
Scala Parallel Collections

Parallel Programming and Data Analysis
Aleksandar Prokopec

Scala Collections Hierarchy

▶ Traversable[T] – collection of elements with type T, with operations
implemented using foreach

Scala Collections Hierarchy

▶ Traversable[T] – collection of elements with type T, with operations
implemented using foreach

▶ Iterable[T] – collection of elements with type T, with operations
implemented using iterator

Scala Collections Hierarchy

▶ Traversable[T] – collection of elements with type T, with operations
implemented using foreach

▶ Iterable[T] – collection of elements with type T, with operations
implemented using iterator

▶ Seq[T] – an ordered sequence of elements with type T

Scala Collections Hierarchy

▶ Traversable[T] – collection of elements with type T, with operations
implemented using foreach

▶ Iterable[T] – collection of elements with type T, with operations
implemented using iterator

▶ Seq[T] – an ordered sequence of elements with type T

▶ Set[T] – a set of elements with type T (no duplicates)

Scala Collections Hierarchy

▶ Traversable[T] – collection of elements with type T, with operations
implemented using foreach

▶ Iterable[T] – collection of elements with type T, with operations
implemented using iterator

▶ Seq[T] – an ordered sequence of elements with type T

▶ Set[T] – a set of elements with type T (no duplicates)
▶ Map[K, V] – a map of keys with type K associated with values of type

V (no duplicate keys)

Parallel Collection Hierarchy

Traits ParIterable[T], ParSeq[T], ParSet[T] and ParMap[K, V] are the
parallel counterparts of different sequential traits.

Parallel Collection Hierarchy

Traits ParIterable[T], ParSeq[T], ParSet[T] and ParMap[K, V] are the
parallel counterparts of different sequential traits.
For code that is agnostic about parallelism, there exists a separate
hierarchy of generic collection traits GenIterable[T], GenSeq[T], GenSet[T]
and GenMap[K, V].

Parallel Collection Hierarchy

Traits ParIterable[T], ParSeq[T], ParSet[T] and ParMap[K, V] are the
parallel counterparts of different sequential traits.
For code that is agnostic about parallelism, there exists a separate
hierarchy of generic collection traits GenIterable[T], GenSeq[T], GenSet[T]
and GenMap[K, V].

Writing Parallelism-Agnostic Code

Generic collection traits allow us to
E.g. find the largest palindrome in the sequence:

def largestPalindrome(xs: GenSeq[Int]): Int = {

xs.aggregate(Int.MinValue)(

(largest, n) =>

if (n > largest && n.toString == n.toString.reverse) n else largest,

math.max

)

}

val array = (0 until 1000000).toArray

Writing Parallelism-Agnostic Code

Generic collection traits allow us to
E.g. find the largest palindrome in the sequence:

def largestPalindrome(xs: GenSeq[Int]): Int = {

xs.aggregate(Int.MinValue)(

(largest, n) =>

if (n > largest && n.toString == n.toString.reverse) n else largest,

math.max

)

}

val array = (0 until 1000000).toArray

largestPalindrome(array)

Writing Parallelism-Agnostic Code

Generic collection traits allow us to
E.g. find the largest palindrome in the sequence:

def largestPalindrome(xs: GenSeq[Int]): Int = {

xs.aggregate(Int.MinValue)(

(largest, n) =>

if (n > largest && n.toString == n.toString.reverse) n else largest,

math.max

)

}

val array = (0 until 1000000).toArray

largestPalindrome(array)

largestPalindrome(array.par)

Non-Parallelizable Collections

A sequential collection can be converted into a parallel one by calling par.
Let’s the performance difference:

val array = Array.fill(10000000)(””)

val list = array.toList

Non-Parallelizable Collections

A sequential collection can be converted into a parallel one by calling par.
Let’s the performance difference:

val array = Array.fill(10000000)(””)

val list = array.toList

Converting an array is 65× faster. Why is that?

Non-Parallelizable Collections

A sequential collection can be converted into a parallel one by calling par.
Let’s the performance difference:

val array = Array.fill(10000000)(””)

val list = array.toList

Converting an array is 65× faster. Why is that?

▶ It’s hard to hand out all the tasks simultaneously to every worker in a
long queue.

▶ In a factory, it’s easy to simultaneously give everybody some work.

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

▶ ParRange – parallel range of integers, counterpart of Range

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

▶ ParRange – parallel range of integers, counterpart of Range

▶ ParVector[T] – parallel vector, counterpart of Vector

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

▶ ParRange – parallel range of integers, counterpart of Range

▶ ParVector[T] – parallel vector, counterpart of Vector

▶ mutable.ParHashSet[T] – counterpart of mutable.HashSet

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

▶ ParRange – parallel range of integers, counterpart of Range

▶ ParVector[T] – parallel vector, counterpart of Vector

▶ mutable.ParHashSet[T] – counterpart of mutable.HashSet

▶ mutable.PasHashMap[K, V] – counterpart of mutable.HashMap

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

▶ ParRange – parallel range of integers, counterpart of Range

▶ ParVector[T] – parallel vector, counterpart of Vector

▶ mutable.ParHashSet[T] – counterpart of mutable.HashSet

▶ mutable.PasHashMap[K, V] – counterpart of mutable.HashMap

▶ immutable.ParHashSet[T] – counterpart of immutable.HashSet

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

▶ ParRange – parallel range of integers, counterpart of Range

▶ ParVector[T] – parallel vector, counterpart of Vector

▶ mutable.ParHashSet[T] – counterpart of mutable.HashSet

▶ mutable.PasHashMap[K, V] – counterpart of mutable.HashMap

▶ immutable.ParHashSet[T] – counterpart of immutable.HashSet

▶ immutable.ParHashMap[K, V] – counterpart of immutable.HashMap

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

▶ ParRange – parallel range of integers, counterpart of Range

▶ ParVector[T] – parallel vector, counterpart of Vector

▶ mutable.ParHashSet[T] – counterpart of mutable.HashSet

▶ mutable.PasHashMap[K, V] – counterpart of mutable.HashMap

▶ immutable.ParHashSet[T] – counterpart of immutable.HashSet

▶ immutable.ParHashMap[K, V] – counterpart of immutable.HashMap

▶ ParTrieMap[K, V] – thread-safe parallel map with atomic snapshots,
counterpart of TrieMap

Parallelizable Collections

▶ ParArray[T] – parallel array of objects, counterpart of Array and
ArrayBuffer

▶ ParRange – parallel range of integers, counterpart of Range

▶ ParVector[T] – parallel vector, counterpart of Vector

▶ mutable.ParHashSet[T] – counterpart of mutable.HashSet

▶ mutable.PasHashMap[K, V] – counterpart of mutable.HashMap

▶ immutable.ParHashSet[T] – counterpart of immutable.HashSet

▶ immutable.ParHashMap[K, V] – counterpart of immutable.HashMap

▶ ParTrieMap[K, V] – thread-safe parallel map with atomic snapshots,
counterpart of TrieMap

▶ for other collections, par creates the most similar parallel collection –
e.g. a List is converted to a ParVector

Side-Effecting Operations

Rule 1: Avoid mutations to the same memory locations without proper
synchronization.

def intersection(a: GenSet[Int], b: GenSet[Int]): Set[Int] = {

val result = mutable.Set[Int]()

for (x <- a) if (b contains x) result += x

result

}

intersection((0 until 1000).toSet, (0 until 1000 by 4).toSet)

intersection((0 until 1000).par.toSet, (0 until 1000 by 4).par.toSet)

Side-Effecting Operations

Rule 1: Avoid mutations to the same memory locations without proper
synchronization.

def intersection(a: GenSet[Int], b: GenSet[Int]): Set[Int] = {

val result = mutable.Set[Int]()

for (x <- a) if (b contains x) result += x

result

}

intersection((0 until 1000).toSet, (0 until 1000 by 4).toSet)

intersection((0 until 1000).par.toSet, (0 until 1000 by 4).par.toSet)

Question: Is this code correct?

▶ Yes
▶ No

Avoiding Side-Effects

Side-effects can be avoided by using the correct combinators. For
example, we can use filter to compute the intersection:

def intersection(a: GenSet[Int], b: GenSet[Int]): GenSet[Int] = {

if (a.size < b.size) a.filter(b(_))

else b.filter(a(_))

}

intersection((0 until 1000).toSet, (0 until 1000 by 4).toSet)

intersection((0 until 1000).par.toSet, (0 until 1000 by 4).par.toSet)

Concurrent Modifications During Traversals

Rule 2: Never modify a parallel collection on which a data-parallel
operation is in progress.

val array = Array.fill(10000000)(””)

val (result, _) = common.parallel(

array.par.count(_ == ””),

for (i <- (0 until 10000000).par) array(i) = ”modified”

)

println(s”result: $result”)

Concurrent Modifications During Traversals

Rule 2: Never modify a parallel collection on which a data-parallel
operation is in progress.

val array = Array.fill(10000000)(””)

val (result, _) = common.parallel(

array.par.count(_ == ””),

for (i <- (0 until 10000000).par) array(i) = ”modified”

)

println(s”result: $result”)

▶ We read from a collection that is concurrently modified.
▶ We write to a collection that is concurrently traversed.

In either case, program non-deterministically prints different results.

The TrieMap Collection

TrieMap is an exception to the previous rule.
Consider the Game of Life simulation:

val cells = TrieMap[(Int, Int), Cell]()

def step() {

for ((xy, cell) <- cells.par) cells(xy) = update(cell)

}

We can traverse and modify the trie at the same time.

Game of Life Demo

Game of Life using TrieMap demo!

