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Abstract—Field Programmable Gate Arrays (FPGAs) are very
versatile devices, but their complicated programming model
has stymied their widespread usage. While modern High-Level
Synthesis (HLS) tools provide better programming models, the
interface they offer is still too low-level. In order to produce good
quality hardware designs with these tools, the users are forced
to manually perform optimizations that demand detailed knowl-
edge of both the application and the implementation platform.
Additionally, many HLS tools only generate isolated hardware
modules that the user still needs to integrate into a system design
before generating the FPGA bitstream. These problems make
HLS tools difficult to use for application developers who have
little hardware design knowledge. To address these problems, we
propose an automated methodology to generate FPGA bitstreams
from high-level programs written in Domain-Specific Languages
(DSLs). We leverage the domain-knowledge conveyed by the
DSL and its domain-specific semantics to extract application
parallelism, perform optimizations and also identify a suitable
system-architecture for the implementation, thereby, relieving the
user from most of the hardware-level details. We demonstrate the
high productivity and high design quality this approach offers
by automatically generating hardware systems from applications
written in OptiML, a machine-learning DSL. To evaluate our
methodology, we use four OptiML applications and show that
we can easily generate different solutions which achieve different
trade-offs between performance and area. More importantly, the
results reveal that our generated hardware achieves much better
performance compared to the one obtained from using the HLS
tool without platform-specific optimizations.

I . I N T R O D U C T I O N

Field Programmable Gate Arrays (FPGAs) can be configured
into highly parallel, application-specific architectures that, for
some applications, can offer high performance and a better energy
efficiency compared to processor-oriented architectures, such
as multi-core CPUs or GPUs [1]–[3]. But, their complicated
programming model, the most popular one today still being to
start from a Register Transfer Level (RTL) specification, has
restricted their accessibility to application developers who have
little hardware design knowledge. Today, High-Level Synthesis
(HLS) tools provide a more convenient programming model by
starting from specifications in a high-level language, like C, C++
or SystemC. However, to develop high-quality designs using these
tools, the user still needs to manually perform optimizations that
require a detailed knowledge of the tool, the generated hardware

1 void(int* mem){
2 mem[512] = 0;
3 for(int i=0; i<512; i++)
4 mem[512] += mem[i];
5 }

(a) Unoptimized HLS Program; Execution Time = 27,236 clock cycles

1 // Width of MPort = 16 * sizeof(int)
2 #define ChunkSize (sizeof(MPort)/sizeof(int))
3 #define LoopCount (512/ChunkSize)
4 // Maximize data width from memory
5 void(MPort* mem){
6 // Use a local buffer and burst access
7 MPort buff[LoopCount];
8 memcpy(buff, mem, LoopCount);
9 // Use a local variable for accumulation

10 int sum=0;
11 for(int i=1; i<LoopCount; i++){
12 // Use additional directives where useful
13 // e.g. pipeline and unroll for parallel exec.
14 #pragma PIPELINE
15 for(int j=0; j<ChunkSize; j++){
16 #pragma UNROLL
17 sum+=(int)(buff[i]>>j*sizeof(int)*8);}}
18 mem[512]=sum;
19 }

(b) Optimized HLS Program; Execution Time = 302 clock cycles

1 // Here, data_array is an array of 512 integers.
2 // sum adds its elements and the stores back the result
3 val result = data_array.sum()

(c) DSL Program; Execution Time = 368 clock cycles

Fig. 1. Comparing optimized HLS, unoptimized HLS and DSL specifications. All
three programs produce hardware to perform the same computation. The optimized
specification leverages on a detailed knowledge of the HLS tool, the resulting
hardware and the implementation platform while performing optimizations to
improve the performance. The DSL code is much simpler to express and yet
provides comparable performance.

design and the implementation target, which prevents the adoption
of these tools by application developers.

To illustrate this, consider designing a simple hardware unit to
add 512 integers held in an external memory and store back the
result. This can be synthesized using an HLS tool from the C++
program shown in Figure 1a. But, by not specifying the details
of the underlying system architecture, such as the maximum



data-width of the memory interface, the communication modes
on this interface (burst mode vs. individual accesses) and the
available parallelism in each data word from memory, and by not
using the features in the HLS tool to exploit this parallelism, the
generated hardware is extremely inefficient. Hardware generated
from this code with the highest level of optimization using Vivado
HLS (2013.4) [4] needed 27,236 clock cycles on our test platform
to complete the computation. To achieve good performance, the
developer needs to consider all these aspects and write the more
complex program shown in Figure 1b, which generates a hardware
to complete the same task in 302 clock cycles. Moreover, many
HLS tools will only synthesize these programs into IP modules
and not handle their external connections to board-level interfaces
and peripherals, like the instantiation of the memory controller
and the connection to the external memory in our example. This
forces application developers to make these connections manually
and sometimes even generate the additional clock and control
signals needed for this IP module to obtain a complete design. So,
while HLS tools are capable of generating good quality designs,
in practice they are difficult to use for application developers
who often lack the necessary hardware design skills.

In order to overcome these limitations, we propose an
automated methodology to generate complete hardware systems
from programs written in a high-level Domain-Specific Language
(DSL). In this methodology, we leverage the awareness of the
application domain obtained through the DSL and its domain-
specific semantics to perform optimizations as well as to map
the domain operations into a set of structured computation
patterns, such as map, reduce, foreach and zipwith. Since
these computation patterns are few and well understood, we
can have premeditated strategies to optimize them and generate
high-quality hardware modules to implement them. For instance,
the DSL code in Figure 1c is simple to express for the application
developer and it will be mapped to a reduce pattern. This enables
us to automatically generate a program that is similar to Figure 1b,
and, thereby, obtain a hardware module to perform the same
computation in 368 clock cycles1. Furthermore, since the scope of
each DSL is limited to a specific application domain, we can have
a set of predefined system-architecture templates that are suitable
for applications in that domain. By utilizing these templates, we
can autonomously interconnect the different hardware modules
in the application, generate necessary control signals, and obtain
a complete design that is ready for FPGA bitstream generation,
thereby, saving the application developers from having to meddle
with hardware level details.

The rest of the paper will discuss the details of this proposed
methodology, starting with a general overview in Section II. We
will take a look at the compiler infrastructure we use in Section III
and then discuss our hardware generation process in Section IV
along with some of the optimizations we perform to obtain
high-performance designs. In Section V, we will first evaluate the
quality of our generated computation patterns using a set of micro-
benchmarks and then assess the overall effectiveness of our flow
using four applications written in OptiML [5], a high-level DSL
for machine learning. The results reveal that our optimizations
significantly improve the performance of the generated hardware
designs. Furthermore, comparison with a laptop CPU shows that
the generated hardware achieves reasonable performance and a

1The performance of the automatically generated module is slightly lower
compared to the one obtained from Figure 1b because it is more generic and
designed for handling reductions of larger sizes.
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Fig. 2. Overview of the methodology. This figure illustrates how the high-level
specifications in a DSL is compiled and then automatically transformed into a
hardware system that can be implemented on an FPGA.

better energy efficiency. We discuss related work in Section VI
and Section VII concludes the paper.

I I . OV E RV I E W O F T H E M E T H O D O L O G Y

Our automated methodology accepts an application program
written in a high-level DSL and generates a complete hardware
design that can be directly programmed on the target FPGA.
Figure 2 illustrates the different steps in this process. In
this methodology, the high-level DSL used by the application
developer offers both high productivity and shields the developer
from the hardware-level details. Our compiler infrastructure,
indicated as A in the figure, optimizes programs written in this
DSL by performing both general purpose optimizations, such as
common subexpression elimination and dead-code elimination,
and domain-specific optimizations, such as applying linear algebra
simplification rules, based on the domain of the DSL. In our
approach, this domain-knowledge is also utilized to select a
suitable system-architecture template for the final hardware
implementation. This template, which takes inspiration from the
platform designs used by Cong et al. [6], defines how the various
hardware components in the final design will be interconnected.
After optimization, the compiler maps the operations in the
application program into serial and parallel computational patterns,
called kernels, and represents this program as a dependency-graph
between these kernels.

The hardware generation starts with kernel-synthesis, marked
as B in the figure, that takes the kernels in the application
program and generates isolated hardware units to perform the
equivalent computation. As shown in the figure, this step gets
information about the interfaces to the kernels and the shared
components in the system from the system-architecture template
and the target-configuration provides it with additional details
specific to the FPGA used as the implementation target. For



each kernel, the kernel-synthesis step produces multiple hardware
implementations, which we call variants, that achieve different
trade-offs between area and performance. Generating multiple
variants is essential in order to enable the subsequent system-
synthesis step to compose a system design that will achieve good
performance and fit within the resource constraints of the chosen
FPGA. System-synthesis, indicated as C in the figure, uses the
information from the system-architecture template to assemble
the complete system design. During this step, the program’s
dependency-graph from the compiler is used to generate the
control circuitry for the system, and the target information is
used to know the capabilities of the chosen FPGA to ensure
that the generated design can be implemented on it. After the
system-synthesis generates the final system design, a standard
FPGA tool flow is used to generate the bitstream and program
the FPGA.

I I I . C O M P I L E R I N F R A S T R U C T U R E

We implemented our compiler infrastructure, indicated as A
in Figure 2, by extending the Delite [7] compiler framework.
Delite is an extensible compiler framework to easily develop
DSLs targeting heterogeneous systems. The main idea of Delite
is to provide DSL developers with a set of structured computation
patterns and data structures that can be extended to implement
domain operations and data structures. Delite currently supports
computation patterns such as map, reduce, zipwith, foreach,
filter, group-by, sort and serial2 and data structures such
as scalar datatypes, array, struct and hashmap. The structured
nature of Delite components enables parallelizing and optimizing
DSL programs for different architectures such as multi-core
CPUs or GPUs. Additionally, DSL developers using Delite can
easily add domain-specific optimizations that leverage the domain-
knowledge and automatically get generic optimizations such as
loop fusion and data structure transformations that further improve
the performance. The output of compiling a DSL program with
Delite are a set of computation pattens (kernels) generated for
the target architecture and a dependency-graph between these
kernels.

In order to generate hardware from this DSL program, we
generated hardware units to implement the kernels found in the
program and used the dependency-graph to generate a controller
that guarantees that these kernels are executed in a valid order. We
will discuss this in detail in Section IV. In order to demonstrate
our approach, we use applications written in OptiML [5], a
machine learning DSL implemented using Delite. Among the
Delite components OptiML supports, we currently limit ourselves
to the most widely used computation patterns (map, reduce,
foreach and zipwith) and data structures (scalar datatypes
and array). Since Delite allows composing the components in
different ways, interesting applications can still be written with
the limited set we currently support for FPGA. One thing to
note, however, is that our approach is not limited to OptiML and
can be applied to other DSLs using Delite or a similar compiler
infrastructure.

I V. H A R D WA R E G E N E R AT I O N

In this section, we will discuss how the kernels extracted
from the application and its associated dependency-graph are
automatically transformed into a hardware design.

2serial is for non-structured computations that cannot be parallelized.
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Fig. 3. This figure shows the system-architecture template used for hardware
systems generated from OptiML applications. The annotations in the figure are
some of the specific details this template provides to the hardware generation
process.

A. System Architecture Template
The hardware design generation starts with the selection of

a system-architecture template by the compiler. This template
delineates the various components and interfaces available in the
final system as well as their interconnections. Hence, it provides
a general outline based on which the hardware for the application
will be generated. Each template is composed of two parts: the
fixed subsystem, which remains constant for every application
using that template, and the flexible subsystem, which changes
from one application to another. Figure 3 shows the system-
architecture template that is used for all OptiML applications.
Here, the fixed subsystem, is composed of components that
include a soft-core processor, on-chip memory, external memory
controller, and connections to the DRAM, UART and JTAG
interfaces. The flexible subsystem of this template defines how
the kernels in each application will be connected to the rest of
the system and how the control infrastructure will be generated.
Although we currently use this single system-architecture template
for all OptiML applications, the methodology supports having
multiple templates and then the selection of the specific template
is up to the DSL developer.

B. Kernel Synthesis
The kernel-synthesis step generates hardware modules that

implement the kernels (computation patterns) in the application;
it is marked as B in Figure 2. As shown in the figure, the
inputs to this step are the list of kernels from the compiler,
and the information about the hardware system to design from
the system-architecture template and the target-configuration.
The system-architecture template provides details, such as the
number of data-ports to each kernel, communication protocols on
these ports, shared memories in the design and address range for
these memories, that are necessary to ensure that the synthesized
kernels will function correctly and can be easily integrated into
the final design. The target-configuration specifies additional
details, such as the sizes of the available memories, the width of
the port, that help to tailor the generated kernels to the specific
FPGA used in the implementation.

OptiML applications contain multiple serial and parallel
kernels. Among them, the serial kernels offer only limited
opportunities for acceleration using custom hardware. Therefore,
we map all the serial kernels in the application to the soft-core
processor in order to share implementation resources among them.
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Fig. 4. Optimizations applied to the kernels. The unoptimized kernel access
each data element separately and, therefore, has a low effective bandwidth to the
data (a). When accesses are sequential, we can improve this bandwidth using
burst transfers by adding a local cache (b) or by using local buffer and a buffer
manager (c). To benefit from this improved bandwidth, we need to generate the
kernel differently to correctly leverage the available data parallelism (d).

The parallel kernels, however, can benefit greatly from custom
hardware that can aptly exploit the available parallelism. Moreover,
in typical OptiML applications, these parallel kernels dominate the
overall execution time. Since these parallel kernels are generated
from a limited number of computational patterns used in the
compiler, we can have premeditated strategies to generate high-
quality hardware implementation for them. Although the set of
computational patterns are small, actual computation and data
access properties in the kernels will still vary significantly from
one application to another. Additionally, in the kernel, these
patterns can be nested within one another or fused together after
the optimizations done by Delite. Due to this variability, we
cannot use fixed templates for each pattern. Instead, we perform
compiler analysis and optimizations to produce code for an HLS
tool that will generate a high-quality design.

Kernel Optimization. For the parallel kernels we synthesize,
we can apply generic optimizations, such as loop-unrolling and
loop-pipelining, to generate parallel hardware. But, to generate
high-performance designs, we need to analyze the properties
of the individual kernels and perform additional optimizations.
For instance, consider this single line of an OptiML program
z = (x + y).sum(). In this program, x and y are large array
data structures stored in the external memory and the hardware
generated from this line will read these data-structures sequentially,
sum their elements and store the result as z. Since the data in x
and y are accessed over a shared bus, each access entails overhead
due to the bus protocol and the latency of the memory. However,
since the kernel accesses these data structures sequentially, we can
use burst communication to reduce this overhead. To implement
this, we first analyze the data access pattern of each data structure
in the program and add a local cache to those that are accessed
sequentially, x and y in this example. Now, data requests from/to
these data-structures are served from the local cache and, in
the event of cache-miss, the cache is filled/flushed using burst-
transfers from/to the memory; this is depicted in Figure 4b.

However, having to check for cache hit/miss on every access
will incur some performance overheads. To avoid this cache
lookup overhead, we can perform a more detailed analysis of
the access patterns, and use this information to replace the cache
with a simple local buffer and an associated buffer manager, as
shown in Figure 4c. The difference between the two is that buffer
manager knows the access pattern to the data structure and uses
this information to move the data from/to the buffer without
checking on each access. In our example, the buffer manager

systematically transfers chunks of data from x and y into the
local buffers and makes it available for the computation.

We will still not get the most out of this higher data bandwidth
by only depending on optimization directives in the HLS, like
loop-unrolling or loop-pipelining. To obtain better throughputs,
in addition to using these directives, we need refactor the kernel
computation into multiple units that are specialized to exploit
different amounts of parallelism in the data; this is the same
as the loop-sectioning optimization done for SIMD processors.
After applying this optimization, as shown in Figure 4d, the
generated hardware uses dedicated parallel processing units when
the input data has sufficient parallelism to improve the overall
processing throughput. In our example, the parallel processing
unit will read small blocks of data from the local buffers of x
and y, and use a balanced reduction tree to compute the result.

All the discussed optimizations serve to improve the perfor-
mance of the hardware kernels, but they also consume more
resources. To implement an application on the FPGA, we need
to ensure that all its constituent kernels will fit within the
limited resources on the device. To achieve this, during kernel-
synthesis, we generate multiple hardware variants for each kernel
in the application by applying these optimizations in different
combinations. The selection of the specific variant to use in the
final design is deferred until the system-synthesis step.

Data management. Hardware kernels generated from Op-
tiML use scalar datatypes or array data structures to exchange
data with each other. Among them, the scalar datatypes have
well known sizes and the space needed to store them is much
lesser than the available on-chip memory capacity. So, they are
statically allocated in a shared on-chip memory to reduce the
data-access latency and make it easy to access this data from
the different kernels. In the case of the array data structure,
it is internally composed of a small amount of metadata and a
contiguous block of raw-data. The size of this metadata is fixed
and known at compile-time and, therefore, it is statically allocated
in the on-chip memory. The raw-data, however, is typically very
large and its size is known only during the runtime. Therefore,
it needs to be dynamically allocated in the larger shared external
memory during the application execution. To perform dynamic
allocation, this external memory is managed as a single circular
buffer with fresh allocations happening from the tail of this buffer
and deallocation from its head. To dynamically allocate memory
from the kernels, the tail-pointer, which is the current address
of the tail of this buffer and always points to first free location
in the memory, is stored in the shared on-chip memory. During
application run, each kernel allocates memory starting from the
current value of this tail-pointer and updates its value. Memory
deallocation is handled by the control circuit that is aware of the
full context of the executing application and, therefore, knows
when the data structures can be safely deallocated. Dynamic
memory management is covered in more detail in the following
subsection, when discussing the control circuit generation.

C. System Synthesis
The system-synthesis step, indicated as C in Figure 2, has

three responsibilities: (1) selecting the kernel variants to use in the
design, (2) interconnecting them to the other system components
and interfaces, and (3) generating the control circuitry to complete
the hardware design. The system-architecture template, which
for OptiML applications is shown in Figure 3, provides this step
with the information needed to generate the fixed subsystem
and the strategy for generating the flexible subsystem. The



target-configuration contains information about the resources
on the target (e.g. LUTs, DSP blocks, BRAMs), the target-
specific IP modules (e.g. DRAM controller, on-chip memory,
soft-core processor) to use as well as their individual configuration
parameters. As noted earlier, the kernel-synthesis generates
multiple variants for each kernel and the system-synthesis selects
the specific variant to use in the generated hardware system.
Ideally, this variant selection is perfomed using a cost model
that considers the estimate of performance and area overhead
for each variant. However, our current implementation still lacks
this feature and always selects the highest performing variants.
As an interim solution, we provide an option to override this
selection by supplying additional parameters to this step.

Control Circuit Generation. The control circuit for the
hardware design is automatically generated from the dependency-
graph of the application obtained from the compiler. This circuit
performs two essential tasks: scheduling the kernel execution
and freeing the dynamically allocated memory. To schedule the
kernel execution, the dependency-graph of the application is
analyzed to determine the control and data dependencies among
the kernels. Based on this information, the generated schedule tries
to maximize the performance by executing multiple kernels in
parallel, when possible. In order to free the dynamically allocated
memory, during the application execution, the control circuit
keeps track of the amount of memory used by each kernel. To
achieve this, since the dynamically allocated memory is managed
as a circular buffer, the control-circuit keeps track of the updates
to the tail-pointer, which is the shared pointer that points to the
first free location in the memory. By knowing how the value of
the tail-pointer changes after each kernel execution, the control
circuit can determine the block of memory used for storing that
kernel’s data. Additionally, by analyzing the data dependencies in
the application’s dependency-graph, the lifetime of this data can
be determined. With this information, the schedule for freeing
memory blocks is statically determined and generated into the
control circuit. Moreover, since the control circuit is always aware
of the amount of memory used by the application, it can detect
memory overflows and terminate the application execution. For
OptiML applications, this control circuit is implemented using the
soft-core processor that executes the sequential kernels. Hence, the
complete program for this soft-core processor is generated during
the system generation step. To control the kernel execution from
this processor, the system-architecture for OptiML applications,
shown in Figure 3, includes a control interface module in its
flexible subsystem.

V. R E S U LT S A N D D I S C U S S I O N

In this section, we will first evaluate the benefits of the
optimizations discussed in Section IV. Then, we will use four
OptiML applications to illustrate the range of solutions, with
different performance and resource utilizations, we can generate
easily from our tool. Additionally, to provide a broader perspective
on the quality of the generated hardware systems, we will compare
their performance and energy efficiency with running the same
applications on a laptop CPU.

Evaluation Setup and Methodology. All the hardware
designs generated using the proposed methodology were written
as OptiML applications. These were compiled using the Delite
compiler which we modified for the purpose of generating
hardware. During the compilation, the kernel-synthesis step
generates multiple variants for each parallel pattern in the

application that are then synthesized into hardware using Vivado
HLS (2013.4) [4]. The system-synthesis step then automatically
generates the final hardware design using specific kernels variants
that we select. This step also generates the code for the soft-core
processor in the design that executes the sequential kernels and
controls the overall hardware execution flow. To measure the
performance of the generated designs, they were synthesized into
a bitstream using Xilinx Vivado Design Suite [8] and implemented
on a Xilinx VC709 development board that houses a XC7VX690T
FPGA that was fabricated with a 28nm process. It is worth
noting that due to addressing limitations of the 32-bit soft-core
processor in the design, only 2GB out of the total DRAM on
the board was available to the hardware design. The hardware
energy consumption values reported are based on the worst-case
estimates obtained from the Vivado Design Suite. It includes both
the static and dynamic energy consumed in all the components
implemented on the FPGA, like the kernels in the application,
the soft-core processor, local memory and the DRAM controller.

To measure the performance on the CPU, we manually
implemented each application in C++ and used OpenMP API [9]
for multi-threaded execution. The execution time and energy
consumption were then measured by running these applications
on an Intel Sandy Bridge Core i7-2620M laptop CPU running
at 2.7GHz and fabricated with a 32nm process. The energy
consumption was measured using LIKWID performance tool [10]
and it includes the energy expended in the CPU package, which
also includes the on-chip DRAM controller.

Micro-benchmarks. To understand the benefit of the pro-
posed optimizations, we consider three patterns (map, reduce
and foreach) separately and study how their performance and
resource usage are affected by these optimizations3. For each
case, we additionally consider the different alternatives that
can be generated by applying generic optimizations, like loop-
unrolling and loop-pipelining, to see how this would impact the
results. Since the proposed optimizations only target sequentially
accessed data structures, we use an array of 10 million integers
which is accessed sequentially from each of these patterns. In
the map and foreach patterns, we increment the elements in
this array by a constant value and store them back into the
memory4. In the case of the reduce pattern, we add up all the
elements in the array to produce a single value which is then
stored into the memory. Figure 5 reports the results from this
evaluation. In all three cases, the hardware generated without
applying any optimization needs the least resources, but also has
lowest performance. More importantly, the data-points in the gray
regions of the figure show that using generic optimizations like
loop-unrolling and loop-pipelining on this unoptimized version
has little effect on the performance. This is because applying these
optimizations creates parallel processing resources, but without
additional information the HLS tool performs each memory
accesses sequentially providing no performance improvement
in the map and the foreach and only minor improvement in
the reduce. This demonstrates that blindly applying generic
optimizations without considering the hardware-level details may
not produce better results. The results further show that adding a
local cache to each sequentially accessed data structure and using
burst transfers helps to improve the performance significantly.

3We do not consider the zipwith pattern separately because it is also
implemented in hardware using the map pattern

4The difference between these patterns this is that map creates a new array as
output while foreach overwrites an already existing one
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Fig. 5. Performance-area trade-off between the different variants. The proposed optimizations progressively improve the performance of the generated kernels, but
they also consume additional resources. In all cases, the local buffer + loop-sectioning variant has the highest performance and the unoptimized variant uses the lowest
area. The data-points in the gray region reveal that using general-purpose optimizations (loop-unrolling, loop-pipelining) alone does not yield substantial improvement.
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Fig. 6. The performance and resource utilization of the minimum area design
and the highest performing design are compared to illustrate the range of designs
satisfying different performance-area trade-offs the tool can produce. The designs
employing only the soft-core processor is used as reference to understand the
relative speeds and area overheads of the automatically generated designs.

But, by using a local buffer along with a buffer manager instead
of the cache, we can achieve even better performance with less
resources. The performance improves from avoiding the cache
lookup overhead on each access, and the resource usage is lowered
because the buffer manager is simpler to implement, due to its
statically determined memory transfers, compared to the dynamic
cache control logic. The highest performance in all three cases
is obtained when the local buffer and buffer manager are used in
conjunction with the loop-sectioning optimization, which achieves
between 180 to 290 times speedup over the unoptimized case.
This is because the loop-sectioning creates blocks with fixed
amounts of parallelism which the HLS tools can schedule more
optimally and, thereby, obtain higher performance.

Application Benchmarks. We performed the full system
evaluations using the following four OptiML applications that
utilize the features we currently support for hardware generation.

• Nearest Neighbor application finds from a set of data-points
the one that is closest to a given point.

TABLE I. D ATA - T Y P E , C O M P U TAT I O N PAT T E R N S A N D
H A R D WA R E K E R N E L C O U N T I N E A C H A P P L I C AT I O N

Application Datatype Map/ Reduce Foreach Hardware
Zipwith3 Kernels

Nearest Neighbor integer 3 1 0 2
1-D Correlation float 8 5 0 4
Outlier Counter integer 4 2 0 2
1-D Normalization integer 1 2 1 3

• Outlier Counter application uses the criterion proposed by
Knorr and Ng [11] to count outliers in a given data-set.

• 1-D Correlation computes the cross-correlation between two
large data-sets.

• 1-D Normalization applies a linear transforms to a given
data-set to fit it within a provided upper and lower bounds.

Table I lists the datatype, the parallel patterns and number
of separate hardware kernels in each of these applications. The
number of hardware kernels is always lower than the number of
computational patterns since Delite’s optimizations fuse multiple
independent patterns into a single more complex kernel.

To illustrate the range of solutions we can generate, for each
application we generate two specific hardware implementations:
one that uses the least resources and another that achieves the
highest performance. In order to pick the kernel variants for
these implementation, we use the insights obtained from Figure 5
and provide parameters to the system-generation step to select
variants with the lowest resource usage for one and the those
producing the highest performance for the other. In the case of
the high-performance design, however, for some applications we
had to use a lower performance variants when the HLS tool
failed to generate the high performance variants meeting the
timing/resource constraints of the target FPGA. Figure 6 compares
these two implementations. To serve as reference, we used a
manually developed design that executes the same application only
using the soft-core processor. The results show that the design
using the lowest resources is between 1.7 to 2.9 times faster than
the processor-based implementation while using slightly less than
twice the amount of resources. Additionally, from Figure 5, we
see that all the minimum area variants are generated without any
additional optimizations. Therefore, this design also represents
the performance one can expect by naïvely using the HLS
tool without any additional optimizations. The high-performance
solution, on the other hand, can achieve between 34 to 398
times the soft-core processor’s performance, albeit by using more
resources. Comparing across applications, the highest speed-up is
obtained in the nearest-neighbor and normalization applications
which uses fixed point representation and have simple kernels
that enabled us fit all the highest performing kernel variants on
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Fig. 7. The CPU achieves better execution performance compared to the FPGA.
However, considering energy efficiency, the FPGA outperforms the CPU in all
applications dominated by fixed-point computation.

the FPGA. The lowest speed-up is for the correlation application
that performs floating-point computations which are not very
efficient to implement on an FPGA. These results show that our
methodology can easily generate a variety of different solutions
from a high-level DSL program that achieve different trade-offs
between performance and resource usage. More importantly, it
demonstrates that by decomposing the application into a set of
well understood computation patterns, we can generate high-
performance hardware systems.

To provide an insight into performance and energy efficiency
of the generated solutions, we compare the highest performing
design with a laptop CPU. The results on Figure 7 shows
that when we use the highest-performing variants, like in the
case of nearest neighbor and normalization, FPGAs execution
performance is quite close to the single-threaded execution on the
laptop CPU. This performance gap increases in the outlier counter
application because of using lower performing variants, and in
the correlation application due to the low performance of floating
point core in the FPGA. In terms of energy efficiency, however,
the FPGA clearly outperforms the CPU on all applications that
use fixed point computation. The figure also shows that multi-
threaded execution can improve the execution performance and
the energy efficiency of the CPU, but the FPGA is still the more
energy-efficient platform for the fixed point computations.

To understand the performance difference, we need to take
a closer look at the applications we used for the evaluation.
All these applications have a low computational complexity and
process large amounts of data that is stored in the external DRAM.
Therefore, its execution performance on any platform depends
greatly on the platform’s effective memory bandwidth. The
maximum memory bandwidth available to the CPU is 21.3GB/s,
compared to the theoretical maximum of 8.4GB/s available to
the hardware design. This along with the highly tuned memory
architecture of the CPU, enables it to have a higher effective
bandwidth and, thereby, achieve better performance. Moreover,

in the hardware designs, the DRAM controller also accounts
for between 40% to 70% of the total energy consumption in
the system. On the CPU, this controller is implemented using
as an ASIC and, therefore, is much more energy-efficient. This
suggests that implementing this DRAM controller as an hard IP
will enable FPGAs to achieve a better performance and a much
higher energy efficiency for such applications.

V I .R E L AT E D W O R K

There has been widespread interest in providing high-level
tools to program FPGAs. The most popular approach is to take
high-level specifications in a C-like language, like C, C++ or
SystemC, and synthesize hardware. These include tools such as
Vivado HLS [4], Catapult [12], Gaut [13], LegUp [14] and Trident
[15], to name just a few. Since extracting coarse-grain parallelism
from a C program is often difficult [6], researchers have also
used explicitly parallel C-like languages, such as OpenCL [16]
and CUDA [17] to design hardware. Notable efforts here include
OpenCL-to-FPGA [18], SOpenCL [19] and FCUDA [20]. But,
these tools are all too low level and rely on the programmer to
explicitly specify details that affect quality and performance of
the generated hardware. This makes them difficult to use for
application developers who have little hardware design knowledge.
Furthermore, many of these tools only produce IP modules that
need to be integrated into a system-level design before it can
be implemented on an FPGA. In contrast, our approach focuses
on providing a high-level DSL that is intuitive to use for the
application developers, shields them from much of the hardware-
level details and produces complete hardware designs that are
ready to implement on the FPGA. Moreover, our approach is
complementary to these efforts which is clearly evident since we
use Vivado HLS for the low-level hardware synthesis.

Since there are well known deficiencies in using C-like
languages for expressing hardware circuits [21], researchers have
also proposed using languages such as Lime [22], Bluespec
Verilog [23] or Chisel [24]. Among them, Bluespec Verilog and
Chisel are essentially hardware design languages and Lime is
a general purpose language that can also target FPGAs. These
approaches, hence, do not leverage any application domain
knowledge to perform optimization that can help to produce
better quality hardware designs [25]. Our proposal leverages
this knowledge and uses well understood computational patterns
to make designing hardware more accessible to application
developers.

There are also tools that use a DSL and the domain-knowledge
to design hardware, such as PARO [26] which uses loop
transformations to implement highly parallel systems; Spiral [27]
which synthesizes linear transforms in signal processing applica-
tions into hardware; Optimus [28] which focuses on streaming
applications; and HDL coder [29] which synthesizes hardware
from Matlab/Simulink systems. We present a methodology that is
more general and relies on using well known computational
patterns that enables us to have premeditated optimization
strategies to generate hardware. Although we illustrated this
methodology using OptiML applications, it can be applied to
other domains as well. But, using computational patterns alone is
not a new idea. In the past, researchers have used design patterns
to target reconfigurable architectures [30] and also to analyze the
amenability of algorithm acceleration on such platforms [31].
Our approach, however, generates a complete hardware system
starting from a DSL-program, thereby, sparing the application



developer from low-level hardware details. To achieve this, we
the extract our computational patterns (kernels) directly from the
DSL-program and perform additional optimizations to implement
them efficiently on the FPGA. While generating the hardware
system, we automatically partition the application logic, using
a soft-core processor to execute the serial parts and custom
hardware for the parallel parts, to utilize the FPGA resources
where they serve best.

V I I .C O N C L U S I O N S

FPGAs are very versatile devices, capable of delivering high
performance along with high energy efficiency. Therefore, they
are bound to play a vital role in modern computational ecosystems
that have tight energy budgets. The problem has been to make
them more easily usable for application developers who typically
have no knowledge about designing hardware. To solve this, we
proposed an automated methodology that transforms applications
written in high-level DSLs into high-quality hardware designs. The
DSL specification is intuitive to express for application developers
and also shields them from the hardware details. By representing
these applications using well understood computational patterns,
we showed that we can perform optimizations to obtain high-
performance hardware designs. Our results show that our proposed
optimizations are effective and that our approach can produce
complete hardware designs to target FPGAs. We also show that
for fixed point computations these designs can offer a better
energy efficiency compared to a laptop CPU. This methodology
can thus make the benefits of reconfigurable technology easily
accessible for application developers in different domains.
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