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Abstract-FPGAs can provide high performance and energy 
efficiency to many applications; therefore, they are attractive 
computing platforms in a cloud environment. However, FPGA 
application development requires extensive hardware design 
knowledge which significantly limits the potential user base. 
Moreover, in a cloud setting, allocating a whole FPGA to a 
user is often wasteful and not cost effective due to low device 
utilization. To make FPGA application development easier, firstly, 
we propose a methodology that provides clean abstractions with 
high-level APls and a simple execution model that supports 
both software and hardware execution. Secondly, to improve 
device utilization and share the FPGA among multiple users, we 
developed a lightweight runtime system that provides hardware
assisted memory virtualization and memory protection, enabling 
multiple applications to simultaneously execute on the device. 

I. IN TRODUCTION AND RELATED WO RK 

FPGAs can achieve high performance and energy efficiency 

in many applications. Recent work has demonstrated that 

cloud and datacenter applications can significantly benefit from 

using FPGAs. For instance, Microsoft's Catapult [1] leveraged 

FPGAs to almost double the throughput of search ranking, 

an enterprise-level datacenter application, with only a 10% 
increase in power consumption. Baidu used FPGA-accelerated 

neural networks to achieve an order of magnitude better 

performance for recognition applications at minimal additional 

power cost [2]. Additionally, there are also new server platforms 

being developed, such as the Intel XEON+FPGA platform [3], 
that aim to improve the integration of FPGAs into the standard 

computing ecosystem. 

These developments have motivated research on integrating 

FPGAs into the cloud setting and offering them as a virtualized 

computing resource. For instance, Chen et al. [4], partitioned an 

FPGA into reconfigurable regions and partial reconfiguration 

is used to dynamically deploy accelerators. However, their 

study did not consider how design development ftowc an be 

made easier or examine the cost of providing hardware-assisted 

memory management features, such as dynamic allocation and 

virtualization, that can greatly aid application development. 

Work on dynamic management of FPGA resources have 

explored managing partial reconfiguration from Linux [5] and 

extending an RTOS to manage hardware tasks [6]. However, 

these efforts only investigated system-on-chip scenarios with 

tightly coupled communication which is not the typical case 

in a cloud deployment. 

Fig. l. Overview of the system and block diagram of the design implemented 
on the FPGA. 

In this paper, we present a complete methodology and 

resource management framework that allows design and 

dynamic mapping of accelerators onto FPGAs in the cloud. 

II. SYSTEM DESIGN 

Figure 1 shows an overview of the architecture of our system. 

Here, a host computer in a cloud environment is connected 

to an FPGA board using a PCIe interface. The FPGA is 

initialized with a hardware system which has multiple regions 

where hardware accelerators can be instantiated at runtime 

via partial reconfiguration (PR). A runtime manager executing 

on the onboard processor is responsible for managing the 

FPGA resources and for communicating with the host over the 

PCIe. Users write applications that execute on the host CPU 

where some computations are accelerated by the FPGA. These 

parts are identified and provided to our toolchain to generate 

an FPGA application package which contains the bitstreams 

for the hardware accelerators and a scheduling program. The 

scheduling program is run on the onboard processor and is 

responsible for orchestrating the hardware accelerator execution 

by performing system calls to the runtime manager. The 

program can also utilize the low-latency access to data on 
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Fig. 2. Breakdown of the overhead components due to our infrastructure for 
aU our benchmarks. The total overhead is always less than 4%. 

the FPGA memory shared with the accelerators and perform 

additional computations. 

On the FPGA, memory accesses from onboard processor and 

accelerators in the PR regions are mediated by our virtualisation 

infrastructure. ID marker modules mark every bus transaction 

with an ID based on the application to which the corresponding 

master has been currently assigned. The ID is used by the 

page table and the ID filters to perform the virtual-to-physical 

address translation and to implement memory protection. 

The runtime manager is built on top of FreeRTOS, a simple 

open-source, multi-threading real time operating system [7]. 

We modified FreeRTOS' kernel in order to integrate it with 

our custom virtualization and protection hardware. 

III. DESIGN FLOW 

To easily generate applications, we extended our prior 

work to target this platform from high-level domain-specific 

language (DSL) specifications [8]. Alternatively, users can 

also provide high-level synthesis (HLS) or RTL specifications 

for the accelerators in the application. Our toolchain then 

automatically generates an FPGA application package which 

contains the accelerators partial bitstreams and the code for 

the onboard processor. Currently, the host CPU program is 

manually generated, but we plan to automate this in the future. 

IV. RESULTS 

To evaluate our approach, we implemented our infrastructure 

on a Xilinx VC709, which includes a Virtex 7 FPGA and 8 

GB of DDR3 memory, and used 3 benchmark applications. 

Firstly, we measured the execution time of each application 

on our new platform and compared it with a simpler system 

without any of the virtualization infrastructure and runtime 

manager. The results in Figure 2 show that the overhead is 

less than 4%, and is mostly due to the memory virtualization 

infrastructure that increased the latency of each bus transaction. 

Secondly, to analyse the benefits of simultaneously sharing 

the FPGA, we compared the execution time of a workload 

comprising the 3 benchmark applications on the novel and 

on the simpler system we used earlier for the overhead 

analysis. The applications execute sequentially on the simpler 

Fig. 3. Comparison between simultaneously sharing the FPGA with our 
runtime manager among multiple applications and serially providing exclusive 
use of the FPGA without PR. 

system since it does not have the infrastructure to share the 

FPGA among the applications. The results in Figure 3 clearly 

demonstrate the benefit of sharing the FPGA among multiple 

applications. If the time needed to reconfigure the FPGA is also 

considered, as seen in the figure, the performance advantage 

offered by our proposed architecture over the simpler system 

becomes even more evident. 

V. CONCLUSIONS 

To make FPGAs suitable for the cloud environment, we 

propose an environment that provides application developers 

with facilities such as memory management, virtualisation and 

a hardware abstraction layer. Our methodology also includes a 

design flow that enables developers to write FPGA-accelerated 

applications at different levels of abstraction, from low-level 

RTL to high-level DSLs. Our preliminary results show that 

FPGAs can be virtu ali sed with limited overhead and that 

sharing an FPGA enables to increase the effective area and 

bandwidth utilization of the board. 
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