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Abstract—A partially parallel low density parity check (LDPC) decoder
compliant with the IEEE 802.3an standard for 10GBASE-T Ethernet is
presented. The design is optimized for minimum silicon area and is based
on the layered offset-min-sum algorithm which speeds up the convergence
of the message passing decoding algorithm. To avoid routing congestion
the decoder architecture employs a novel communication scheme that
reduces the critical number of global wires by 50%. The prototype LDPC
decoder ASIC, fabricated in 90 nm CMOS, occupies only 5.35 mm2 and
achieves a decoding throughput of 11.69 Gb/s at 1.2 V with an energy
efficiency of 133 pJ/bit.

I. INTRODUCTION

To support the high data rates in recent wireline communication

standards, such as IEEE 802.3an [1] for 10 Gb/s communications,

error correction coding is mandatory in order to maintain communica-

tion with a very low error rate. The coding schemes adopted for such

applications are based on low density parity check (LDPC) codes,

since they perform very close to the Shannon limit once decoded

iteratively. Invented by Gallager in 1962 [2], these codes were initially

considered too complex for economic implementation and only the

availability of nanometer process technology has recently enabled

their integration into many important wireless and wireline commu-

nication standards. In fact, with the considerable integration density of

modern process technologies, the massively parallel message passing

decoding algorithm makes these codes particularly attractive for

applications that require very high throughput and are therefore ill-

suited for sequential decoding algorithms. Unfortunately, we shall

see that a fully parallel, straightforward VLSI implementation of an

LDPC decoder is still difficult to achieve.
1) Decoding algorithm: The (2048, 1723) LDPC code used in

10GBASE-T is defined by a sparse parity check matrix H that has

binary entries with its 2048 columns associated with the bits in a code

block and its 384 rows corresponding to parity check equations. For

decoding, the parity check matrix H is graphically represented by a

factor graph comprised of 2048 variable nodes (VNs) and 384 check
nodes (CNs). An edge exists between a check node j and a variable

node i if Hj,i = 1. Since the degree of each column of H in

the code under consideration is 6 and the degree of each row is

32, 12,288 edges exist in the corresponding graph. VNs hold the

intrinsic reliability of each bit Li initialized by the channel output

prior to the first decoding iteration. The message passing algorithm

iteratively exchanges messages between the VNs and the CNs along

the edges of the graph to update Li. To facilitate the processing

of the messages, the offset min-sum (OMS) algorithm is typically

used which is better suited for VLSI implementation compared to

the ideal sum-product algorithm. With the flooding schedule used

in previous high-throughput LDPC decoder implementations, all

CNs are processed before proceeding to process the VNs in each

iteration. This structure can easily be mapped to hardware by directly

instantiating and connecting all components of the factor graph.

Unfortunately, the large number of instances requires considerable

silicon area and the irregular interconnect between the VNs and CNs

defined by the parity check matrix leads to severe routing congestion.

A partially parallel approach reduces the number of CNs through

resource sharing, leading to more compact implementation, but more

clock cycles are required to complete a full iteration which makes it

more difficult to achieve high throughput.

2) Prior art: Blansky et al. [3] fabricated the first fully parallel

LDPC chip in 0.16 μm CMOS, achieving 1 Gb/s throughput with

50% silicon utilization, even with an optimized floor plan and manual

buffer insertion for a code that is less complex than the one specified

for 10GBASE-T. More recently, Mohsenin et al. [4] illustrated

the limitations caused by routing congestion in a straightforward

implementation with a reference design in 65 nm CMOS, which could

only route at 25% area utilization with a maximum throughput of

2.3 Gb/s. To overcome this limitation, Mohsenin et al. [4] proposed

a slightly sub-optimal algorithm that considerably reduces routing

complexity with a small penalty in the error-rate performance. More

on the architectural level, other authors [5] proposed to rely on bit-

serial arithmetic to reduce the combinational circuit area and the

number of interconnects by a factor equal to the word-length. The

technique was applied for an ASIC with a block size smaller than

the one specified for 10GBASE-T and synthesis results were reported

for a bit-serial 10GBASE-T compliant decoder that occupies a cell

area of 9.8 mm2 in 90 nm CMOS. On the negative side, bit-serial

arithmetic requires high clock frequencies and additional silicon area

for more sequential elements.

The partially parallel approach was employed by Liu et al. [6]

and Zhang et al. [7]. However, the design reported in [6] still has

only 50% area utilization and occupies 14.5 mm2 in a 90 nm process.

The chip described in [7] is fully 10GBASE-T compliant and has a

good silicon utilization above 80%. The design relies on a 7-stage

pipeline to mitigate the delay of the combinational logic and of the

interconnect. However, the necessary stall cycles have a negative

impact on throughput and the additional registers inflate the active

area.

Contribution: This paper presents a 10GBASE-T compliant LDPC

decoder that is optimized for minimum silicon area. In contrast to all

previous designs for 10GBASE-T that rely on a flooding schedule, we

employ the layered offset min sum algorithm [8] which offers faster

convergence and is inherently well suited for resource sharing. To

solve the routing congestion problem, we rely on a message broad-

casting architecture and we propose a novel full-duplex interconnect

that allows to reduce the number of global wires by 50%. With these
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techniques an area-efficient decoder can be fabricated relying only

on fully automated placement and routing without a detailed manual

floor-plan. The fabricated ASIC exceeds the throughput required by

the IEEE 802.3an standard, reaching 11.69 Gb/s and–to the best of our

knowledge–is the smallest fabricated LDPC decoder for 10GBASE-T

reported in literature when taking technology scaling into account.

II. LAYERED DECODER ARCHITECTURE

The basic idea behind layered decoding is that the 384x2048 parity

check matrix H can be partitioned into 6 partial parity check matrices

(layers) each of size 64x2048 with column-weight one. The partial

factor graph associated with each layer comprises only 64 instead

of 384 CNs, but all 2048 VNs. A layered schedule processes the

6 layers of the code sequentially to complete one iteration. From

an implementation perspective, this sequential processing enables

resource sharing for the CN processors since only 64 of them are

active at the same time. Compared to a partially parallel implemen-

tation of the flooding schedule, all VNs are always triggered after

processing each individual subset of CNs and not only after all CNs

have been processed. This expedites the convergence of the algorithm

(c.f., Fig. 4) and therefore partially makes up for the higher number

of cycles (six) required for a full iteration.

Fig. 1 depicts a sample 8 × 12 parity check matrix with two-

layer partitioning together with the corresponding high-level block

diagram. The depicted architecture instantiates only 4 CN processors

which are time multiplexed between the first and second layer. For

a 2 clock cycles per iteration schedule, the solid lines represent the

connections activated during the first cycle, while the dashed lines

represent the connections activated during the second cycle. Since the

partitioning into layers is done in such a way that each column of a

sub-matrix has a Hamming weight of one, each VN participates only

in one parity check equation in each layer. For the ith VN, we define

the Q-message Qi as the outgoing message and the R-message Rl,i

as incoming message in the lth layer. The layered decoding allows

to use the following simplified update rules for the computation of

all Q-messages and for the update of all R-messages and intrinsic

decoded values Li in the lth layer of each iteration

Qi = Li −Rl,i (1)

R̄l,i ← max

{
min

i′∈Pl,i/i
{|Qi′ |} − β, 0

} ∏
i′∈Pl,i/i

sgn(Qi′) (2)

L̄i ← Qi + R̄l,i (3)

In (1) to (3) the VN index i runs over all VNs and the sets Pl,i

contain the indices of the other bits (VNs) participating in the same

parity check as the ith bit in the same layer. The OMS parameter β is

chosen at design-time by means of simulations and is set to β = 1.0
for our implementation. For the algorithm to work, R-messages are

initialized with zero (Rl,i = 0) prior to the first iteration. Before

proceeding to the next layer (or to the next iteration if the last layer

was considered) Li and Rl,i are updated according to Li ← L̄i and

Rl,i ← R̄l,i.

A. High-level architecture and operation

The high-level block diagram of the layered 10GBASE-T LDPC

decoder is depicted in Fig. 2. The circuit is comprised of 2048

identical VN processors and of 64 identical CN processors.

The VN processors contain small memories to store the corre-

sponding R-messages Rl,i (l = 1 . . . 6) and a 7-bit register that

stores Li. Prior to decoding start, the Li registers are loaded with

the channel outputs in the form of 5-bit log likelihood ratios. In each

cycle, each VN processor computes a single Q-message according
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Fig. 1. Example of a structured parity check matrix and a corresponding
layered decoder architecture.
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Fig. 2. LDPC decoder high-level block diagram.

to (1) and sends the result to a CN processor through the routing
network. The CN processors are purely combinational. They compute

32 R-messages according to (2) and send them back to the VNs which

update Li by following (3).

We shall first describe the routing network and the distribution

of Q- and R-messages without the full-duplex routing described in

Section II-B. In this initial baseline configuration, routing of the Q-

messages and the multiplexing of the inputs of the CN processors

according to the current layer are realized using a tristate architecture

instead of area-consuming distributed full 6-to-1 multiplexers in each

of the 32 inputs of the 64 CNs. To this end, each VN has 6 output

ports (associated with the six layers) and each CN processor has

32 input ports. Each output port of a VN connects to inputs of

6 (different) CN processors. Hence, each input of a CN processor

is driven by more than one VN processor, but in each cycle only

one (selected according to the current layer) is driving. For the

distribution of the R-messages in reverse-direction, the CNs broadcast

each of their 32 outputs to one of the inputs of six (different) VNs1.

Depending on the current layer, then each VN can locally select the

correct input.

B. On Chip Global Interconnects

The above described routing network and multiplexing structure

for layered decoding already leads to a considerable reduction of

the routing congestion compared to the interconnect of a fully

parallel implementation of the flooding schedule. However, dedicated

resources are still required to route messages from VNs to CNs and

back with the same source/destination pair.

To avoid this overhead, we propose to send Q- and R-messages in

forward and backward direction on the same physical wire between

1Compared to the fully parallel architecture, this message broadcasting
inherent to the partially parallel approach reduces the number of global
nets, which was shown to be advantageous in the context of global routing
congestion [9] (though for a different LDPC decoder circuit topology).



a VN and a CN during the high- and the low-phase of the same

clock cycle, respectively. This scheme further reduces the number of

global nets in the routing network by 50%. To implement this idea,

we shorten corresponding input and output ports in the VNs, we add

tristate drivers to the outputs of the CNs and also shorten them to the

corresponding inputs as illustrated in Fig. 3. To control the access to

the shared wire during the two phases of the clock, the enable signal

of the tristate drivers in the VNs and in the CNs are controlled by a

copy of the clock signal which can be shifted to optimize the timing

of the overall circuit. Additional latches are needed in the CN to

hold the computed R-messages (and to avoid a combinational loop)

during the low-phase of the clock in which the inputs of the CNs are

no longer driven by the connecting VNs, but by their own outputs.

C. Variable Node Processor

A detailed block diagram of a VN processor is depicted in Fig. 3.

In each cycle, the associated Li is launched by flip-flops and the

corresponding 4-bit R-message Rl,i is subtracted with saturation to

obtain a 4-bit Q-message Qi. The local 6 × 4-bit R-memory is

implemented using latches in a master-slave configuration, where the

slave is shared across the 6 storage words since it is located after

the output multiplexer. Write access is controlled by gating the clock

signal with a one-hot encoded, glitch-free address input generated

by a local 6-bit shift register that keeps track of the current layer.

The same shift register also controls the access to the 6 merged

input/output ports of the VN during the high-phase of the clock,

always enabling only one-at-a-time to avoid driving conflicts between

multiple VNs connected to the same port of the same CN. While the

shift-register could in principle be shared across multiple VNs, we

include a separate instance per VN to reduce the capacitive load and

to simplify timing closure in the backend design.

D. Check Node Processor

The detailed CN block diagram is also depicted in Fig. 3. The

corresponding circuit receives 32 Q-messages in each clock cycle

and computes both the minimum and second minimum of the corre-

sponding absolute values. The minimum finder has been implemented

according to the tree structure proposed by Wey et al. [10]. Since

this part of the datapath constitutes a considerable part of the critical

path, we provided a gate level description to guide the synthesis

engine. The outgoing 32 R-messages are obtained by comparing the

minimum to each input and by selecting the second minimum only

for the output for which the comparison is equal. The sign datapath

computes the correct sign for both minimum and second minimum.

The latches required for the full-duplex routing are placed within the

CN processor datapath such that the area-penalty is minimized.

III. CHIP IMPLEMENTATION

The physical implementation of the proposed decoder presents

unique challenges due to the still significant number of global wires,

the tristate interconnect, and the need to control the timing of the

various clock gates and the full-duplex routing. Nevertheless, the

design was fully implemented using a conventional standard cell

library, without the need for custom components or in house EDA

tools beyond a few scripts. The decoder was generated from a VHDL

description. Since the 2048 CNs and the 64 VNs are identical, a

bottom-up approach was used for synthesis with a timing budget

that was carefully optimized to meet the 10GBASE-T throughput

requirement with margin, but without sacrificing too much area

to obtain the highest possible speed. Note that significantly faster

implementations can be obtained at the expense of area with the

same architecture by using more stringent timing constraints during

synthesis.
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Fig. 3. CN and VN processors detailed schematic. The routing scheme
among CN and VN is depicted.

A. Physical Design

The backend design was carried out using CAD tools from

Cadence. Due to the large amount of identical blocks repeated on

chip, a hierarchical placement and routing is expected to provide

the best results. However, many design iterations are required before

reaching a feasible floor-plan. Hence, a flat placement and routing

approach has been adopted due to the good quality of results produced

in the final layout.

With the chosen wordlengths, the final design contains a total of

49,156 full-duplex wires. The drawback of our tristate approach is

that the wire delay grows rapidly with the length of the wire since

buffer insertion is not possible. Furthermore, the automatic tools

fail to properly size the tristate-drivers during timing optimization.

As a remedy, we rely on the placement engine to minimize the

wire-length by placing the VNs and the corresponding CNs in

close proximity to each other, specifying routability as primary

optimization objective. After placement, approximately 5% of the

global wires still have a large capacitance, ranging from 200 fF up

to 800 fF. As a consequence, gates directly connected to these nets

exhibit a transition time of up to 800 ps and a maximum propagation

delay of up to 2 ns. We handle this problem by resizing all the

tristate buffers, using the available drive strengths in the cell library

according to the net capacitance observed during the trial-routing

phase. For short nets which are not on the critical path and do not

violate transition-time constraints, minimum-size buffers are used to

reduce the pin capacitance of the control network and to minimize

active area. To avoid large cross current in the tristate buffers, the

skew existing between tristate-enable pins has been reduced to 120 ps.

B. Implementation Results

1) Error-rate performance: The fixed-point error rate performance

of the implemented circuit is shown in Fig. 4. Monte-Carlo simula-

tions show that with only 4 iterations (thanks to the layered schedule)

our fixed-point design operates within 0.2 dB of the ideal floating-

point SPA algorithm with 20 iterations. With 6 iterations the gap is

closed further to merely 0.1 dB.

2) ASIC Measurements: The ASIC has been fabricated in a 90 nm

CMOS process. Out of 10 packaged samples, 8 were fully functional.

The maximum operating frequency and power measurements were

performed with HP83000 automatic test equipment, and correct

operation was verified under different channel conditions with the

Eb/N0 ranging from 2 dB up to 5 dB. The die photograph of the chip

is shown in Fig. 6. Table I summarizes our measurement results.

The design operates at a maximum frequency of 137 MHz at 1.2 V.

The number of iterations is programmable and can be loaded before
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TABLE I
SUMMARY OF THE MEASURED RESULTS FOR THE (2048,1723) IEEE

8023.AN LDPC DECODER.

Technology UMC 90 nm
Core Area 1.56 x 3.43 mm

Core Utilization 84.4%
R-message Word Length 4-bit
Q-message Word Length 4-bit

L Word Length 7-bits
R Storage 48-Kbit
L Storage 14-Kbit

Decoding Algorithm Layered OMS

Supply (V) 1.2 0.8
Throughput @ 4 iter. (Gb/s) 11.69 7.23

Clock Speed (MHz) 137 84.7
Power @ 3db SNR (mW) 1559 386.8

Leakage Power (mW) 40.80 18.52
Energy Efficiency (pJ/bit) 133.37 53.49

starting the decoding process. For our measurement the iteration

count has been set to four, since it is sufficient to provide excellent

correction capabilities. The overall throughput is 11.69 Gb/s and

the power consumption is 1.56 W. This corresponds to an energy

efficiency of 133 pJ/bit. Due to the fixed silicon area required for

chip fabrication, we did not include an early termination unit. This

technique could be applied to the proposed architecture with small

area overhead resulting in an average decoding throughput above

40 Gb/s in the high Eb/N0 regime. Fig. 5 shows the effect of scaling

the decoder’s supply voltage on its maximum decoding throughput

and the corresponding power consumption. Scaling down the voltage

is an efficient technique to improve energy efficiency. As highlighted

in the plot, at 0.8 V the chip can still reach 7.23 Gb/s, with an energy

efficiency of 53.49 pJ/bit.

IV. CONCLUSION

This paper presents an LDPC decoder ASIC that is compatible

with the 10GBASE-T standard. The manufactured circuit provides a

throughput of 11.69 Gb/s with a silicon area of 5.35 mm2 in 90 nm

CMOS. Good area-utilization and high-throughput are concurrently

achieved by using a layered decoding scheme that facilitates resource

sharing and reduces the number of decoding iterations. The routing-

congestion problem has been solved by reducing the number of global
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nets using a tristate routing network and with a novel full-duplex

communication scheme that further improves area utilization. Both

techniques are not specific to the code under consideration and can

also be applied to decoders for other regular LDPC codes.
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