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Abstract

Reconfigurable System-on-Chip (SoC) platforms that
incorporate hard-core processors surrounded by large
amounts of FPGA are today commodities: the reconfig-
urable logic is often used to speed up execution of ap-
plications by implementing critical parts of the code as
application-specific coprocessors. Cryptography applica-
tions are a good example of coprocessor applications: they
are known to benefit significantly from spatial execution
in hardware and have an increasing importance for mo-
bile and ubiquitous computing. One of the main limits
of FPGA-based coprocessors for these systems is the fact
that both the coprocessor hardware description and the
software program invoking are inevitably ridden with sys-
tem details of the specific interface FPGA/processor: this
limits significantly design reuse, impacts time-to-market,
and makes development more complex. In this paper we
present a portable reconfigurable cryptography coproces-
sor designed for a Virtual Memory Window (VMW) sys-
tem. A VMW is a generic virtualisation layer composed of
a hardware and an operating system components; it low-
ers the complexity of interfacing, increases portability, and
makes it possible for the coprocessor to access the user-
space virtual memory. The approach is illustrated here with
the IDEA cryptography application running under Linux on
a reconfigurable SoC, having its critical function mapped
on the FPGA. A significant fraction of the speed-up inher-
ent to hardware execution in the FPGA is preserved, while
the hardware and software designs of the cryptography ap-
plication become perfectly portable.

1 Introduction

Due to the increasing mask costs of forthcoming deep
sub-micron technologies, use of reconfigurable arrays will

become more and more important in future computing
platforms. There is a tendency to increase system flex-
ibility and to favour hardware and software component
reuse—allowing system architects to cope with complex
in-field and even run-time programmability.  Still, the
speed and area efficiency of the FPGAs are far from
those of general processors and application-specific accel-
erators implemented in ASICs. This suggests that stan-
dard high-performance SoCs may offer both computing
approaches—standard processors augmented with recon-
figurable application-specific parts [10, 11, 23]. Lead-
ing producers of reconfigurable devices already offer re-
configurable SoC platforms that consist of processor cores
surrounded by peripherals, on-chip memories, and large
amounts of reconfigurable logic [1, 28]. In some cases, they
include special features such as embedded memories and
arithmetic blocks suited for signal processing (e.g., Stratix
family [1]).

With their potentials to exploit spatial computing on their
hardware resources and their intrinsic flexibility, FPGAs
are naturally suitable for cryptography applications. In the
era of peer-to-peer networks, wireless communications, and
mobile and ubiquitous computing devices, privacy concerns
and the avoidance of eavesdropping have raised the impor-
tance of cryptography applications for the end-user com-
munity. Pure software implementations may be too ineffi-
cient for cryptography applications [18]. Furthermore, if
real-time responsiveness is required, the natural solution
is to move critical parts of the execution into specialised
hardware [3]. However, binding rigidly the functionality to
hardware decreases the potentials of future reusability, es-
pecially in the case of standard and protocol changes. Re-
configurable SoCs appear as an ideal compromise.

In typical cases of coarse-grained hardware/software
partitioning for reconfigurable SoCs, critical code sections
or functions are mapped to hardware accelerators. Usu-
ally, such sections of cryptography applications show a



large degree of parallelism and contain a large number of
arithmetic and bitwise operations. Although, in general,
reconfigurable logic is not as efficient in computation as
ASICs, methods and devices exist that can improve this de-
ficiency [20, 1]. An unavoidable issue that hardware de-
signers have to cope with is to interface the application-
specific coprocessor with the rest of the reconfigurable SoC.
One needs to take care of different peculiarities—bus hi-
erarchies and protocols, shared and/or multi-ported memo-
ries, 1/0 ports, etc. On the other side, software program-
mers should be aware of the specific communication details
between the application software and the coprocessor: for
example, the availability and size of shared memory acces-
sible by the processor and FPGA; if such memory is smaller
than a dataset to be processed, the dataset needs to be par-
titioned and a load schedule developed. Furthermore, if the
host platform is changed, a large share of the software and
hardware parts must be redesigned, with a severe loss in
productivity.

In this paper, we present a portable reconfigurable cryp-
tography coprocessor based on Virtual Memory Window
(VMW). Both the software and the hardware parts of the
chosen cryptography application (IDEA) are interfaced to
the rest of the system in a transparent and portable way. The
VMW consists of a small platform-specific hardware and
an Operating System (OS) module which, together, sim-
plify software and hardware interfacing for software pro-
grammers and hardware designers. Our example of the
IDEA cryptography application shows in detail the reduced
complexity of the coprocessor programming and design
paradigms. In this way, the portability of the application
is significantly improved across different reconfigurable-
computing platforms and the design effort is significantly
lowered.

This paper is organised as follows: We present the con-
cept of VMW in Section 2. In Section 3 we show design de-
tails of the VMW system and the IDEA software and hard-
ware parts. The experimental setup used to demonstrate our
system and the corresponding results are presented in Sec-
tion 4. In Section 5 we discuss the related work. Finally,
conclusions are drawn in Section 6.

2 Virtual Memory Window

VMW has been introduced [26] to simplify the design
and the interfacing of reconfigurable application-specific
coprocessors (for instance implemented in FPGA on a re-
configurable SoC) working under the control of a user-space
application. When designed for a VMW-based system, an
application (typically written in a high-level language—
e.g., C or C++) and the corresponding coprocessor (usually
written in a hardware description language—e.g., VHDL or
Verilog) are made completely independent of the underly-
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Figure 1. Classic Virtual Memory system.

ing hardware. It actually extends the well-known concept of
the virtual memory [12] and applies it to make the commu-
nication between the coprocessor and the user-space soft-
ware application transparent to the hardware designer and
the software programmer.

Figure 1 shows a typical virtual memory system (with-
out the details related to the secondary mass storage). The
addresses known to the programmer are virtual in that they
describe a memory system with no relation to the real one.
The Virtual Memory Manager (VMM) of the OS supports
the programmer’s illusion and it is assisted in hardware by
the Memory Management Unit (MMU). The ability to sup-
port this illusion of a large homogeneous memory has two
fundamental advantages: (a) the simplicity of the program-
ming paradigm and (b) the portability of the code across
systems supporting the same OS but having a different
memory hierarchy. The disadvantage is that the automatic
allocation of pages by the operating system is, in general,
suboptimal.

As virtual memory management, VMW can be used in
a reconfigurable computers in order to hide data exchange
details between the processor (i.e., the application software)
and the coprocessor (i.e., reconfigurable hardware). Fig-
ure 2 shows how a VMW complements a virtual memory
system. The presented VMW is built without loss of gen-
erality using a dual-port memory accessible by both the re-
configurable lattice and the processor. A user application
running on the main processor and its corresponding co-
processor have the same virtual address space through the
virtual memory mechanism. However, the coprocessor ac-
cesses the virtual memory through a different translation
path. It uses the standardised translation hardware, called
Window Management Unit (WMU), and provides the win-
dow on the virtual memory; the window is supported by the
OS part (Virtual Memory Window manager—VMW man-
ager) that maintains data transfers from/to the user memory
transparently for the end user.
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Figure 2. Virtual Memory Window for a copro-
cessor.

3 VMW Interface and Coprocessor Design

Design details of the IDEA coprocessor are here used
to exemplify the use of a VMW. The coprocessor soft-
ware and hardware comply to our virtualisation interface.
On the software side, the OS services are used to pre-
pare data sharing and launch the coprocessor execution.
On the hardware side, the coprocessor is interconnected to
the rest of the system through a standard hardware trans-
lation engine (WMU), developed once for the platform,
independently from the application at hand (IDEA in our
case). We describe the platform-specific and application-
independent hardware first, then the platform-specific and
application-independent software support, to conclude with
the application-specific but platform-independent IDEA co-
processor.

3.1 Hardwarelnterfacee TheWMU

As mentioned, two components interact to grant the co-
processors the possibility of generating virtual memory ac-
cesses: (1) the WMU as a hardware translation accelerator,
and (2) the VMW manager as an OS window handler. The
WMU is a platform-specific element which is ported once
per reconfigurable SoC; different applications on the same
platform reuse the same WMU.

WM U. Figure 3 shows how the IDEA coprocessor is in-
terconnected to the WMU. The standard interface consists
of virtual address lines (CP_VADDR), data lines (CP_DI N
and CP_DOQUT), and control lines (CP_CONTROL). Con-
trol signals between the coprocessor and the WMU are the
following: (1) CP_START, the coprocessor start signal, is-
sued by the WMU once a user initiates the execution; (2)
CP_ACCESS, the coprocessor access signal, indicates that
there is an access currently performed by the coprocessor;
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Figure 3. A coprocessor and a processor con-
nected through a WMU.

(3) CP_WR, the coprocessor write signal, indicates that the
access is a write; (4) CP_TLBHI T, the translation hit sig-
nal, indicates that an address translation is successful—in
order to proceed with a memory access, the coprocessor
should first wait for this signal to appear; (5) CP_FI N,
the coprocessor completion signal, indicates to the WMU
that the coprocessor has finished its operation. Platform-
specific signals (e.g., the window RAM physical address
lines DP_PADDR, data lines DP_DI N and DP_DOUT, and
control lines DP_EN, DP_WR) connect the WMU with the
rest of the system—and they are specific for different plat-
forms. Inside the WMU, there are the three registers acces-
sible by the main processor (AR, SR, and CR) and the Trans-
lation Lookaside Buffer (TLB) which emphasises the simi-
larity of the WMU with a conventional MMU [12]. Apart
from typical status and control registers (SR and CR), the
address register (AR) is examined by the OS, in order to de-
termine which memory access caused an access fault. The
main processor accesses the WMU using the separate con-
trol and data lines and it is informed about access faults by
the WMU_I NT interruption line.

It is evident that the TLB is the most critical compo-
nent of the WMU design, whose efficiency is essential for
the low-overhead operation of the coprocessor: it should
quickly perform the translation from virtual addresses to
the physical ones, and at the same time expose management
interface to the OS. The design of the TLB is specific to
the underlying reconfigurable technology and is made eas-
ier by the fact that most modern FPGA families offer em-
bedded Content Addressable Memory (CAM) and Random
Access Memory (RAM) components [1, 28]. More specifi-
cally, CAM and RAM memories are used to form the TLB
lines [12] that contain virtual page numbers, corresponding
physical page numbers, and validity and dirtiness bits. The
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use of the intrinsically slow FPGA technology dictates per-
forming the translation in multiple cycles: for the current
TLB design, if we assume no translation faults, four cycles
are needed from the moment when the coprocessor gener-
ates an access to the moment when the data is read or writ-
ten. The performance drop caused by multiple translation
cycles can be overcome by pipelining. The timing diagram
for the current TLB design is shown in Figure 4.

Figure 5 shows the simplified state-transition diagram of
the TLB state machine. Its states are: (1) | DLE—initial
state before any of the actions is undertaken, (2) MANAGE—
management state that indicates a main processor access
in order to examine and change the contents of the TLB,
(3) MATCH—matching state that indicates a pending co-
processor access and translation request, and (4) M SS—
the page-fault state indicating the occurrence of a transla-
tion miss. The input signals are: (1) nranage—manage
request coming from the main processor, (2) mat ch—

translation request coming from the coprocessor (by rais-
ing the signal CP_ACCESS), and (3) ni ss—miss indicator
coming from the CAM. The output control signals are: (1)
CP_TLBHI T—successful translation indicator sent to the
coprocessor, and (2) CP_M SS—unsuccessful translation
indicator used to set the appropriate miss bit in the status
register and raise the OS service-request interrupt.

At the beginning, the main processor uses management
accesses in order to initialise the TLB. Once the TLB is
initialised, the coprocessor enters normal operation (rep-
resented by sequences of transitions between | DLE and
MATCH states). If a miss happens, the transition to M SS
state appears, the TLB waits for the OS management, and
the coprocessor is stalled waiting on the CP_TLBHI T sig-
nal. After a sequence of management accesses, the inter-
rupt cause should be resolved—the TLB lines filled with
the correct translation data and the contents of the window
memory made to reflect the appropriate parts of the user
memory space—and translation process resumed, now with
the correct translation being performed. In this way, the co-
processor is designed completely agnostic of specific data
addresses. Memory resources between the main processor
and the coprocessor are allocated dynamically and the pro-
grammer can have a transparent access to the accelerator.

3.2 OSSupport: The VMW OS Extension

The VMW manager provides two functionalities: (1) a
system call to access and control the coprocessor, and (2)
management functions to respond to WMU requests. The
system call is called FPGA_EXECUTE. It passes data point-
ers and parameters to the hardware, initialises the WMU,
launches the coprocessor, and puts the calling process in
sleep mode. The software designer passes to the coproces-
sor references to objects and their sizes as they are; the co-
processor processes the objects with no concerns about their
location in memory—translation of generated addresses and
memory allocation is done by WMU and VMW manager.

The window memory is logically organised in pages, as
in typical virtual memory systems. Objects accessed by the
coprocessor are mapped to these pages. The OS keeps track
of the occupied pages and the corresponding objects. The
window manager responds to the WMU requests. The OS
determines the cause of the interrupt by examining the sta-
tus register of the WMU. There are two possible requests:
(1) page fault—the coprocessor attempted an access of an
address not currently in the window memory, and (2) end
of operation—the coprocessor signals the end of operation
to the main processor and the manager then ensures that
the user memory reflects correctly the state of the window
memory.

Besides window management, the OS provides also a pa-
rameter passing protocol. Once its operation is started, the
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Figure 6. Block diagram of the IDEA coprocessor using a VMW.

coprocessor looks for parameters in a window memory page
initially devoted to parameter passing. When the parameters
are read, the coprocessor finishes initialisation and contin-
ues with normal operation. At the same time it invalidates
the parameter-passing page, in this way making it available
for future data mapping purposes.

3.3 IDEA Coprocessor Design

The reference IDEA implementation [19] has been used
as the basis of the IDEA coprocessor design together with
a previous FPGA design in synthesisable VHDL [4]. The
IDEA encryption algorithm consists of eight rounds of the
core transformation followed by the output transformation.
When designing the coprocessor, the eight rounds can be
“unrolled” certain number of times, depending on the avail-
able reconfigurable logic resources. The computation of a
round contains four multipliers (rather resource-demanding
in the case of the FPGA implementation), four adders, and
several XOR gates. The original pipeline depth of the IDEA
round implementation [4] is five stages. The output trans-
formation implementation is only one stage, containing two
multipliers and two adders. To obtain a less resource de-
manding design, the available design of the IDEA core was
changed. The multipliers and adders in the IDEA round
pipeline are used in a time-multiplexed manner to lower
their number (two multipliers and two adders).

In order to adapt the design of the IDEA coprocessor
to the VMW interface, a memory access unit and an ini-
tialisation unit are designed to comply to the VMW inter-
face specification. Figure 6 shows the four principal de-

sign blocks of the IDEA coprocessor. The IDEA Core and
the IDEA CTRL blocks represent the algorithm core and
its controller. The Memory CTRL and Init CTRL blocks
provide actual communication to the core through the vir-
tualisation interface (connection to the WMU). In order to
avoid performance penalties due to the relatively complex
core design compared to the interface components, the core
blocks belong to a different clock domain (cl k1°s period is
an integral fraction of cl k2’s). The synchronisation mech-
anism is provided using the stall signal to stall the core until
Memory CTRL is ready to read/write the data. Once the
coprocessor is started (CP_START), control is taken by Init
CTRL. This block generates addresses complying to the pa-
rameter passing protocol. It reads initialisation parameters
and passes them to the IDEA CTRL block (par ans). Af-
ter all the parameters are passed, it invalidates the param-
eter passing page (CP_I NV) making it available for user-
space data mapping and starts the IDEA CTRL (start).
IDEA CTRL controls the computation of IDEA Core and
generates memory requests to Memory CTRL (rd_req,
wr_req). Memory CTRL in its turn stalls (st al ) the
core unless it is ready to respond to the requests. For each
request, it generates the appropriate WMU interface signals
(CP_ACCESS, CP_WR, CP_VADDR, CP_DQUT), waits for
the TLB hit acknowledgment (CP_TLBHI T), and eventu-
ally reads the input data lines (CP_DI N). When the com-
putation is finished, IDEA CTRL passes the control back
to INIT CTRL (fi n), which informs the WMU about
the successful completion of the coprocessor computation
(CP_FI N).
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It can be noticed that the use of a VMW does not add
to the complexity of the coprocessor hardware: Figure 7
shows the design blocks of the IDEA coprocessor with-
out VMW. One can notice that the IDEA-specific blocks
are unmodified and, although slightly different, both Mem-
ory CTRL and Init CTRL must be present in one form
or another—the main difference is that they now generate
physical addresses of the dual port memory. It is not even
necessary that generated addresses correspond to the dual
port memory addresses used by the processor: the mem-
ory accesses can be anywhere in the system memory map.
However, having the accesses go through the VMW, mem-
ory protection policies can be easily achieved (e.g., prevent-
ing the coprocessor to access forbidden memory regions).

On the software side, the IDEA application code is
changed in order to use the OS system call for launching
the coprocessor. For the purpose of comparison, code ex-
cerpts (a) of the original software version, (b) of what could
be a typical coprocessor version, and (c) of the VMW-based
version are contrasted in Figure 8. Note that the typical
coprocessor version requires relatively straightforward but
burdensome and system-specific address calculation. On
the other side, the coprocessor call in the VMW-based ver-
sion is almost as simple and elegant as the original function
call: just before the actual call, an array of the par amdata
structure is used to pass parameters and data pointers to the
coprocessor. It is initialised with the following convention:
the first element of the array is used to pass the number of
parameters and arbitrary flags to the coprocessor; the rest
of the array elements are data pointers and the pointed data
sizes. The data is copied dynamically to/from the window
memory as requested/produced by the coprocessor. The
task is done by the OS module and is completely hidden
from the software programmer.

4 Experimental Results

In this section, we describe an implementation of our
VMW system. Later on, we present the results obtained
for the IDEA application that is ported to the system.

41 Setup

A VMW system has been implemented using a board
based on the Altera Excalibur EPXAL device [1]. The de-
vice consists of a fixed part, called ARM-stripe, and of re-
configurable logic, called PLD. The ARM-stripe includes
an ARM processor running at 133MHz, peripherals, and
on-chip memories. The board is equipped with 64MB of
SDRAM and 4MB of FLASH, and runs the GNU/Linux
OsS.

The WMU is designed in VHDL as a reusable library el-
ement to be synthesised together with a coprocessor. The
TLB, the most critical part of the WMU, is implemented
using CAMs and RAMs available in the PLD part of the
EPXAL device. As mentioned before, due to the limita-
tions of the technology, the translation is performed in mul-
tiple cycles. Note that, although we had to implement the
WMU in FPGA for these experiments, the WMUs could
and should, in principle, become standard components im-
plemented on the ASIC platform in the same way as the
ARM MMU is implemented in the ARM-stripe today. At
present, four cycles are needed from the moment when the
coprocessor generates an access to the moment when the
data is read or written. The performance impact of multiple
translation cycles was minimised thanks to the pipelining of
the IDEA coprocessor and to the use of different clock pe-
riods between the translation hardware and the application.



/* Typical coprocessor version */

dat achunk = DP.SIZE / 2; datapt = 0;

/* Pure software version */ while (datapt < n64 * 8) {

i dea_ci pher fun(A, B, n64); i dea_ci pher .coprocessor () ;
data-pt += data-chunk;

}

@) (b)

copy(A + datapt, DPBASE, data-chunk);

copy (DP-BASE + data.chunk, B + data.pt, datachunk);

/* VMM based coprocessor version */

paranf 0] . u. parans.no = 3;
paran{0].v.flags = O;
paranf1].u. address = A;
paran{1].v.size = n64 * 8;
paranf 2] .u. address = B;
paran{2].v.size = n64 * 8;

i dea_ci pher .coprocessor ( paranj;

(©

Figure 8. Different invocations of the IDEA function: the VMW-based coprocessor version is to all
practical purposes identical to the pure software version and fully system-detail agnostic.

Through the WMU, the coprocessor is interfaced with
the dual-port RAM memory (acting as the window mem-
ory) which is an on-chip memory accessible by both the
PLD (directly) and the main processor (through an AMBA
Advanced High-performance Bus—AHB). The dual-port
memory has been logically organised in eight 2KB pages
— the total size is therefore of 16KB. The dual-port memory
has been chosen for VMW because of direct and easy inter-
facing with the PLD. Larger, single-port memories with ar-
bitrated access would also be usable to implement the win-
dow memory.

The VMW is implemented as a Linux kernel module
aware of the hardware characteristics of the particular sys-
tem. Using the module on other similar systems with dif-
ferent size of the dual-port memory (e.g., the Altera devices
EPXA4 and EPXA10) would require only changing some
constants and recompiling the module. The user applica-
tion would immediately benefit from a larger window with-
out any need of modifications or recompilation.

4.2 Measurements

The IDEA coprocessor is synthesised from the VHDL
code based on the design described in Section 3. The syn-
thesis of the IDEA Core and IDEA CTRL blocks, due to
the complex operators involved, results in a maximal run-
ning frequency of 6MHz. The Memory CTRL and INIT
CTRL blocks, together with the WMU, are running at the
frequency of 24MHz, thus four times the frequency of the
core. The original C code was manually modified to make
use of the OS service provided by the VMW manager and
described in Section 3.

Figure 9 shows execution times of the IDEA applica-
tion, for different input data sizes. The results are shown
for pure software, typical coprocessor (with no WMU nor
OS support), and VMW-based versions of the benchmark.
Pure software and VMW-based versions are both running
on top of the OS, whereas the typical coprocessor does
not even have the OS. One can notice that the IDEA co-
processor achieves significant speed up comparing to the
software case. As previously indicated, exploiting IDEA’s

parallelism in hardware was limited by the finite FPGA re-
sources of the device used. With larger FPGA, additional
speed up could be obtained. What really matters here are the
differences between coprocessors with and without VMW.

For the VMW-based version, three components of the
execution time are measured: (1) hardware execution time
(time spent in the coprocessor and in the WMU, required for
computation, memory accesses, and virtual memory trans-
lations), (2) software execution time for the window mem-
ory management (i.e., time spent in the OS transferring data
from/to user-space memory; spending this amount of time
is also necessary in the typical coprocessor case), and (3)
software execution time for the WMU management (i.e.,
time spent in the OS checking which address has gener-
ated the fault, selecting a page for eviction and updating
the translation table). It should be noticed that in the case
of the VMW-based versions, as the data set size grows up
and page misses appear (from 4KB onwards), more time
is spent in the OS but the speed up is only moderately af-
fected. Itis important to stress that all of the experiments are
performed by simply changing the input data size, without
need of modifying neither the IDEA code, nor the IDEA co-
processor design. In particular, no modifications are needed
even for datasets which cannot be stored at once in the phys-
ically available dual-port memory. Programming is made
easier (both in C and VHDL) because no explicit reference
to the dual-port memory and its physical characteristics are
required.

A few conclusions can be drawn from Figure 9. First,
the presence of our virtualisation layer adds portability ben-
efits and still provides significant advantage over the pure
software version (even if the difference of running frequen-
cies for the ARM processor and the PLD is not negligible).
Second, the introduced overhead can be considered accept-
able: the software execution time for WMU management
can be seen in the figure and it is between 5-7% of the total
execution time. The hardware execution time includes the
overhead of address translation. This overhead is not always
negligible (around 20%) but it is only due to our FPGA im-
plementation of the WMU—to make the overhead negligi-
ble, one should seriously consider that the WMU becomes a
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standard VVLSI part present on a SoC (exactly as the MMU
which is already present on the chip we use). Designing a
pipelined WMU could mask almost completely the trans-
lation overhead. The largest fraction of overhead is actu-
ally due to managing the window memory: Note that part
of this overhead component consists of compulsory page
misses and would be unavoidable even if no virtualisation
was applied. Real page misses can be improved by smarter
memory allocation and prefetching techniques—the latter
allowing overlapping of processor and coprocessor execu-
tion.

If the same experiments were to be performed on a dif-
ferent platform this would require porting the WMU HW
and the VMW SW, but would not require any changes to the
IDEA coprocessor HDL description nor to the IDEA appli-
cation C code.

5 Redated Work

The design of cryptography coprocessors has been
widely accepted as a way of boosting the execution of
cryptography applications. More specifically, large hum-
ber of IDEA coprocessor designes have been reported in
the past [6, 25, 24, 4], intended for both FPGA and ASIC
technologies. All of these designs are made having in mind
the maximal speed up, while the interfacing complexity and
ease of programming are not the primary concern. On the
contrary, we present the adaptation of an existing design
that is easily interfaced to hardware and software parts of
the rest of the system.

Memory abstraction and communication interfaces def-
inition are active field of research, motivated by IP-reuse

and component-based system design. Many standardisation
efforts are made in order to facilitate IP interconnection—
e.g., standardised buses [2]. Another industry standard [16]
provides a bus abstraction which makes the details of the
underlying interface transparent to the designer. Some au-
thors show ways of automatically generating memory wrap-
pers and interfacing IP designs [9]. Others automate the in-
terconnection of IP designs to a wide variety of interface
architectures [14]. The main originality of our idea, with
respect to these works, is not in the specific standardisation
and abstraction of the memory interface details (signals,
protocols, etc.) between generic producers and consumers,
but in the dynamic allocation of the interfacing memory,
buffer, or communication ports between a processor and a
coprocessor—that is in the implication of the OS in the pro-
cess.

Similarly, extensive literature exists on the design and al-
location of application-specific memory systems, typically
for ASIC design (e.g., [7, 22]). Mostly, these are compiler-
based static techniques consisting in software transforma-
tions to exploit better a given memory hierarchy, and in de-
sigh methodologies for customising the ASIC memory hier-
archy itself for specific applications. The former techniques
can be used proficiently to enhance the design of coproces-
sor such as those addressed here, but are rather independent
from the actual interface details we handle. On the other
hand, a few works have a dynamic flavour and could there-
fore be used to improve the interface memory allocator—
they are fully complementary to the present techniques [15].
In the area of memory systems for reconfigurable systems,
works such as [13] study the generation of optimal access
patterns for coprocessors within SoC architectures; the fo-



cus is not in portability and abstraction from architectural
details, as in this paper. We use simple access patterns for
validation, but any access pattern could be used in conjunc-
tion with the WMU and their address generation techniques
are complementary to our work.

Closer to our concerns is a different form of hardware
virtualisation which has received some attention recently.
With motivations similar to ours, researchers have consid-
ered the OS support required for managing the reconfig-
urable lattice across tasks [27]—to screen the user from the
problems introduced by the finite amount of available re-
configurable logic. Reconfigurable hardware virtualisation
has also been addressed [5, 8]. For example, an architecture
has been introduced [8] that allows the OS to share dynam-
ically the reconfigurable logic between applications. The
resource is virtualised and hardware support is developed
in order to support the mapping between the virtual and the
physical resource. The type of virtualisation we introduce
addresses the processor/lattice interface logic rather than the
reconfigurable lattice itself; the two problems are therefore
orthogonal and complementary—future system may have
to implement solutions for both. Several approaches exist
that introduce OS extensions supporting user-controlled in-
terfacing of reconfigurable hardware (e.g., a task communi-
cation scheme based on message passing [21], or communi-
cation through memory slot interface [17]). While these ap-
proaches expose the communication to the programmer, our
approach completely deliberates the programmer of com-
munication details. It is the ultimate role of the OS module
to provide this transparency.

6 Conclusions

In this paper we present an IDEA coprocessor designed
for the Virtual Memory Window system (VMW). The VMW
allows the reconfigurable application-specific coprocessor
to access virtual addresses of the user-space memory. In
this way, the IDEA coprocessor designed in synthesisable
VHDL is perfectly portable accross different platforms.
Furthermore, the software part of the application is imple-
mented using a straightforward programming paradigm that
hides all unnecessary details and data transfers from the pro-
grammer. Instead, the coprocessor data is allocated dynam-
ically and copied to/from the coprocessor-accessible mem-
ory by an OS module.

We intended to show on a realistic application that a min-
imal performance penalty is paid for this comfort, much in
the same way as nobody views nowadays a virtual memory
system as a significant source of performance loss. Simi-
larly, as virtual memory systems make it possible to achieve
ease of programming and portability for software, a VMW
achieves the same for the hardware description of a co-
processor and its software invocation. To validate the ap-

proach, the IDEA coprocessor was implemented on a real
VMW-based system (Linux extended with a VMW mod-
ule running on an ARM-based board surrounded by FPGA).
We have shown that the virtualisation layer overhead is ac-
ceptable and does not compromise the benefits of the spa-
tial execution in the coprocessor: a remarkable speed up
compared to software-only version of the IDEA application
is achieved, with only minimal changes in the application
code.

We believe that the presented approach not only consti-
tutes an efficient way of designing portable hardware and
of writing the corresponding software in a straightforward
manner; it also brings reconfigurable computing closer to
general-purpose computing. We suggest a way to the in-
creased programmability of reconfigurable systems by ac-
cepting and adapting concepts of the general-purpose sys-
tems: the concept of the OS involvement in the virtual mem-
ory management motivated the conception of the virtual
memory window for reconfigurable coprocessors.

The overhead due to the translation and management of
multiple data copies, albeit small, partially hides the inher-
ent speed up of IDEA, as achievable by specialised hard-
ware execution. This suggests that future research should
address lowering these overheads in order to further ex-
pose the speed-up potentials: we are addressing speculative
prefetching by the VMW manager to parallelise memory
transfers with the coprocessor operation.
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