
From Low-architectural Expertise Up to
High-throughput Non-binary LDPC Decoders:

Optimization Guidelines using High-level Synthesis
Joao Andrade∗, Nithin George†, Kimon Karras‡, David Novo†, Vitor Silva∗, Paolo Ienne† and Gabriel Falcao∗
∗Instituto de Telecomunicações, Dept. Electrical and Computer Engineering, University of Coimbra, Portugal

†École Polytechnique Fédérale de Lausanne, School of Computer and Communication Sciences, Lausanne, Switzerland
‡Xilinx Research Labs, Dublin, Ireland

Abstract—HLS tools have been introduced with the promise
of easening and shortening the design cycle of tedious and
error-prone RTL-based development of hardware accelerators.
However, they do so either by concealing meaningful hardware
decisions which model the computing architecture—such as
OpenCL compilers—or by abstracting them away into a high-
level programming language—usually C-based. In this paper,
we show that although Vivado HLS is sufficiently mature to
generate a functionally correct FPGA accelerator from a naive
description, reaching an accelerator which optimizes the FPGA
resource utilization in a way that conveys maximum performance
is a process for a hardware architect mindset. We use a highly
demanding application, that requires real-time operation, and
develop a non-binary LDPC decoder on a state-of-the-art Virtex
7 FPGA, using the Vivado HLS framework. Despite using the
same programming syntax as a C-language software compiler,
the underlying programming model is not the same, thus, the
optimizations required in code refactoring are distinct. More-
over, directive-based optimizations that tweak the synthesized C
description hardware must be used in order to attain efficient
architectures. These processes are documented in this paper,
to guide the reader on how an HLS-based accelerator can be
designed, which in our case can come close to the performance
achieved with dedicated hand-made RTL descriptions.

Keywords-fast hardware design; high-level synthesis; design
space exploration; Vivado HLS; non-binary LDPC codes

I. INTRODUCTION

Field-programmable Gate Arrays (FPGAs) are appearing
as main components in the most demanding heterogeneous
computer systems. Smartphones, which have to conciliate a
very high performance with the high energy efficiency of a
portable battery powered device, start to incorporate FPGAs
to add versatility to their system on chip platforms [1].
Datacenters are a completely different segment, which has to
provide a very high performance while keeping a moderate
infrastructural cost. Still, FPGAs have shown to be useful
under high load, improving the ranking throughput of each
server by a factor of 95% for a fixed latency distribution [2].

However, the strength of FPGA design is also its Achilles
heel: the fact that the computer architecture (i.e., number
of processing units, interconnect between processing units,
memory hierarchy, etc.) is largely unconstrained, enables an

∗Authors acknowledge Instituto de Telecomunicações and the Portuguese
FCT under grants UID/EEA/50008/2013 and SFRH/BD/78238/2011

efficient tailoring of the architecture to the particular appli-
cation. This freedom is difficult to maintain when offering a
productive programming model [3]. Although current high-
level synthesis (HLS) flows support a high level application
description that can be effectively synthesised in efficient
hardware, finding that description is a complex design problem
requiring solid hardware understanding. While HLS tools have
been proven worthy as testing and validation tools, we find
them, backed on the designs herein proposed, sufficiently
mature nowadays to synthesize efficient hardware accelerators.

In this paper, we use the implementation of an advanced
non-binary Low-density Parity-check (LDPC) decoder as a
case study to illustrate the design problems that need to be
solved in order to achieve an efficient utilization of the recon-
figurable substrate. Despite using state-of-the-art HLS tools,
such application mapping is tedious and complex, and when
used from a software development stance yields inefficient
accelerator architectures. We show that in order to obtain an
efficient design one should carefully consider (1) the limita-
tions of the target board and device (FPGA) (e.g., bandwidth
to external memory, number of DSP units, etc.) and (2) the
characteristics of the application (e.g., memory dependencies,
parallelization possibilities, operations granularity, scheduling,
etc.) to perform targeted optimizations. We show that while
a naïve implementation of the LDPC decoder, taken entirely
from a pure software description, can only achieve a limited
performance, the attentive tuning of the high level application
description can unleash performances that are in the same ball-
park as those that are painstakingly developed using Register
Transfer Level (RTL) descriptions. The source code resulting
from this work is available to the scientific community for
download at https://github.com/andradx/fftspa_fpl2015.

II. NON-BINARY LDPC CODES

LDPC codes are a class of capacity-approaching linear
block codes defined by sparse parity-check matrices [4]. They
are widely employed for digital communication and storage
systems [4]. Typically, LDPC codes are binary but their
performance improves with the code length, posing numerous
challenges to the design of low latency decoder architectures.
On the other hand, non-binary LDPC codes, defined over the



α α αα2 1 α2 α 1 1 α2 1 1

αc1

c6c5c4c3c2c1

α2c1 c6c6α2c5c4 c5αc4αc2 c3 α2c3αc2

F F F F F F F F F F F F

mv(x)

mvc(x) mcv(x)

mcv(z)mvc(z)

p
e
rm

u
te

d
e
p
e
rm

u
te

CN1 CN2 CN3

VN1 VN3 VN4 VN5 VN6

Walsh-Hadamard

Transform

m∗
v(x)

VN2

dc = 4

dv = 2

Fig. 1. LDPC code Tanner graph representation of (1) and message-passing
decoding. m messages are exchanged between CNs and VNs. Whenever they
traverse a square or a circle, a certain function is applied to it. In the FFT-SPA
case, Hamadard products are applied both as CN and VN update rules, due
to the introduction of the Walsh-Hadamard Transform (F ) prior to the CN
update. Furthermore, pmf s are permuted due to the non-binary field [5].

binary extension field (GF(2m)), show a better performance
for shorter lengths [5].

The parity-check matrix H with dimensions M×N de-
scribes an LDPC code composed by N symbols with rate
R = N−M

N , i.e., M symbols represent redundancy and N−M
are information. The Tanner graph of parity-check matrix

H =

 α 0 1 α 0 1
α2 α 0 1 1 0
0 α α2 0 α2 1

 , (1)

of the code in [5] is exemplified in Fig. 1, and represents
parity-check equations (rows in H) as Check Nodes (CNs) and
symbols (columns in H) as Variable Nodes (VNs), where each
non-null element hcv defines an edge connecting CNc–VNv .
The set of CNs connected to VNv and of VNs connected to
CNc are named as C(v) and V (c), with cardinalities dc and
dv . In the non-binary case, each edge is associated with a
non-null element, which can be expressed as a power of the
primitive element of GF(2m) [5]. Herein, 2m=q and, thus,
GF(2m)≡GF(q).

A. Decoding Algorithm Overview

As with binary LDPC codes, non-binary codes can be
decoded by the Sum-Product Algorithm (SPA), although its
prohibitive numerical complexity makes it necessary to use
lower complexity alternatives at the cost of sub-optimality
and/or by processing in the Fourier-domain [5]. The latter is
particularly advantageous since no sub-optimality is necessar-
ily introduced to the decoding procedure. Therefore, in this
work, we target the Fast Fourier Transform Sum-Product Algo-
rithm (FFT-SPA) that offers excellent decoding performance at
lower computational complexity [5]. The FFT-SPA, formalized
in Algorithm 1, consists of the following processing phases:

• at the receiving end of the transmission channel prob-
ability mass functions (pmfs) mv(x) are computed for

Algorithm 1 GF(2m) FFT-SPA decoding algorithm.
1: Initialize and store data to DRAM:

mv(x) = m
(0)
vc (x) = p(c=x|yv)

2: Prologue: Fetch channel data from DRAM—(Start FFT-SPA Decoding)
3: while max iterations not executed do
4: Depermute the pmf s and apply the VN rules (depermute and

vn_proc):

m
∗(i)
v (x) =mv(x)

∏
c
′∈C(v)

m
(i)

c
′
v
(x×h

c
′
v
×h−1

c
′
v
), (2)

m
(i)
vc (x) =m

∗(i)
v (x)/m

(i)
cv (x) (3)

5: Apply the CN rules and permute pmf s (cn_proc and permute):

m
(i)
cv (z) =

∏
v
′∈Vc\v

FWHT{m(i−1)

v
′
c

(x×h
cv

′ )} (4)

m
(i)
cv (hcv×x) = FWHT

{
m

(i)
cv (z)/m

(i)
cv (z = 0)

}
(5)

6: end while —(End FFT-SPA Decoding)
7: Epilogue: Store decoded data to DRAM

Note: The FFT can be efficiently computed by the Fast Walsh-Hadamard

Transform (FWHT) when elements are defined over GF(2m) [5].

each VN symbol in GF(2m) and for each mvc(x) =
mvc

[
0, 1, α, · · · , α2m−2

]
(1), with α the primitive el-

ement of the polynomial generating GF(2m) [5];
• pmf s mvc(x) are permuted to mvc(x×hcv);
• CN processing, where the CNs process the mvc(x)

(i−1)

to compute mcv(x)
(i) (4)-(5), with (i) the i-th iteration;

• pmf s mcv(x×hcv) are depermuted to
mcv(x×hcv×h−1

cv )=mcv(x);
• the VN processing, where the VN nodes receive

their adjacent mcv(x)
(i) and compute compute the a-

posteriori reliability of VNv , m∗(i)
v (x) (2), from which

mvc(x)
(i) (3) can be obtained;

• from each m
∗(i)
v (x) the symbol of VNv may be retrieved;

• the decoder iterates between (2)-(5) until a maximum
number of iterations has been reached.

III. LDPC DECODING HARDWARE

Non-binary LDPC decoding is a complex signal processing
application that offers plenty of parallelism for FPGA-based
acceleration. However, while targeting a specific application,
one needs to tune the architecture based on the specific appli-
cation requirements and coding parameters resulting thereof.
Additionally, to optimally implement this on a given FPGA
device, in addition to the necessary algorithmic validation, one
needs to perform detailed design space exploration. Hence,
developing an FPGA accelerator using the traditional RTL
development approach would incur high development time,
greatly limiting the design space that can be explored, and
thereby lead to high Non-Recurring Engineering (NRE). Re-
cently, HLS tools have greatly improved and are able to
provide a convenient environment to speed up the development
process and empower the developers to quickly explore a much
wider design space. Xilinx Vivado HLS [6] is a state-of-the-art



HLS tool that accepts design inputs in C, C++ or SystemC and
enables the designer to quickly perform algorithm verification
before automatically translating the high-level design input
into an RTL implementation. More importantly, it also permits
the designer to use compiler directives, when necessary, to
guide the tool to explore some architectural options. Due to
this high degree of control on the underlying architecture and
the low effort of retargeting different devices, we used Vivado
HLS to develop the non-binary LDPC decoder.

A. High-Level System Architecture

Vivado HLS can be used to develop HLS IP cores that im-
plement the LDPC decoding functionality. However, to realize
the FPGA accelerator, one still needs to integrate these cores
into a high-level architecture that contains essential system
components, such as the interconnection bus and external
memory controller, and the clock and control circuitry. This
is needed because the storage space required for larger values
of m can exceed the local storage capacity of typical FPGAs.

In order to develop a high-performance decoder, we need a
high-bandwidth access to the data. Since our target platform,
the Xilinx VC709 board, has two DRAM SODIMMs, we have
two DRAM controllers in the system. In order to leverage this
bandwidth from the HLS IP cores, we store the input data,
comprising of mcv(x), mvc(x) and mv(x), in one DRAM
and the output, m∗

v(x), in the other.
While this design choice provides high data bandwidth to

the computation cores, the performance of the cores will still
suffer due to the DRAM memory high response latency. To
overcome this, we have also provision local storage. Prior to
starting each decoding phase, the data is copied to the local
storage using a burst transfer. The core then executes the
FFT-SPA using the data from the local storage, which offers
minimum access latency. Once the computation is completed,
the decoded data is copied, again using a burst transfer, into
the DRAM. This implies that the DRAM controller is only
utilized intermittently during the prologue and epilogue of
the actual decoding procedure, during the burst transfers to
and from the HLS core. We can hence add multiple cores,
that can access the DRAM in a staggered fashion to provide
higher throughputs. Naturally, when the number of cores is
high, there will not be enough bandwidth to prevent the cores
from starving for data, although the utilization of the FPGA
logic elements by each individual core is too high to ever see
this happen for the tested cases.

IV. HLS-GENERATED ARCHITECTURE

The design of the GF(2m) LDPC FFT-SPA decoder space
exploration and corresponding optimizations performed are
discussed next. The latter come in two ways, either by proper
code writing, and in the cases where an existing C application
is ported code refactoring is a must, or by annotating the code
with optimization directives. These directives can be inlined
with C code using the #pragma construct, or systematized
in a Tcl script with equivalent syntax, both of which are
mutually exclusive methods to instruct the HLS tool.

A. Mapping the FFT-SPA to HLS C

From equations (1)–(5), in Algorithm 1, we can observe that
each expression is applied to certain subsets of data, C(v) or
V (c) within larger sets mcv(x) or mvc(x), so they represent
computations inside a loop structure in our C-design input.
Essentially, a non-binary LDPC code can be described in three
fundamental dimensions: (1) how many pmf s or edges need to
be updated; (2) how many elements compose the pmf , i.e., the
GF(2m) dimension; and (3) how many pmf s participate in the
update of an edge, i.e., dc and dv , respectively for CN (4),(5)
and VN (3) processing phases of the FFT-SPA.

For a Single Instruction Multiple Thread (SIMT)-like archi-
tecture [7], expressing the non-binary LDPC code dimensions
can be efficiently performed by linearizing all dimensions
to a single one in a thread execution grid [8]. Translating
this to a single iterator variable code whose trip count is
enough to cover all three dimensions is straightforward, and
the loop structure in the top of Fig. 2 wil generate a bit-true C
testbench in Vivado HLS. However, optimizations instructed
in this fashion are not picked up easily by the compiler
when we attempt to explore loop unrolling or pipelining in
a particular dimension. In fact, most times this will draw a
too long compile time and inefficient resource utilization by
the C-synthesized accelerator. The code transformation show
in Fig. 2 is required for each decoding algorithm structure
that could be defined by a loop. Hence, in order to enable

//flat loop unsuitable for Vivado HLS optimizations
for(int i = 0; i < edges*q; i++){
int e = i/(d_v*q); //get VN id
int g = i%q; //get GF(q) element
int t = (i/q)%d_v; //get d_v element

}

//nested loop suitable for Vivado HLS optimizations
for(int e = 0; e < edges; e++)
for(int g = 0; g < q; g++)
for(int t = 0; t < d_v; t++)

Fig. 2. Loop structures suitable and unsuitable for Vivado HLS optimizations.

our subsequent optimizations, we express computation within
loop-nests constituting of loops labelled (1) E, (2) GF, (3)
LogGF, (4) Dv and (5) Dc that iterate over the dimensions,
(1) number of edges in the code, (2) Galois Field dimension
q=2m, (3) Galois Field order m= log2 q, (4) dv and (5) dc.
Also, this structure exposes the parallelism in the application in
a form that is more amenable for easy analysis and subsequent
optimization, but more importantly, as previously mentioned, it
becomes easier for the HLS tool to leverage such parallelism in
order to produce better results. The architecture resulting from
such a code structuring is shown in Fig. 3, herein designated
as Solution I, and is the starting point for further design
exploration.

1) vn_proc and cn_proc: These kernels perform Hadamard
multiplications. In Solution I, as seen in Fig. 3, each kernel
is composed of a triple-nested loop structure E–GF–Dv/Dc.
In the E loop it computes over different messages, with trip
count edges=N×dv . In the GF loop it operates over different



CN->VNVN->CN

E: edges

GF: 2
m

v
n
_
p
ro
c

p
e
rm

u
te

E: edges

E: edges

LogGF: m

fw
h
t

c
n
_
p
ro
c

d
e
p
e
rm

u
te

E:

G:

VN/CNW:

E:

G_read:

G_write:

G_read:

LOGGF:

G_compute:
fw

h
t

E: edges

GF: 2
m

Dc: dc

E: edges

GF_read: 2
m

GF_write: 2
m

G_read: 2
m

LOGGF: m

G_compute: 

2
m

DRAM:

mcv

 mvc

mv

iterate

p
ro

lo
g

u
e

e
p

ilo
g

u
e

iterate

l_m
vc 

l_m
cv

l_m
v

GF_read: 2
m

GF_write: 2
m

Dv: dv

GF_read: 2
m

GF: 2
m

GF_write: 2
m

BRAM arrays

partitioned in Solutions IV-VII

E: edges

LogGF: m

GF_read: 2
m

GF: 2
m

GF_write: 2
m

2 RW ports

available

Fig. 3. LDPC decoder architecture base version (Solution I). Each kernel
is defined as a triple- or double-nested loop body function—loop trip counts
are shown after the colon—consuming and producing data to BRAM defined
arrays. As the tool default behaviour does not optimize the BRAM array
physical structure, typically only two ports are exposed per module utilized,
and, thus, data requests are served at the rate of two elements per clock cycle.

probability values (pmf s) and in Dv/Dc it uses data read from
different arrays. Hence, the optimization for these kernels
will be to leverage the parallelism from all three loop bodies
(Fig. 4).

//nested loop loop structure of vn_proc
E:for(int e = 0; e < edges; e++){

GF:for(int g = 0; g < q; g++){
Dv:for(int t = 0; t < d_v; t++){
//computation follows

}}}

Fig. 4. Nested loop structure of vn_proc and cn_proc (replace dv←dc).

2) permute and depermute: These kernels deal with the
permutation and depermutation of probabilities inside each
pmf and are described as a double nested loop structure, shown
in Fig. 3. In the GF_read loop, it loads data and shuffles it
according to the permutation/depermutation into a local copy.
Then, loop GF_write writes data back contiguously to the
correct BRAM location. Since the shuffling is performed in-
place, as shown in Fig. 5, the available parallelization potential
is limited and is, in fact, related to m.

E:for(int e = 0; e < limit; e++){
GF_read:for(int g = 0; g < GF; g++)

//load data into temporary buffer
GF_write:for(int g = 0; g < GF; g++)
//permute and store back to memory

}

Fig. 5. Nested loop structured of permute and depermute.

Partitioned arraysOriginal arrays

l_
m
v

l_
m
v
c

l_
m
c
v

l_
m
v
_
0

l_
m
v
c
_
0

l_
m
v
_
1

l_
m
v
_
2

l_
m
v
_
3

l_
m
v
c
_
1

l_
m
v
c
_
2

l_
m
v
c
_
3

l_
m
c
v
_
0

l_
m
c
v
_
1

l_
m
c
v
_
2

l_
m
c
v
_
30

1

2

3

4

5

.

.

.

0

1

2

3

4

5

.

.

.

0

1

2

3

4

5

.

.

.

0

4

8

.

.

1

5

9

.

.

2

6

10

.

.

3

7

11

.

.

0

4

8

.

.

1

5

9

.

.

2

6

10

.

.

3

7

11

.

.

0

4

8

.

.

1

5

9

.

.

2

6

10

.

.

3

7

11

.

.

2x2
m

 RW ports availablePartitioning

Fig. 6. Partitioning of the BRAM-defined arrays, by a cyclic factor of 4
(a factor of 2m was applied for each GF(2m) solution) exposing 4 ports
with double read-write capacity per clock cycle. The cyclic factor spreads
contiguous data elements across different BRAMs, therefore exposing parallel
accesses to those elements in the 2m dimension (GF loops).

3) fwht: This kernel implements the FWHT, a special case
of the FFT where the twiddle factors are always −1 or 1, thus
only additions and subtractions are executed by this kernel.
In the loop nest shown in Fig. 3, E iterates over all the pmf s
whose transforms are computed. Since performing the radix-2
factorization of the FWHT in-place would entail tremendous
pressure accessing BRAMs, we utilize a temporary array—a
scratchpad—to hold the working data. Loops GF_read and
GF_write copy the data to and from this scratchpad. The
LogGF loop cycles through the FWHT stages and GF iterates
over each transform element. Here, we achieve parallelism
among the different messages—transform batches—in E and
also GF, among different message elements, that can be
exploited during optimizations.

E:for(int e = 0; e < edges; e++){
G_read:for(int g = 0; g < q; g++){
//load data into temporary array

}
LogGF:for(int c=0;c<m;c++){
GF:for(int g = 0; g < q; g++){
//perform Radix-2 computation

}}
G_write:for(int g = 0; g < q; g++){
//store data back to memory

}}

Fig. 7. Nested loop structure of fwht.

B. Architecture Optimization Guidelines

The unoptimized decoder in Solution I achieves only a mod-
est performance since the decoding operations are performed
sequentially. This is because the tool does not automatically
apply necessary optimizations to leverage the available par-
allelism. Hence, to achieve high performance, one needs to
explicitly direct the tool to apply the necessary optimizations.
Moreover, one needs to carefully consider the hardware im-
plications of the specific optimization and often apply one or
more optimization together in order to achieve the intended
result. The optimizations carried out, and described next, can
be visualized in Figure 8.

1) Loop unrolling: Loop unrolling tries to schedule multi-
ple iterations in parallel to leverage parallelism and improve



E: edges

fw
h
t

E: edges

LogGF: m

fw
h
t

GF_read: 2
m

GF_compute: 2
m

GF_write: 2
m

E: edges

E: edges

fw
h
t

fw
h
t

2x2
m

 RW ports available2 RW ports available

…

…

E: edges

fw
h
t

…

…

Solution II Solution III Solution IV Solution V Solution VI

not parallel

high II
parallel

low II
E: edges

fw
h
t

Solution VII

…

Fig. 8. Solutions II–VII and expected behaviour of the iteration scheduling of the FWHT kernel. Solutions II, III, V and VI have all the inner loops of E
unrolled, and loop E pipelined, respectively. Solutions II–III access BRAM arrays through a double Read/Write (RW) port per array, while Solutions IV–VI
access them via 2m double RW ports. As a consequence, true parallel execution of unrolled iterations and minimum IIs for pipelined execution is only
achieved through the higher bandwidth exposed by 2m double RW ports of Solutions V and VI. Solution IV is an example of how higher bandwith available
without scheduling optimizations yields no improvement of performance and contributes only to a lower efficiency of design.

processing throughput. In our unoptimized decoder, as afore-
mentioned, we have data parallelism in the E, GF, Dv and
Dc loops. Additionally, we can also unroll the LogGF loop
to remove the control flow overhead associated with the loop
structure, which can be useful when m is small. However,
while enough logic resources exist on the FPGA to schedule
the operations within each loop in parallel, the limiting factor
is the number of memory ports available to BRAM memory.

2) Loop pipelining: Loop pipelining tries to improve loop
execution performance by having multiple loop iterations
execute on the same hardware. Initiation Interval (II) is a
metric that signifies how soon the loop structure can initiate the
execution of a new iteration after having begun the execution
of the previous one, (II=1 in the optimal situation). In our
decoder, we utilize pipelining to exploit the parallelism that
has remained untapped in the E loop, when its innermost
loops are unrolled, or to exploit parallelism of the innermost
loops. As with loop unrolling, the II resulting of pipelining the
loops is limited by the number of memory ports that serve the
BRAM-allocated arrays from which data is fetched. Unlike
loop unrolling, pipelining in Vivado HLS is an optimization
that constrains all inner loops to be unrolled prior to pipelining.

3) Loop unrolling before or after pipelining?: A question
that remains is what is the most efficient way to combine
unrolling and pipelining. Given the nested-loop structure of the
LDPC decoder, educated assumptions can be made regarding
the best approach. For a decoder whose innermost loops are
pipelined, unrolling of the outermost loop will generate an
accelerator composed of small pipelined cores. In its turn,
this creates extra overhead due to several units managing their
own pipelines. While this is not directly a limiting factor
to the performance obtained, higher utilization of resources
by control units will reduce the slack for better routing and
higher clock frequencies. Whereas pipelining of the outermost
loop, with the innermost loops unrolled, will generate a single
core per decoding kernel which aggregates control logic in
a single pipeline. This way, the FPGA logic resources are
devoted in a larger fraction to arithmetic and exploitation of
parallel instructions and less to logic control. This comes with
increased slack in terms of routing and clock and gives margin

to replicate more blocks of the LDPC decoder as explained
next. Given that Vivado HLS optimizations are directives and
the decoding kernels loop-nested structures, testing between
both cases is a simple matter of interchanging the unroll and
the pipeline directives, as shown in Fig. 9 for the vn_proc.

#a) pipeline outermost and unroll innermost
set_directive_pipeline "vn_proc/E" -II 1 -rewind
set_directive_unroll "vn_proc/GG"
set_directive_unroll "vn_proc/Dv"
#b) unroll outermost and pipeline innermost
set_directive_unroll "vn_proc/E" -factor U
set_directive_pipeline "vn_proc/GF" -II 1 -rewind

Fig. 9. Pipeline and unroll optimizations Tcl directives for vn_ proc. In a),
complete unrolling is instructed and pipeline II is tentatively set at 1. In b),
unrolling by a U factor is instructed, and pipeline II is tentatively set at 1.

4) Array Partitioning: In order to benefit from the unrolling
and pipelining optimizations, we must provide sufficient band-
width to the design. However, the default strategy of the tool is
to sequentially allocate all the data elements into a BRAM unit
until a new one is needed. This implies that contiguous data
accesses often need to be served by the same BRAM which has
only a limited bandwidth from the single or, sometimes, double
read-write (RW) port. To alleviate this issue, we instruct
Vivado HLS to instantiate dual-ported BRAM memories and,
additionally, to partition each BRAM array with a 2m cyclic
factor to expose 2×2m ports per data array. It partitions
each array into 2m new ones, where contiguous elements of
the original one, are spread across the multiple BRAMs as
seen in Fig. 6. This partitioning enables us to achieve an
II=1 for the most complex loops in the design. While array
partitioning is useful, it comes with the overhead of computing
the indices where an index i in the original array must be
mapped to a 2-D address (x, y)= (mod(i, 2m), bi/2mc), with
x the BRAM bank and y the index of i in x bank. Nevertheless,
it is also a directive optimization that recomputes the indices
automatically for the developer and breaks the array into
several BRAM banks, as seen in Fig. 10.

5) Floating- vs fixed-point: In FPGA design, we are not
constrained by micro-architecture defined data types, such as
single-precision floating-point, and can configure the data-



#store l_mcv of top-level fftspa in 2-port BRAM
set_directive_resource -core RAM_T2P_BRAM

"fftspa" l_mcv
#partition array l_mcv cyclically by a factor of 4
set_directive_array_partition -type cyclic

-factor 4 -dim 1 "fftspa" l_mcv

Fig. 10. Tcl directives that assign array l_mcv to be stored in BRAM
units with two R/W memory ports and cyclically partition it across its first
dimension by a factor of four.

path to use the most convenient one given the application
requirements. For our application, we have found that Q8.7
fixed-point representation used for the messages exchanged
in the FFT-SPA, with the intermediate operations performed
in Q16.13, lead to simpler synthesized circuits and reduced
latency of fixed-point arithmetic—QX.Y standing for X−Y
sign and magnitude bits, and Y for decimal bits. This is a
design optimization that must be done after carefully consid-
ering the characteristics of the specific application, but whose
code refactoring can be performed with the inclusion of the
ap_cint.h library and the typedef definition (Fig. 11).

#include<ap_cint.h>
//data is stored in llr type variables
//computation is performed in llr_ type variables
//use floating-point
typedef float llr;
typedef float llr_;
//use Q8.7 fixed-point
typedef ap_fixed< 8, 1, AP_RND_INF, SC_SAT > llr;
typedef ap_fixed< 16, 3, AP_RND_INF, SC_SAT > llr_;

Fig. 11. Code refactoring performed for synthesis of the decode design with
fixed-point (llr with Q8.7 and llr_ with Q16.13).

V. EVALUATION

We used Vivado HLS 2014.2 to develop our LDPC decoder
and targeted a Xilinx VC709 development board with a Virtex-
7 XC7VX690T device. To understand the benefit of our
optimizations, we evaluated the decoder at different design
points, Solutions I-VII in Table I, using a rate 1/3 N=384
LDPC code with dc=3 and dv=2. Additionally, we also varied
the field order m={2, 3, 4} to study its impact on the design.

TABLE I
SOLUTIONS TESTED AND CORRESPONDING OPTIMIZATIONS.

Solution Description of the solution architecture optimizations
I Base version without C-directives
II I + Full unrolling of inner loops LogGFand GF
III II + Pipelining of outer loops E to II=1
IV I + Cyclic partition of all BRAM arrays by a factor of 2m
V IV + Full unrolling of inner loops LogGF and GF
VI III + IV (Unrolling, pipelining and partitioning)

VII IV + Pipelining of inner loops LogGF and GF to II=1
and unrolling of outer loop E by a factor U=2m

A. Methodology

During the decoder development, the C-synthesis provides
preliminary results to drive the design space exploration.

The functional correctness of this synthesized design is then
ascertained through RTL co-simulation, which provides a
fairly accurate estimate of the overall decoding performance
in clock cycles. Finally, before integrating the decoder into the
high-level system architecture, we place and route (P&R) the
decoder design standalone to obtain a more accurate values for
the hardware utilization and clock frequency. This enables us
to estimate how many decoders can be instantiated in the high-
level system architecture. Now, after performing P&R on this
complete system, we compute the decoding throughput for 10
decoding iterations from the post-P&R clock frequency of this
system, the number of decoders instantiated and the decoding
latency based on the co-simulation.

B. Experimental results

To gain insight on the efficiency of each solution, we
analyze the overall decoding latency obtained in C-synthesis
and co-simulation as well as the clock frequencies of operation
obtained by the C-synthesis and place and route of the HLS
IP core. This is shown in Tables II and III.

TABLE II
FPGA UTILIZATION FOR THE STANDALONE LDPC DECODER IP CORE.

FPGA GF
(
22
)

GF
(
23
)

Util.[%] I II III IV V VI VII I II III IV V VI VII
LUTs 0.76 1.48 2.98 1.07 1.52 4.62 7.67 0.64 2.17 5.04 1.13 5.20 10.4 37.4

FF 0.34 0.71 1.42 0.48 0.81 1.89 2.73 0.28 1.16 2.48 0.53 2.52 3.94 7.69
DSP 0.06 0.44 0.44 0.14 0.44 0.44 0.33 0.06 0.89 0.89 0.06 0.89 0.89 0.66

BRAM 0.31 0.24 0.24 0.41 0.41 0.41 0.41 0.44 0.48 0.68 0.82 0.82 0.82 0.85

GF
(
24
)

GF
(
23
)

(floating-point)
LUTs 0.84 3.95 9.80 1.70 10.4 13.5 41.5 0.65 N/A N/A 1.48 11.7 17.3 N/A

FF 0.42 2.25 4.86 0.97 4.95 5.14 12.9 0.29 N/A N/A 0.51 3.30 7.56 N/A
DSP 0.44 1.78 1.78 0.22 2.00 1.11 1.33 0.06 N/A N/A 0.06 1.78 1.78 N/A

BRAM 1.36 0.85 1.09 1.36 1.36 1.36 2.78 0.78 N/A N/A 1.63 2.72 1.63 N/A

1) Base version: The LDPC decoder base version provided
by Solution I exploits no parallelism and, therefore, has low
resource utilization and achieves a very modest throughput,
well within the Kbit/s range. Moreover, the number of clock
cycles taken by this design roughly doubles for each increment
of m. This version was used for algorithmic validation and
served as a baseline to evaluate the other design optimizations.

2) Loop unrolling: Solutions II, V, VI and VII are the cases
that employ loop unrolling, which leads to a reduction in the
overall latency of the decoder design, independent of any other
optimizations carried out, as seen in Table III. Naturally, un-
rolling is best applied in conjunction with other optimizations.
Both II and V have limited potential to reduce the decoder
latency, as these solutions only expose parallelism to the
inner loops. Solution II, counterintuitively, has lower decoding
latency than V due to the fact that the re-indexing caused by
the cyclic partitioning interferes with the in-place permutations
carried out by the permute and depermute kernels.

Pipelining the computation produces designs that achieve
the lowest latency—Solutions III, VI—and also Solution VII.
Naturally, pipelining also increases the resource utilization
of the FPGA. Among these two first design points utilizing
pipelining, Solution VI achieves better performance since the
array-partitioning exposes additional memory ports to serve



Optimizations
I II III IV V VI VII

L
a

te
n

c
y

 [
c

y
c

le
s

]

10 3

10 4

10 5

10 6

0

50

100

150

200

250

a) GF(22)

Optimizations
I II III IV V VI VII

L
a
te

n
c
y
 [

c
y
c
le

s
]

10 4

10 5

10 6

10 7

F
re

q
u

e
n

c
y
 [

M
H

z
]

0

50

100

150

200

250

b) GF(23)

Optimizations
I II III IV V VI VII

L
a
te

n
c
y
 [

c
y
c
le

s
]

10 4

10 5

10 6

10 7

F
re

q
u

e
n

c
y
 [

M
H

z
]

0

50

100

150

200

250

c) GF(24)

Fig. 12. Decoding kernels latency (bars, left axis), and clock frequency of operation (points, right axis) of each solution. Compared to the base decoder (I),
unrolling (II) and pipelining (III) allow for ten-fold improvements in decoder latency, despite being constrained by the BRAM available bandwidth. Improving
the bandwidth by partition of the arrays, exposes more BRAM ports, but without parallel scheduling of operations latency actually increases (IV) and unrolling
(V) is not sufficient to mask the indexing overhead. Only the sensible combination of the former is able to minimize latency (VI). Furthemore, it is shown
that pipelining the outermost loop provides a more efficient design than to unroll a structure containing pipelined loops (VII).

the iterations inside loop E. After partitioning the arrays by
a 2m-factor, vn_proc and cn_proc can be optimized to 1 and
2 cycles of II and the fwht can achieve an II of 1 cycle. The
permute and depermute kernels have data dependencies that
cause its minimum II to grow with the field dimension. An
interesting observation in Table III is that the clock frequency
estimates for the most complex Solution after C-synthesis can
turn out to be, in some cases, grossly estimated, than that
obtained after P&R, a potential pitfall in relying on only C-
synthesis estimates for evaluation.

TABLE III
LDPC HLS IP Core DECODER LATENCY AND CLOCK FREQUENCY.

Sol.
C-Synth’d Design RTL Co-Sim. HLS IP core P&R’d

E Lat.
[Kcycles]

Clk
[MHz]

Lat.
[Kcycles]

Clk
[MHz]

GF
(
22
)

I 540 266 607 263
II 121 266 129 253
III 20 266 28 248
IV 508 269 691 251
V 157 266 165 259
VI 8 117 16 264
VII 180 29 187 216

GF
(
23
)

I 3096 266 1232 262
II 182 266 198 244
III 42 266 58 239
IV 3096 266 1581 263
V 284 266 226 242
VI 26 57 30 247
VII 299 19 315 26

GF
(
24
)

I 4768 266 2651 265
II 285 266 315 215
III 83 266 114 192
IV 6512 266 3499 249
V 2268 266 1355 165
VI 34 25 50 244
VII 526 117 558 127

3) Loop pipelining: Solutions VI and VII, that combine
unrolling with pipelining must be analyzed in their own light.
As the outermost loops E are prevented to be fully unrolled
by the tool, which imposes a limit to the trip count of loops

to be unrolled, only low unroll factors could be set (U=2m),
in order for the tool to synthesize the decoder accelerator in a
reasonable timespan. Furthermore, as seen in Fig. 13, Solution
VII is a non-optimal Pareto point, using a high number of
Lookup Tables (LUTs) for a low reduction in decoder latency.

4) Array partitioning: Array partitioning increases the data
bandwidth to the computation units by exposing more data that
can be consumed in parallel. However, it also comes with a
non-negligible cost of re-indexing that consumes resources and
increases latency. This effect is visible in Solutions I-IV, and
a more pronounced effect in Solutions II-V because of the
unrolling that was previously applied, as seen in Figure 13.
However, when this is applied in conjunction with pipelining,
we obtain a 42–75% reduction in latency, as seen while
moving from Solution III to VI, but not for the Solution VII.

5) Replication of Compute Units: As seen in Table II,
our individual decoding units are fairly small. Moreover, as
discussed in Section III-A, our high-level system architecture
facilitates using multiple decoders to achieve higher through-
put. Therefore, in our final design, we utilize multiple HLS
IP cores to develop a design that targets an FPGA LUT
utilization of 80%. We depend on the resource utilization
estimates produced from applying P&R on the standalone HLS
IP core to guide this step. Using this approach, we were able
to instantiate K={14, 6, 3} decoders for m={2, 3, 4}. In this
multi-decoder design, due to the large design size, we observed
a drop in post-P&R clock frequency of operation—dropping
by {12.4%, 16.0%, 6.94%}—compared to the a single decoder
design. But, this is well compensated by the improvement in
decoding throughput due to the multiple kernels.

VI. RELATED WORK

A handful of publications address the complex design space
exploration of non-binary LDPC code architectures on FPGAs.
The use of HLS is uncommon for the case of LDPC codes
and other signal processing applications. An 802.11n LDPC
decoder was designed using Vivado HLS achieving 13.4
Mbit/s throughput for a Spartan 6 LX150T, operating at 122
MHz and for a frame length of 648 symbols [9].



LUTs [%]
0 10 20 30 40 50 60 70 80 90

L
a

te
n

c
y

 [
7

s
]

10 0

10 1

10 2

10 3

10 4

10 5

GF(4) GF(8) GF(16)
Non-optimal points

Final decoder design w/ DRAM controllers
and several accelerators instantiated

Single accelerator
w/o DRAM controllers

Pareto
Optimal
Points

Fig. 13. Pareto plotting of the design space for the LDPC accelerator in
latency (µs) vs. LUT utilization (%). On the rightmost side, the design points
correspond to the final decoder with replicated accelerators (14, 5 and 3,
respectively for GF(22, 23, 24)). Latency is per instantiated accelerator.

Complex non-binary LDPC decoder architectures found in
the literature for FPGA devices are usually developed at RTL
level. Most non-binary LDPC decoders Sulek et al. have
exploited the use of DSP blocks of the FPGA to perform the
multipliers used in the CNs and adders in the VNs computation
reporting 6 Mbit/s of throughput for code (480,240) with
column weight dv = 2 in GF(25) [10]. Spagnol et al. mixed-
domain RTL-based decoder for the GF(23) Mackay code
obtains 4.7 Mbit/s on a Virtex 2 Pro FPGA [11]. Boutillon
et al. developed a decoder architecture for a GF(26)-LDPC
decoder based on the EMS algorithm reporting a decoding
throughput of 2.95 Mbit/s for an occupied area of 20% of
a Virtex 4 FPGA. Although their architecture scales with
minimal adaptation of the design to higher order GF(q), with
q ≥ 212, no throughputs are reported for q other than 26 [12].

Zhang et al. developed a layered partial-parallel architec-
ture, achieving 9.3 Mbit/s throughput at 15 iterations for a
GF(25) (744, 653) length non-binary code of rate 0.88, with
a frequency of operation of 106 MHz on a Virtex-2 Pro [13].
Emden et al. study the scalability of the non-binary decoder
with a growing GF(2m), on a Virtex 5 FPGA, for m={2, 4, 8}.
Their achieved throughputs range from 1.6 up to 33.1 Mbit/s
which illustrate the complexity of the algorithm, as the decoder
scales with 11× more area and a throughput 95% inferior [14].

While surpassing the performance of RTL-dedicated so-
lutions with HLS-based descriptions may be out of reach
now, we show that an efficient accelerator can be designed
performing at similar orders of throughput magnitude.

VII. CONCLUSION

As the complexity of designing more sophisticated signal
processing algorithms increases, the kind of design space
exploration problems addressed in this paper are increasingly
becoming a real concern of hardware designers. While RTL-
based development can achieve the best performance, it incurs
very high development costs for FPGA accelerators. Alterna-
tively, one can target FPGAs through HLS tools that signifi-
cantly reduce the development time and allow the designer to
produce reasonably good results. Although the design space
exploration must leverage upon application and hardware
design knowledge in order to reach a satisfactory design

TABLE IV
PROPOSED DECODERS AND RELATED WORK DECODING THROUGHPUT,

FPGA UTILIZATION AND FREQUENCY OF OPERATION∗ .

Decoder m K LUT [%] FF BRAM DSP Thr. [Mbit/s] Clk [MHz]

This work

2 1 14 7 0.5 0.5 1.17 250
14 80 35 6 6 14.54 219

3 1 21 9 0.9 0.9 0.95 250
6 81 34 5 5 4.81 210

4 1 30 13 2 2 0.66 216
3 73 32 5 5 1.85 201

[13] 4

1

48 (Slices) 41 N/A 9.3 N/A

[14]
2 33.16

1004 N/A 13.22
8 1.56

[11] 3 13 3 1 N/A ≤4.7 99
[12] 6 19 6 1 N/A 2.95 61
[8] 8 85 (LEs) 62 7 1.1 163
[9] 1 14 (Slices) 21 N/A 13.4 122

∗ Differences in technology nodes and FPGA are not considered.

point, once a solid base version is established, the design
cycle requires little code refactoring due to the directive-
based modifications of the HLS tool. We have considered
a complex scenario of non-binary LDPC decoders used in
channel coding and report throughputs of 0.66–1.17 Mbit/s
for a single-decoder architecture, and 1.85–14.54 Mbit/s for
multi-decoder design, which compare fairly against RTL-based
decoders found in the literature, especially when the significant
productivity gap is factored inn. Optimized HLS libraries like
the ones available for the video space [15] could further help
performance convergence while extending the productivity
lead. The optimization strategies adopted in this work provide
insights on how other complex problems can be efficiently
designed in HLS. The LDPC decoder source code is available
at https://github.com/andradx/fftspa_fpl2015.

REFERENCES

[1] M. Maxfield, “Google’s project ARA smartphones to use lattice ECP5
FPGAs,” EE Times, April 2014.

[2] A. Putnman et al., “A Reconfigurable Fabric for Accelerating Large-
scale Datacenter Services,” in Proc. ACM/IEEE ISCA, 2014, pp. 13–24.

[3] G. Martin and G. Smith, “High-Level Synthesis: Past, Present, and
Future,” IEEE Des. Test, vol. 26, no. 4, pp. 18–25, Jul. 2009.

[4] T. Richardson and R. Urbanke, “The renaissance of Gallager’s low-
density parity-check codes,” IEEE Comm. Mag., vol. 41, no. 8, 2003.

[5] R. A. Carrasco and M. Johnston, Non-Binary Error Control Coding for
Wireless Communication and Data Storage. Wiley, Chichester, 2008.

[6] Xilinx Inc., “The Xilinx SDAccel Development Environment.”
[7] D. B. Kirk and W. H. Wen-mei, Programming massively parallel

processors: a hands-on approach. Newnes, 2012.
[8] J. Andrade et al., “Flexible non-binary LDPC decoding on FPGAs,” in

Proc. IEEE ICASSP, May 2014, pp. 1936–1940.
[9] E. Scheiber et al., “Implementation of an LDPC decoder for IEEE

802.11n using Vivado High-Level Synthesis,” in Proc. IEEE ICECS,
2013, pp. 45–48.

[10] W. Sulek et al., “GF(q) LDPC decoder design for FPGA Implementa-
tion,” in Proc. IEEE CCNC, Jan 2013, pp. 460–465.

[11] C. Spagnol et al., “FPGA Implementations of LDPC over GF(2m)
Decoders,” in Proc. IEEE SiPS, Oct 2007, pp. 273–278.

[12] E. Boutillon et al., “Design of a GF(64)-LDPC Decoder based on the
EMS Algorithm,” IEEE TCS—I, vol. 60, no. 10, pp. 2644–2656, 2013.

[13] X. Zhang and F. Cai, “Efficient Partial-Parallel Decoder Architecture for
Quasi-Cyclic Nonbinary LDPC Codes,” IEEE TCS–I, vol. 58, no. 2, pp.
402–414, 2011.

[14] T. Lehnigk-Emden and N. Wehn, “Complexity Evaluation of Non-binary
Galois Field LDPC Code Decoders,” in Proc. IEEE ISTC, Sept 2010,
pp. 53–57.

[15] Xilinx Inc., “Accelerating OpenCV Applications with Zynq-7000 All
Programmable SoC using Vivado HLS Video Libraries,” XAPP1167.


