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Recent experimental progress in cavity optomechanics has allowed cooling of mesoscopic mechanical

oscillators via dynamic backaction provided by the parametric coupling to either an optical or an electrical

resonator. Here we analyze the occurrence of normal-mode splitting in backaction cooling at high input

power. We find that a hybridization of the oscillator’s motion with the fluctuations of the driving field

occurs and leads to a splitting of the mechanical and optical fluctuation spectra. Moreover, we find that

cooling experiences a classical limitation through the cavity lifetime.
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Introduction.—Recently, cavity optomechanical systems
that parametrically couple a driven high-frequency mode
to a high-Q, low-frequency mechanical mode have been
subject to increasing investigation [1]. They have been
implemented in multiple ways. Optomechanical systems
have been demonstrated or proposed that couple the me-
chanical motion to an optical field directly via radiation
pressure buildup in a cavity [2–6] or indirectly via quantum
dots [7] or ions [8]. On the other hand, in the electrome-
chanical domain, this has been realized or proposed using
devices such as (superconducting) single-electron transis-
tors [9,10], LC circuits [11], a sapphire parametric trans-
ducer [12], Cooper pair boxes [13,14], or a stripline
microwave resonator [15]. Importantly, the parametric
coupling can not only be used for highly sensitive readout
of mechanical motion [2] but also by virtue of dynamical
backaction be used to cool the mechanical oscillator.
Indeed, recent progress has enabled the observation of
radiation pressure dynamical backaction cooling [4–6], as
predicted decades ago [2,16]. Enabled by this work, one
emerging goal in this context is ground state cooling,
which may open up the possibility of studying nonclassical
states of motion or entanglement in mechanical objects
[8,17,18]. For both electro- and optomechanical systems, it
has been shown that ground state cooling is possible only
in the resolved sideband regime (RSB) where the mechani-
cal resonance frequency exceeds the bandwidth of the
driving resonator [19,20]. This result is analogous to the
laser cooling of ions in the ‘‘strong binding’’ regime [21].
RSB cooling has recently been demonstrated [22,23].

Here we show that the cooling of mechanical oscillators
in the RSB regime at high driving power can entail the
appearance of normal-mode splitting (NMS). NMS—the
coupling of two degenerate modes with energy exchange
taking place on a time scale faster than the decoherence of
each mode—is a phenomenon ubiquitous in both quantum
and classical physics. A prominent realization occurs when
atoms are coupled to a cavity field, which leads to the
splitting of the cavity transmission into a doublet [24]. In

addition to atom-photon interactions, NMS also arises in
exciton-photon and phonon-photon interactions [25]. NMS
has also been observed with ‘‘artificial atoms’’ in circuit
QED [26] and single quantum dot cavity QED [27] set-
tings. In these examples, the NMS corresponds to a split-
ting in the energy spectrum of the coupled two-mode
system which may be accessed via linear response. In
contrast, the optomechanical NMS studied here involves
driving two parametrically coupled nondegenerate modes
out of equilibrium. Hence, as will be discussed further
below, only in a ‘‘shifted’’ [19] rotating-frame representa-
tion does the Hamiltonian become analogous to the one
characterizing the aforementioned examples. Con-
comitantly, the splitting, rather than appearing directly in
the cavity transmission, manifests itself in the fluctuation
spectra. This scenario is reminiscent of the single trapped
ion realization of the Jaynes-Cummings model [28] with
the role of the pseudospin now played by the optical (or
electrical) mode. Since this type of normal-mode splitting
occurs during RSB cooling, we analyze how the onset of
NMS affects and limits cooling in the RSB regime.
Theoretical model.—We start from the rotating-frame

Hamiltonian H0¼�@�0aypapþ@�ma
y
mamþ@��ma

y
pap�

ðamþaymÞþ@ðsþapþs�þa
y
pÞ, which provides a unified

treatment of both a coherently driven optical and an elec-
trical resonator (frequency !p) coupled to a mechanical

FIG. 1 (color online). (a) Electromechanical realization of
parametric coupling of a mechanical oscillator to an LC circuit,

where the coupling is determined by
d!p

dx jx¼0 ¼ !pCc

2dCtot
jx¼0 (Ctot is

the total capacitance). (b) Optomechanical realization of para-
metric coupling of a mechanical oscillator to a Fabry-Perot

optical mode with
d!p

dx jx¼0 ¼ � !p

L jx¼0 (L is the cavity length).
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oscillator (frequency �m � !p) via the dimensionless

parameter �¼ðx0=�mÞd!p

dx jx¼0. Here x0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2meff�m

p
is the zero point motion of the mechanical mode, meff its
effective mass, �0 the detuning of the drive from !p, and

am (ap) the annihilation operator for the mechanical (opti-

cal or electrical) mode. The dependence of the resonant
frequency !p on the mechanical oscillator’s deflection x

determines the strength of the coupling via
d!p

dx jx¼0 [cf.

Fig. 1]. The driving rate is given by jsþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=@!p�ex

q
,

where P denotes the launched input power and ��1
ex is the

external coupling rate.
We derive the Heisenberg equations of motion for the

canonical variables and introduce noise operators �mðtÞ
and �pðtÞ weighted with the rates �m and � that character-

ize, respectively, the dissipation of the mechanical and
optical (or electrical) degree of freedom. Subsequently,
we shift the canonical variables to their steady-state values
(i.e., ap ! �þ ap and am ! �þ am) and linearize to ob-

tain the following Heisenberg-Langevin equations
[18,20,29]:

_ap¼
�
i���

2

�
ap� i

gm
2
ðamþaymÞþ ffiffiffiffi

�
p

�pðtÞ;

_am¼
�
�i�m��m

2

�
am� i

gm
2
ðapþaypÞþ

ffiffiffiffiffiffiffi
�m

p
�mðtÞ:

(1)

Here � is the detuning with respect to the renormalized
resonance, and �< 0 leads to cooling [19]. The optome-
chanical coupling rate is given by gm ¼ 2���m, which is
positive by an appropriate choice for the phase of sþ, and
j�j2 gives the mean resonator occupation number. In the
case of the mechanical degree of freedom, the rotating
wave approximation in the coupling to its environment
implied by Eqs. (1) is warranted only for high Q values
(and small gm=�m) [18]—conditions that are satisfied in
the parameter regime of interest for ground state cooling.
The latter also requires �m � �, which we will assume
throughout our treatment. Equations (1) and their
Hermitian conjugates constitute a system of four first-order
coupled operator equations, for which the Routh-Hurwitz
criterion implies that the system is stable only for gm<ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 þ �2=4Þ�m=j�j
p � �m (if�m � � and j�j � �m).

Here we follow a semiclassical theory by considering
noncommuting noise operators for the input field, i.e.,

h�pðtÞi ¼ 0, h�y
pðt0Þ�pðtÞi ¼ np�ðt0 � tÞ, and

h�pðt0Þ�y
pðtÞi ¼ ðnp þ 1Þ�ðt0 � tÞ, and a classical thermal

noise input for the mechanical oscillator, i.e., h�mðtÞi ¼ 0

and h�y
mðt0Þ�mðtÞi ¼ h�mðt0Þ�y

mðtÞi ¼ nm�ðt0 � tÞ, in Eqs.
(1). The quantities nm and np are the equilibrium occupa-

tion numbers for the mechanical and optical (or electrical)
oscillators, respectively. We transform to the quadratures

(i.e., x=x0 ¼ am þ aym) and solve the Langevin equations
in Fourier space [20]. Thus we recover a steady-state
displacement spectrum [29] given (for np ¼ 0) by

Sxð!Þ ¼ x2
0

2��
2
mj	ð!Þj2½�mnm � �2þ!2þ�2=4

2��m
�sð!Þ�, with

	�1ð!Þ¼�2
mþ2�m�sð!Þ�!2� i!½�mþ�sð!Þ�;

�sð!Þ¼g2m
4

�
!þ�

ð!þ�Þ2þ�2=4
� !��

ð!��Þ2þ�2=4

�
;

�sð!Þ¼ g2m
4!

�
�m�

ð!þ�Þ2þ�2=4
� �m�

ð!��Þ2þ�2=4

�
:

(2)

This spectrum is characterized by a mechanical suscepti-
bility 	ð!Þ that is driven by thermal noise (/nm) and by
the quantum fluctuations of the radiation pressure (quan-
tum backaction). In linear cooling theory, the susceptibility
is approximated by evaluating the terms �sð!Þ and �sð!Þ
at the (bare) mechanical frequency [4,6,30]. Then �sð�mÞ
coincides with the cooling rate and is linear in the input
power (g2m / P).
Parametric NMS.—The above approximation is ade-

quate only for weak driving such that gm � � [19,20].
To obtain an understanding of the mechanical susceptibil-
ity beyond this linear regime, we return to the linearized
Heisenberg-Langevin equations (1) and calculate the cor-
responding eigenfrequencies that determine the dynamics
of the system. Though there exists an analytical solution, it
is rather opaque and does not provide physical insight, so
we will use instead an approximation scheme appropriate
for the parameter regime relevant for the observation of
NMS and to attain ground state cooling. Along these lines,
we focus in the following on: (i) the RSB regime (� &
�m=2) necessary for ground state cooling [19,20,22],
(ii) optomechanical coupling gm & �m=2, and
(iii) �2 � �2

m (� � ����m, the frequency detuning
from the lower sideband). In the shifted representation
corresponding to Eqs. (1) [19], the relevant part of the
parametric interaction in Hamiltonian H0 is described by
an effective dipolelike interaction term, i.e.,

@��ma
y
papðam þ aymÞ ! @gm

2 ðap þ aypÞðam þ aymÞ after

neglecting the nonlinear term. This interaction term is
analogous to the Jaynes-Cummings setting (with ap !

�) and naturally leads to resonance splitting when the
modes have matching frequencies. The off-resonant coun-

terrotating terms (CRT) / aypaym, apam induce a small

frequency shift analogous to the Bloch-Siegert shift in
atomic physics [31]. These CRT terms, which are respon-
sible for the mixing between the creation and annihilation
operators in the Heisenberg-Langevin equations (1), can be
treated in perturbation theory within the parameter range
defined by (i)–(iii). The first nonvanishing order in this
perturbative expansion is quadratic in the CRTand yields a

correction to the decoupled eigenvalues !	 � !ð0Þ
	 þ!ð2Þ

	
[note that we take �m ¼ 0 in !ð2Þ

	 ]:

!ð0Þ
	 ¼ �m þ �

2
� i

�þ �m

4

	 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2m � ð�=2� �m=2þ i�Þ2

q
; (3)

!ð2Þ
	 � � g2m=4

2�m þ �	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2m � ð�=2þ i�Þ2p : (4)
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Naturally, there is another pair of eigenfrequencies given
by �!�	. In Fig. 2, the real and imaginary parts of the
eigenvalues are plotted. The inset shows the frequency

shift (!ð2Þ
	 ) due to the CRT. If we choose the value � ¼ 0

(i.e., � ¼ ��m) relevant for � � �m (see below) and

neglect �m, the square root term of !ð0Þ
	 leads to two

regimes. While for gm < �=2 the term is fully imaginary
and modifies the decay rate of the modes, for gm > �=2 it
becomes real instead and the real parts of the eigenfre-
quencies exhibit the splitting that signals NMS (Fig. 3).
The latter is associated to a mixing between the mechanical
mode and the fluctuation around the steady state of the
resonator field. Classically, this fluctuation can be under-
stood as a beat of the pump photons with the photons
scattered on resonance which leads to oscillations with
frequency j�j in the intensity time-averaged over
2�=!p. For �

2=4 � g2m, the splitting (�gm) is propor-

tional to the square root of the mean cavity photon number
(�2). This is analogous to NMS in atomic physics where
the splitting of the cavity resonance is proportional to the
square root of the number of atoms coupled to the cavity
mode [24]. When detecting the phase fluctuations in the
transmitted light with a homodyne detection scheme, the
signal at �m splits [cf. Fig. 3(b)], but the (suppressed)
scattered light at the carrier frequency exhibits no splitting.
It is important to note that the splitting in the displacement

spectrum is not observed unless gm > �=
ffiffiffi
2

p
due to the

finite width of the peaks. Because of the requirements on
the cavity bandwidth and the detuning, the parameter
regime in which NMS may appear implies cooling. In
turn, for a positive detuning (which entails amplification)
the observation of NMS is prevented by the onset of the
parametric instability [3]. Therefore, a discussion of NMS

cannot be decoupled from an analysis of the associated
cooling. We also show below that the CRT in the interac-
tion leads to the quantum limit of backaction cooling
[19,20].
Effect of NMS on backaction cooling.—We now use the

approximate eigenfrequencies to perform contour integra-
tion on the normal ordered mechanical spectrum in order to
obtain the final occupancy of the mechanical oscillator

nf ¼ haymð�Þamð0Þij�¼0. In this treatment we take both

the thermal and the vacuum noise of the driving resonator
into account. A finite value for np may be relevant for

electromechanical systems [11,15]. Within our approxima-
tion scheme we can introduce a formal parameter that tags
the CRT terms and expand nf in its powers. To zeroth order

the poles are determined by the approximate eigenfrequen-

cies!ð0Þ
	 ;�!ð0Þ�

	 given in Eqs. (3), and it is straightforward

to evaluate nð0Þf (including �m). To second order we use

instead the poles !ð0Þ
	 þ!ð2Þ

	 and �!ð0Þ�
	 �!ð2Þ�

	 .

Subsequently, nð2Þf is expanded in the small parameters

gm=�m, �=�m, and j�j=�m up to second order with �m !
0. Both nð0Þf and nð2Þf do not contain terms linear in �,

allowing one to directly minimize the result with respect
to � by setting � ! 0. This yields

nð0Þf ¼ nm
�m

�

g2m þ �2

g2m þ �m�
þ g2m

g2m þ �m�
np;

nð2Þf ¼ nm
�m

�

g2m
4�2

m

þ
�
np þ 1

2

�
�2 þ 2g2m
8�2

m

:

(5)

The final occupancy nf ¼ nð0Þf þ nð2Þf consists of three

contributions. One is proportional to the occupancy of
the thermal bath nm and displays linear cooling for �m �
gm � �, i.e., nf � �m

g2m=�
nm. When gm approaches �, devi-

ations from the linear cooling regime become apparent.

Indeed, the final occupancy is always limited by nf *

nm
�m

� , which implies that the largest temperature reduction

FIG. 2 (color online). Real and imaginary parts of the eigen-
values [cf. Eqs. (3) and (4)] of the linearized cooling problem
corresponding, respectively, to the eigenfrequency and mode
damping for � ¼ ��m and �=�m ¼ 0:2. The inset magnifies
the resonance shift before the mode splitting. The real part is
underlaid with the normalized classical displacement spectrum
(contribution / nm) [cf. Eq. (2)]; thereof sample curves are
highlighted in Fig. 3 for the rates marked by the dots.

FIG. 3 (color online). (a) Normalized logarithm of the classi-
cal displacement spectrum (contribution / nm) [cf. Eq. (2)] as a
function of the normalized detuning for gm=�m ¼ 0:4 and
�=�m ¼ 0:2. (b) Typical displacement spectra for coupling rates
that are represented by the dots in Fig. 2. The solid curves above
correspond to the phase spectral density S�ð!Þ measured in
homodyne detection.
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is bound by the cavity decay rate � [32]. This is equivalent

to the condition Qm > nm
�m

� for ground state cooling. It is

noted that operation in the deeply RSB regime is advanta-
geous to avoid photon-induced heating [22], entailing that
the condition on the mechanical Q is therefore more strin-
gent. A second contribution is proportional to the finite
occupancy of the driving circuit (np) and corresponds to

heating from thermal noise in its input. It implies that
it is impossible to cool below the equilibrium occupation
of the resonator. If we assume that the mechanical and
electromagnetic baths are at the same temperature Tm, it

entails nf 
 nm
�m

!p
. Last, there is a term in nð2Þf that is

temperature-independent and corresponds to heating from
quantum backaction noise. This term determines the quan-
tum limit to the final occupancy and agrees with
Refs. [19,20]. Interestingly, in the present analysis the
quantum limit arises from the CRT. We note that the
trade-off between the quantum limit and the cavity band-
width limitation leads to an optimal value for �. Consistent
results are obtained with a covariance matrix approach
[33].

Finally, we consider appreciable cooling [nf � nm so

that we can take �m ! 0 in the denominator of Eqs. (5)]

and optimize nð0Þf þ nð2Þf with respect to gm, which yields

nopt � nm
�m

�
þ np þ �2

16�2
m

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nm�m�ðnp þ 1

2Þ
�2

m

s
(6)

for gopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nm�m��

2
m=½np þ ð1=2Þ þ nm�m=��4

q
. In the

ground state cooling regime, the first three terms of Eq. (6)
always give the correct order of magnitude. Thus, a com-
parison of gopt with the condition gm > �=2 implies that

optimal ground state cooling leads to NMS only when the
thermal noise [first term in Eq. (6)] is at least comparable to
the quantum backaction noise [third term in Eq. (6)]. This
is likely to be the case in current endeavors to reach the
ground state.

Experimental realization.—To demonstrate that the ob-
servation of parametric NMS is within experimental reach,
we discuss the parameters from Ref. [22]: �m=2� ¼
73:5 MHz, �=2� ¼ 3:2 MHz, and �m=2� ¼ 1:3 kHz.
The cooling rate �c=2� ¼ 1:56 MHz was extracted from
the displacement spectrum’s FWHM. A comparison with
Eqs. (2) then yields a coupling rate gm=2� � 2:0 MHz.
Therefore, the observation of parametric NMS is within
experimental reach. In the electromechanical domain, us-
ing a superconducting coplanar waveguide resonator,
Ref. [23] reports coupling rates of gm=2� ¼ 6 kHz for a
cavity with a decay rate �=2� ¼ 230 kHz.

In summary, we have analyzed a novel instance of NMS
that occurs in cavity optomechanics due to the coupling
between the fluctuations of the cavity field and the me-
chanical oscillator mode. Furthermore, we have elucidated

its implications for ground state cooling, namely, the limi-
tation through the cavity bandwidth.
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