling in traveling-wave resonators”
Optics Letters, vol. 27, No. 19, pp. 1669, October 2002
 
  S.M. Spillane, T.J. Kippenberg, and K.J. Vahala
“Ultralow-threshold Raman laser using a spherical dielectric microcavity”
Nature, vol. 415, pp. 621-623, 7 February 2002

Thesis
T. J. Kippenberg, “Nonlinear Optics in ultra-high-Q whispering gallery mode microcavities”, California Institute of Technology, defended May 2004.
Bookchapter
T. J. Kippenberg et. al. “Fabrication, coupling and nonlinear optics in ultra-high-Q microsphere and chip-based toroid microcavities”, appeared in “Optical Microcavities”, editor K. Vahala
  .