
Interpreters and 
virtual machines

Advanced Compiler Construction 
Michel Schinz — 2016–04–28

1

Interpreters

2

Interpreters
An interpreter is a program that executes another program, 
represented as some kind of data-structure.  
Common program representations include: 

– raw text (source code), 
– trees (AST of the program), 
– linear sequences of instructions. 

Interpreters enable the execution of a program without 
requiring its compilation to native code.  
They simplify the implementation of programming 
languages and — on modern hardware — are efficient 
enough for many tasks.
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Text-based interpreters

Text-based interpreters directly interpret the textual source 
of the program. 
They are very seldom used, except for trivial languages 
where every expression is evaluated at most once — i.e. 
languages without loops or functions. 
Plausible example: a calculator program, which evaluates 
arithmetic expressions while parsing them.
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Tree-based interpreters

Tree-based interpreters walk over the abstract syntax tree of 
the program to interpret it. 
Their advantage compared to string-based interpreters is 
that parsing — and name/type analysis, if applicable — is 
done only once. 
Plausible example: a graphing program, which has to 
repeatedly evaluate a function supplied by the user to plot 
it. All the interpreters included in the L3 compiler are also 
tree-based.

5

Virtual machines
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Virtual machines
Virtual machines resemble real processors, but are 
implemented in software. They accept as input a program 
composed of a sequence of instructions. 
Virtual machines often provide more than the simple 
interpretation of programs: they also abstract the 
underlying system by managing memory, threads, and 
sometimes I/O. 
Perhaps surprisingly, virtual machines are a very old 
concept, dating back to ~1950. 
They have been — and still are — used in the implementation 
of many important languages, like SmallTalk, Lisp, Forth, 
Pascal, and more recently Java and C#.
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Why virtual machines?

Since the compiler has to generate code for some machine, 
why prefer a virtual over a real one? 

– for portability: compiled VM code can be run on many 
actual machines, 

– for simplicity: a VM is usually more high-level than a real 
machine, which simplifies the task of the compiler, 

– for simplicity (2): a VM is easier to monitor and profile, 
which eases debugging.
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Virtual machines drawbacks

The only drawback of virtual machines compared to real 
ones is that the former tend to be slower than the latter. 
This is due to the overhead associated with interpretation: 
fetching and decoding instructions, executing them, etc. 
Moreover, the high number of indirect jumps in interpreters 
causes pipeline stalls in modern processors. 
To a (sometimes large) degree, this is mitigated by the 
tendency of modern VMs to compile the program being 
executed, and to perform optimizations based on its 
behavior.
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Kinds of virtual machines
There are two kinds of virtual machines: 

– stack-based VMs, which use a stack to store 
intermediate results, variables, etc. 

– register-based VMs, which use a limited set of registers 
for that purpose, like a real CPU. 

For a compiler writer, it is usually easier to target a stack-
based VM than a register-based VM, as the complex task of 
register allocation can be avoided. 
Most widely-used virtual machines today are stack-based 
(e.g. the JVM, .NET’s CLR, etc.) but a few recent ones are 
register-based (e.g. Lua 5.0).
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Virtual machine input

Virtual machines take as input a program expressed as a 
sequence of instructions. 
Each instruction is identified by its opcode (operation code), 
a simple number. Often, opcodes occupy one byte, hence 
the name byte code. 
Some instructions have additional arguments, which appear 
after the opcode in the instruction stream.
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VM implementation

Virtual machines are implemented in much the same way as 
a real processor: 

1. the next instruction to execute is fetched from memory 
and decoded, 

2. the operands are fetched, the result computed, and the 
state updated, 

3. the process is repeated.
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VM implementation

Many VMs today are written in C or C++, because these 
languages are at the right abstraction level for the task, fast 
and relatively portable. 
As we will see later, the Gnu C compiler (GCC) has an 
extension that makes it possible to use labels as normal 
values. This extension can be used to write very efficient 
VMs, and for that reason, several of them are written 
specifically for GCC or compatible compilers.
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Implementing a VM in C
typedef enum { 
  add, /* … */  
} instruction_t; 
 
void interpret() { 
  static instruction_t program[] = { add /* … */ }; 
  instruction_t* pc = program; 
  int* sp = …; /* stack pointer */  
  for (;;) { 
    switch (*pc++) { 
    case add: 
      sp[1] += sp[0]; 
      sp++; 
      break; 
      /* … other instructions */  
    } 
  } 
}
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Optimizing VMs

The basic, switch-based implementation of a virtual 
machine just presented can be made faster using several 
techniques: 

– threaded code, 
– top of stack caching, 
– super-instructions, 
– JIT compilation.
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Threaded code
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Threaded code

In a switch-based interpreter, each instruction requires two 
jumps: 

– one indirect jump to the branch handling the current 
instruction, 

– one direct jump from there to the main loop. 
It would be better to avoid the second one, by jumping 
directly to the code handling the next instruction. This is the 
idea of threaded code.

17

Switch vs threaded

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul
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Implementing threaded code

To implement threaded code, there are two main 
techniques: 

1. with indirect threading, instructions index an array 
containing pointers to the code handling them, 

2. with direct threading, instructions are pointers to the 
code handling them. 

Direct threading could potentially be faster than indirect 
threding — because of the lack of indirection — but on 
modern 64-bit architectures, representing each opcode by a 
64-bit pointer is expensive.
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Threaded code in C

To implement threaded code, it must be possible to 
manipulate code pointers. How can this be achieved in C? 
In ANSI C, the only way to do this is to use function pointers. 
But GCC allows the manipulation of labels as values, which 
is much more efficient!
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Direct threading in ANSI C

Implementing direct threading in ANSI C is easy, but 
unfortunately inefficient! 
The idea is to define one function per VM instruction. The 
program can then simply be represented as an array of 
function pointers. Some code is inserted at the end of every 
function, to call the function handling the next VM 
instruction.
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Direct threading in ANSI C
typedef void (*instruction_t)();  
static instruction_t* pc;  
static int* sp = …;  
 
static void add() {  
  sp[1] += sp[0]; 
  ++sp; 
  (*++pc)(); /* handle next instruction */ 
} 
 
/* … other instructions */ 
 
static instruction_t program[] = { add, /* … */ }; 
 
void interpret() { 
  sp = …; 
  pc = program; 
  (*pc)(); /* handle first instruction */  
}
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Direct threading in ANSI C

This implementation of direct threading in ANSI C has a 
major problem: it leads to stack overflow very quickly, 
unless the compiler implements tail call elimination. 
In our interpreter, the function call appearing at the end of 
add — and all other functions implementing VM instructions 
— is a tail call and should be optimized. 
While recent versions of GCC do full tail call elimination, not 
all compilers do. With such compilers, the only option is to 
eliminate tail calls by hand, e.g. using trampolines.
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Direct threading with GCC

The Gnu C compiler (GCC) — and others like clang — offers 
an extension that is very useful to implement direct 
threading: labels can be treated as values, and a goto can 
jump to a computed label. 
With this extension, the program can be represented as an 
array of labels, and jumping to the next instruction is 
achieved by a goto to the label currently referred to by the 
program counter.
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Direct threading with GCC
void interpret() {  
  void* program[] = { &&l_add, /* … */ }; 
 
  int* sp = …;  
  void** pc = program;  
  goto **pc; /* jump to first instruction */ 
 
  
 l_add: 
   sp[1] += sp[0];  
   ++sp; 
   goto **(++pc); /* jump to next instruction */ 
 
 /* … other instructions */  
}

label as value

computed goto
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Threading benchmark
The benchmark below compares several versions of a small 
interpreter measured while interpreting 500’000’000 
iterations of a simple loop. The code was compiled using 
clang v503.0.38 with full optimizations, and run on an Intel 
Core i5. 
The normalized times are presented below.

switch-based

trampoline

no trampoline (with TCE)

labels as values

0 0.5 1 1.5 2

0.56

1.67

1.74

1
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Top-of-stack 
caching
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Top-of-stack caching
In a stack-based VM, the stack is typically represented as an 
array in memory. Since almost all instructions access the 
stack, it can be interesting to store some of its topmost 
elements in registers. 
However, keeping a fixed number of stack elements in 
registers is usually a bad idea, as the following example 
illustrates:

t

Stack array Top-of-stack 
register

x

u

pop

push u

… y x

… y x

… y
x moves 

around unnecessarily
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Top-of-stack caching
Since caching a fixed number of stack elements in registers 
seems like a bad idea, it is natural to try to cache a variable 
number of them. 
For example, here is what happens when caching at most 
one stack element in a register:

t

Stack array Top-of-stack 
register

u

pop

push u

… y x

… y x

… y x
no more 

unnecessary 
movement!
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Top-of-stack caching
Caching a variable number of stack elements in registers 
complicates the implementation of instructions. 
There must be one implementation of each VM instruction 
per cache state — defined as the number of stack elements 
currently cached in registers. 
For example, when caching at most one stack element, the 
add instruction needs the following two implementations:

add_0: 
  tos = sp[0]+sp[1]; 
  sp += 2; 
  // go to state 1

add_1: 
  tos += sp[0]; 
  sp += 1; 
  // stay in state 1

State 0: no elements in reg. State 1: top-of-stack in reg.
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Benchmark

without TOS caching

with TOS caching

0 0.25 0.5 0.75 1

0.87

1

The benchmark below compares two versions of a small 
interpreter measured while interpreting a program 
summing the first 200’000’000 integers. Both interpreters 
were compiled with clang v503.0.38 with maximum 
optimizations, and run on an Intel Core i5. 
The normalized times are presented below.
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Super-instructions
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Static super-instructions

Since instruction dispatch is expensive in a VM, one way to 
reduce its cost is simply to dispatch less. 
This can be done by grouping several instructions that often 
appear in sequence into a super-instruction. 
For example, if the mul instruction is often followed by the 
add instruction, the two can be combined in a single madd 
(multiply and add) super-instruction. 
Profiling is typically used to determine which sequences 
should be transformed into super-instructions, and the 
instruction set of the VM is then modified accordingly.
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Dynamic super-instructions

It is also possible to generate super-instructions at run time, 
to adapt them to the program being run. This is the idea 
behind dynamic super-instructions. 
This technique can be pushed to its limits, by generating 
one super-instruction for every basic block of the program! 
This effectively transform all basic blocks into single 
(super-)instructions.
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L3VM
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L3VM

L3VM is the virtual machine developed for this course. Its 
main characteristics are: 

– it is 32-bit, in the sense that the basic unit of storage is a 
32-bit word — therefore, (untagged) integers and 
pointers are both 32-bit, 

– it is register-based, although its notion of registers is not 
standard, 

– it is relatively simple, with only 32 instructions.
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Memory
L3VM has a 32-bit address 
space — even when running 
on a 64-bit machine — which 
is used to store both code 
and data. 
Code is stored starting at 
address 0 and the rest of the 
available memory is used for 
the heap. 
The L3VM address space is 
virtual, in that it is not the 
same as the one of the host 
architecture.

0000000016

FFFFFFFF16
unused

Heap

Code

user-defined 
limit
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Registers

Strictly speaking, L3VM has only four registers: 
– PC is the program counter, containing the address of the 

instruction being executed, 
– Ib, Lb and Ob are the input, local and output base 

registers (respectively), each of which contains either 0 
or the address of a heap-allocated block.
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Register slots

The slots of the blocks pointed by Ib, Lb and Ob are 
reachable through pseudo-registers. For example, the 
pseudo-register O3 designates the slot at index 3 of the 
block pointed by Ob. 
There are 32 input and output pseudo-registers (I0 to I31 
and O0 to O31), and 192 local pseudo-registers (L0 to L191). 
(In the following, we use the term register to designate a 
pseudo-registers, and base register to designate a base 
register).
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Function call and return

A function gets its arguments through its input registers, 
stores its local variables in its local registers, and uses its 
output registers to pass arguments to the functions it calls. 
The CALL instruction takes care of saving the caller’s 
context, composed of its base registers (Ib, Lb and Ob) as 
well as its return address. They are saved in the callee’s first 
four input registers (I0 to I4), and can be seen as implicit 
arguments passed to the callee. 
Symmetrically, the RET instruction takes care of restoring the 
caller’s context.
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Non tail call example
The following animation illustrates the saving of the caller’s 
context as well as the installation of the callee’s context 
during a non tail call from a function f to a function g, with 
h being f's caller:

Ib
Lb 
Ob

If rh …

Of …

Lf …

rf
Ig

Ih Lh Oh
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Tail call example
The following animation illustrates the saving of the caller’s 
context as well as the installation of the callee’s context 
during a tail call from a function f to a function g, with h 
being f's caller:

Ib
Lb 
Ob

If rh …

Of …

Lf … Ih … Lh … Oh …

rh
Ig
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Return example
The following animation illustrates the restoration of the 
caller’s context during a function return from g to h (g was 
tail called from f) :

Ib
Lb 
Ob

Ig rh …

Lg … Ih … Lh … Oh …

Og …
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Arithmetic instructions (1)
ADD Ra Rb Rc Ra ← Rb + Rc

SUB Ra Rb Rc Ra ← Rb – Rc

MUL Ra Rb Rc Ra ← Rb * Rc

DIV Ra Rb Rc Ra ← Rb / Rc

MOD Ra Rb Rc Ra ← Rb % Rc

Ra, Rb, Rc: registers 
PC implicitly augmented by 4 by each instruction
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Arithmetic instructions (2)
ASL Ra Rb Rc Ra ← Rb << Rc

ASR Ra Rb Rc Ra ← Rb >> Rc

AND Ra Rb Rc Ra ← Rb & Rc

OR Ra Rb Rc Ra ← Rb | Rc

XOR Ra Rb Rc Ra ← Rb ^ Rc

Ra, Rb, Rc: registers 
PC implicitly augmented by 4 by each instruction
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Control instructions (1)
JLT Ra Rb D10 if Ra < Rb then PC ← PC + 4·D10

JLE Ra Rb D10 if Ra ≤ Rb then PC ← PC + 4·D10

JEQ Ra Rb D10 if Ra = Rb then PC ← PC + 4·D10

JNE Ra Rb D10 if Ra ≠ Rb then PC ← PC + 4·D10

JGE Ra Rb D10 if Ra ≥ Rb then PC ← PC + 4·D10

JGT Ra Rb D10 if Ra > Rb then PC ← PC + 4·D10

JI D26 PC ← PC + 4·D26

Ra, Rb, Rc: registers, Dk: k-bit signed displacement
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Control instructions (2)

CALL Ra O0 ← Ib, O1 ← Lb, O2 ← Ob, O3 ← PC + 4, 
Ib ← Ob, PC ← Ra

TCAL Ra
O0 ← I0, O1 ← I1, O2 ← I2, O3 ← I3, 
Ib ← Ob, PC ← Ra

RET
r ← I4 
PC ← I3, Ob ← I2, Lb ← I1, Ib ← I0 
O0 ← r

HALT stop execution

Ra: register 
r: temporary value
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Register instructions

LDLO Ra, S18 Ra ← S18

LDHI Ra, U16 Ra ← (U16 << 16) | (Ra & FFFF16)

MOVE Ra, Rb Ra ← Rb

RALO B, U8 B ← new block of size U8 and tag 201

Ra, Rb: registers, B: base register (Ib, Lb or Ob), 
Sk: k-bit signed constant, Uk: k-bit unsigned constant 
PC implicitly augmented by 4 by each instruction
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Block instructions
BALO Ra Rb T8 Ra ← new block of size Rb and tag T8

BSIZ Ra Rb Ra ← size of block Rb

BTAG Ra Rb Ra ← tag of block Rb

BGET Ra Rb Rc Ra ← element at index Rc of block Rb

BSET Ra Rb Rc element at index Rc of block Rb ← Ra

Ra, Rb, Rc: registers, T8: 8-bit block tag 
PC implicitly augmented by 4 by each instruction
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I/O instructions

BREA Ra Ra ← byte read from console

BWRI Ra write byte Ra to console

Ra: register 
PC implicitly augmented by 4 by each instruction
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Example
The factorial in (hand-coded) L3VM assembly:

fact:   RALO Lb,1 
        RALO Ob,5 
        LDLO L0,0 
        JNE  L0,I4,else 
        LDLO I4,1 
        RET 
else:   LDLO L0,1 
        SUB  O4,I4,L0 
        LDLO L0,fact 
        CALL L0 
        MUL  I4,I4,O0 
        RET
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