
HardCilk: Cilk-like Task Parallelism for FPGAs

Mohamed Shahawy, Canberk Sönmez, Cemalettin Belentepe, and Paolo Ienne
Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication Sciences, Lausanne, Switzerland

{first}.{last}@epfl.ch

Abstract—High-level synthesis (HLS) helps to develop hard-
ware accelerators for field-programmable gate arrays (FPGAs)
using C/C++ descriptions. HLS is tailored to exploit instruction-
level parallelism and, where available, data-level parallelism in
applications. Yet, some applications mostly display another type
of parallelism known as task-level parallelism (TLP): they may
have massive amounts of available parallelism but paralleliz-
able execution threads follow starkly different control paths
or make completely independent memory accesses. Alas, there
is very limited support for TLP in HLS tools (with much
of the support being for statically scheduled coarse-grained
tasks) whereas TLP is widely supported on conventional CPU
platforms via libraries like OpenCilk, Intel Threading Building
Blocks, and OpenMP. In this paper, we introduce a framework
for supporting software-like TLP on FPGAs. The framework
provides a parameterized architectural template that implements
all hardware modules needed to support TLP primitives and task
management. The emphasis is on providing programmers with a
software-like experience: limited hardware resource constraints
should only impact performance and never functionality. For
this, all queues in the limited BRAMs are virtually extended to
larger HBM/DDR FPGA memory and potentially beyond. We
provide an open-source Chisel hardware generator that creates
a dedicated task management system from a given Cilk-like
application description. It is then straightforward to integrate
it with HLS-based processing elements to realize full TLP-
enabled applications on FPGAs. In the evaluation, we focus on
the efficiency and scalability of our hardware task management
system and compare it with OpenCilk, a recent software TLP
framework. The results show that the architectural building
blocks consume a small percentage of resources on modern
FPGAs designed for data centres and achieve linear hardware
scalability. For a reasonable range of parameters, the system
shows near-perfect efficiency and speedup scales linearly when
increasing the number of processing elements.

I. INTRODUCTION

Parallelism is key for software programmers to extract per-

formance from their code. Traditional high-end CPUs automat-

ically exploit instruction-level parallelism (ILP) in hardware.

High-level synthesis (HLS) tools do something very similar

when producing circuits from software code.
To go beyond ILP, programmers need to express oppor-

tunities for parallel execution through languages or libraries.

Arguably, the most common form of parallelism is data-level

parallelism, where programmers express that the exact same

series of computations is repeated over a large set of data.

It leads to parallel execution through vector and multimedia

instruction sets of classic CPUs, but is the main target of an

immensely popular class of devices: GPUs. Their ubiquity is

a combination of the importance of data-level parallelism in

applications and of the availability of appropriate languages

like CUDA. Data-level parallelism is well supported also by

HLS tools for FPGAs, but it is not always self-evident that,

in this context, FPGAs can have a performance edge over

extremely optimized GPUs.

There is a completely other type of parallelism that is well

supported through programming languages and libraries: task-
level parallelism (TLP). It is rather poorly supported in FPGA

tools (especially for fine grain tasks) and our goal is to change

this, for we believe that it has the potential to make FPGAs

stand out from other powerful computing devices.

A. Why We Need TLP

The whole idea of TLP is to decompose computation

in individual independent tasks and execute them on the

largest possible number of processing elements (PE). If these

tasks followed the very same execution path (and in many

practical applications they are guaranteed to do so), data-

level parallelism would be the paradigm of choice. Yet, there

are many important and massively parallel applications where

individual tasks can be expressed through the same code (often

small and recursive functions) but each individual execution

is completely different (control dominated) or accesses totally

distinct sections of large data structures.

A classic example is applications on very large graphs:

Many performance-optimal algorithms perform the same re-

cursive set of operations starting from all nodes of the graph

(e.g., some local search mostly confined to the neighbourhood

of the starting point). While, for very large graphs with

millions or billions of nodes, there is a gigantic amount

of exploitable parallelism, executions from different starting

nodes have, in general, absolutely nothing in common; these

algorithms are naturally a terrible fit for GPUs. With the recent

attention to efficient graph analytics for ML/AI applications,

some authors have recognized that asymptotically optimal

algorithms for a variety of important graph explorations have

a practical edge, perhaps predictably, over suboptimal algo-

rithms that happen to be easily portable to GPUs [1], [2]. The

key to the success of these algorithms is the pervasiveness of

large multicore CPUs and the availability of powerful TLP

libraries like OpenCilk, Intel Threading Building Blocks, and

OpenMP. Nothing truly similar is available for FPGAs.

B. TLP Is a Perfect Fit for FPGAs

We think that fine-grain TLP is an immensely promising

paradigm to open FPGAs to software programmers: (1) Firstly,

as mentioned, it is easily accessible as a programming

paradigm and applications can be tested in software with

an extremely fast development turnaround, especially when

140

2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/24/$31.00 ©2024 IEEE
DOI 10.1109/FCCM60383.2024.00025

compared to FPGAs. (2) Secondly, tasks are often a very

limited set of small functions called recursively millions or

billions of times. It is likely that fairly small iterative functions

can be implemented efficiently out-of-the-box by HLS tools.

Even if not, at production time, hardware engineers can opti-

mize at register-transfer level (RTL) these small functions—if

there are only few, if they are small, and if the rest of the

system is unmodified, it is a minor nonrecurring engineering

cost. (3) Finally, FPGAs seem to be an ideal match to TLP

applications. While CPUs can also be very successful, the

implementation in hardware of small kernel functions gives

a potentially great advantage to FPGAs over the cores of

CPUs. But, perhaps even more importantly, TLP applications

on CPUs spend a considerable amount of time and resources

(through the functionality implemented in OpenCilk, Intel

Threading Building Blocks, or OpenMP) to manage, schedule,

and load-balance tasks of immensely variable execution time.

It has been shown that performance-competitive uses of TLP

on multicore CPUs, besides a fairly intuitive rewriting of

the original sequential algorithms in TLP form, need fairly

heavy restructuring not to incur catastrophic task management

overheads [1], [2]. On FPGAs, the whole management of

tasks and of their returned results could also be efficiently

implemented in dedicated circuitry, thus not subtracting any

valuable compute cycle from the PEs. The possibility of

achieving this generically and economically for any TLP

application is the purpose of this work.

C. Our Goal with HardCilk

Surprisingly little has been done to support generic forms

of fine-grain TLP on FPGAs. One of the few examples and

perhaps the closest to our aims was the pioneering work on

ParallelXL [3]. While we see that work as inspiring, we also

view it with a couple of important limitations: (a) On the one

hand, the architecture it implements is very much borrowed

from traditional multicores and misses key opportunities to

develop concurrent hardware structures for the tasks of a

particular TLP application. (b) On the other hand, it has

a defect typical of many hardware contraptions on FPGAs;

namely, some resources are naturally limited (e.g., queue sizes)

and applications that consume them completely either fail to

run or result in incorrect execution. In this paper, we introduce

HardCilk: an open-source Chisel generator [4] of RTL designs

that, given information that a compiler could easily extract

from software TLP code (e.g., written in OpenCilk), produces

a complete dedicated task-management system for FPGAs.

Our philosophy is to provide the programmer with a software-

like experience: limits in available resources must only result

in (possibly minimal) performance losses and never in failure

to compile or, worse, to produce the correct result. Our aim

is to show that it is possible with moderate resources to

manage millions of tasks efficiently, often achieving quasi-

optimal utilization of the processing units.

The rest of the paper is organized as follows: The next

section introduces the computational model that we will target

with HardCilk. Section III describes the template architecture

of our system. We evaluate the efficiency and scalability of

HardCilk in Section IV. The paper concludes after a review

of the state of the art in Section V.

II. COMPUTATIONAL MODEL

This section describes the programming model used by our

framework. Cilk [5] is one of the very first TLP frameworks

developed for multicore CPUs, introducing a provably efficient

task scheduler with a nonblocking programming model. The

Cilk framework was implemented as a C-language extension.

It later developed into Cilk-5 [6] with a redesigned language

and new engineering of the underneath functionality. Other

versions appeared, such as Cilk Plus by Intel and most

recently OpenCilk [7]. These later reincarnations of Cilk still

implement the main Cilk principles; however, they use more

sophisticated runtime systems to implement a more friendly

programming model. As a result, as shown by Joerg [8], one

can translate a program written in the original Cilk syntax to

the syntax of the more friendly Cilk-5 programming interface.

In this paper we focus on the classic Cilk programming model

which is particularly suitable for hardware implementation for

its nonblocking execution model, leaving the actual integration

in a modern compiler for future work. Our focus here is

to prove that task management requires only a handful of

fairly simple and composable hardware building blocks. The

composition of these blocks into an efficient network for a

given application can be obtained directly from Cilk code.

A. Task Representation

The first component of the programming model is the task

representation. A task is a set of arguments args that represent

the input to a function f with a continuation k. A continuation
is a pointer to another task that this task shall return to;

this will be further explained in the next section. Cilk tasks

are either ready or pending. Tasks are ready when they have

all their arguments available. When a task is created with a

number of missing arguments, it is pending and initialized with

a join counter j equal to the number of missing arguments.

A task is only ready and scheduled when all the arguments

are available and the join counter is equal to zero. We use

explicit continuation passing style to implement nonblocking

HLS-friendly joins for FPGA TLP accelerators.

B. Expressing Parallelism

Cilk provides the spawn keyword as a tool for a task to

generate a child task that could be executed in parallel. This

is similar to a function call; however, the spawned child could

execute in parallel to the parent node. Spawning does not

mandate parallel execution; it only indicates to the scheduler

that, if there are workers available, it is legal to execute that

task in parallel. In a fork-join parallelism representation, forks
are represented by spawning in the Cilk model.

Normally, with software fork-join parallelism, joins are im-

plemented as blocking statements where the operating system

could suspend the waiting thread and schedule the threads that

will complete the join. Since we are interested in implementing

141

fib(2) sum

fib(1) fib(0)

spawn
spawn_next
send_argument

Fig. 1: An example execution graph for the Fibonacci example

with n = 2.

this model in hardware, we observe that suspending the

execution of an arbitrary PE is a nontrivial design task and

is not supported by any HLS tool we know. Therefore, we

use explicit continuation passing to implement nonblocking

joins: Explicit continuation passing is a style of programming

used in functional programming where control is explicitly

passed in the form of continuations; if a task has a join,

the programmer has to break the task into two tasks. The

first task executes the instructions before the join, and the

second executes the instructions after the join. In addition to

executing the instructions before the join, the first task informs

the scheduler that an instance of the second task should be

executed in the future. For that, the scheduler allocates an

empty placeholder for the second task, known as a successor

task, in memory and returns a continuation—i.e., an address

referring to that placeholder—that some task needs to return

to at some point during the execution. The first task can now

create its children, using spawn, passing them the allocated

continuation where they need to return. Finally, the first task

can now return without waiting for its children and the children

are the ones responsible for returning to the successor task.

Cilk provides the spawn next and send argument keywords

to create successors and return to them. The spawn next

primitive informs the runtime system that this task should

be initialized with a specific join counter and scheduled only

when all the arguments are available. Children tasks use the

send argument primitive to return values to successor tasks

and inform the runtime system to check the successor task

join counter.

C. Fibonacci: A Classic Example

Calculating the n-th Fibonacci number recursively and in

parallel using fork-join parallelism is a common choice to

present the idea of TLP. Figure 2 shows the Cilk code

implementing the algorithm. The fib function is divided into

two tasks: the operations before the join and those after it. The

join is represented using explicit continuation passing. The

directed acyclic graph shown in Figure 1 shows the execution

graph for the Fibonacci example with n = 2.

D. Work Stealing

Cilk uses a work-stealing scheduler [9]. Figure 3 shows the

functionality of the scheduler. During execution, a PE might

spawn multiple child tasks that could be executed indepen-

dently. The spawned tasks are pushed to a local double-ended

1 task fib (cont int k, int n):
2 if(n < 2):
3 send_argument (k, n)
4 else:
5 cont int x, y
6 spawn_next sum (k, ?x, ?y)
7 spawn fib (x, n-1)
8 spawn fib (y, n-2)
9

10 task sum (cont int k, int x, int y):
11 send_argument (k, x+y)

Fig. 2: A Cilk program, consisting of two tasks, to compute the

nth Fibonacci number [5]. When using a ‘?’ symbol before

a continuation variable, it indicates to the runtime that the

function does not take the continuation itself as an argument

but rather the value that will be returned to that continuation.

PE 1

PE 0
T0

T1
T2

head
tail

PE 1

PE 0
T1

T2

head
tail

pop

steal

Fig. 3: Work stealing dynamically load-balances generated

tasks during execution.

queue. The PE uses the head of its local queue to push and

pop tasks. If other PEs do not have work to execute, they steal

a task from the tail of the local queues of other PEs, known as

victim PEs, that have ready tasks in their queues. This stealing

is done randomly in software, but as we show in Sections III

and IV, we exploit an approach more suitable for hardware.

III. DESIGN

HardCilk follows two main design principles: Firstly, there

should be no deadlocks due to hardware limitations. The

virtualization of compute resources, specifically memory, has

been exploited for a long time in traditional computing. We

employ a similar paradigm by implementing extender modules

that connect the system components to high-capacity FPGA

memory resources, such as DDR and HBM, to extend the

BRAM resources. Secondly, HardCilk supports an arbitrary

number of PEs for each task type, for arbitrary Cilk applica-

tions with an arbitrary number of different tasks. We provide a

configurable hardware generator [4] to automatically create the

required architectural components and interconnect them. The

user needs only to connect the PEs and the memory system

to the generated system.

A. Architectural Template Overview

HardCilk uses an architectural template to implement the

three keywords supported by the Cilk-like computational

model. The architectural template consists of three building

blocks: the work-stealing scheduler, the closure allocator, and

the argument notifier. Together, they support the programming

primitives of Cilk we target:

142

sum
PEs

fib
PEs

sum Closure
Allocator

sum Argument
Notifier

Memory
Hierarchy

Ready sum tasks

to scheduler

fib tasks

sum tasks

Argument Address

Scheduler
sum

Pre-allocated empty
closure addressesScheduler

fib

Argument Address

AXI
AXI-stream
Handshake

1©

2©

Fig. 4: HardCilk system for the Fibonacci code in Figure 2.

HardCilk allows specializing PEs and the scheduler separately

for each task type. Connections between components are

dictated by send argument and spawn next relations between

different types of tasks. For example, fib
send argument−−−−−−−−→ sum

corresponds to 1©, and fib
spawn next−−−−−−→ sum corresponds to 2©.

• Spawn. The work-stealing scheduler is an architectural

component that exposes two streaming interfaces to each

PE. PEs can create new tasks by sending tasks to the

scheduler. When ready to process a new task, they can

obtain a ready task from the scheduler.

• Spawn next. Cilk uses a data structure, known as clo-
sure, to express an empty placeholder of a successor

task. Closures carry the arguments to the task and the

join counter value that corresponds to the number of

missing arguments (those that will be the object of a

Send argument). spawn next requires the allocation of

empty closures in main memory to enable creating suc-

cessor tasks. A closure allocator provides each PE with

preallocated addresses of empty closures for a specific

type of task, so that PEs can issue a spawn next.

• Send argument. When a task generates an argument

for a successor task, it simply writes the argument to

memory in the closure. However, it needs to notify the

system that an argument was written to decrement the join

counter and verify whether the successor task has become

ready. The argument notifier is an architectural element

that provides this functionality and offers a streaming

interface to each PE that may issue a send argument,

to be informed when this happens.

Figure 4 shows the corresponding HardCilk architectural tem-

plate instance to the Fibonacci Cilk code in Figure 2.

These three architectural building blocks are designed using

the same paradigm. Each has servers, clients, and a network:

Servers implement the interface to main memory, typically to

offload excess data. PEs connect to appropriate clients of the

blocks corresponding to the needed operations. Finally, the

network connects the servers and clients of each block.

The architectural generator creates the system as a collection

of these architectural blocks, each replicated and customized

Memory
Hierarchy

Task x Scheduler

Ta
sk

 x
 S

ch
ed

ul
er

 N
et

w
or

k

Scheduler
Servers
Scheduler
Servers (x)

Task x
Queue

Scheduler
Client (x)

Task x
PEs

Task x
Queue

Scheduler
Client (x)

Task x
PEs

AXI
AXI-stream
Handshake

Fig. 5: Work stealing scheduler, generalized for an arbitrary

task x. The scheduler clients manage the local task queues by

(1) requesting tasks if the queues are empty and (2) offloading

tasks to the network if they are almost full.

for the various tasks. Clients are replicated for all PEs re-

quiring an interface and the networks sized accordingly. The

overall connectivity depends on the relations between tasks

within a Cilk code, such as which task can spawn which

other task or which task sends an argument to which other

task. Such static relations between task are straightforward to

extract from Cilk code. Cilk keywords spawn and spawn next

have an identifier for the task type they issue. For instance,

in line 7 in the code snippet for Fibonacci in Figure 2,

the spawn statement specifies the type of task it creates;

therefore, the relation fib
spawn−−−→ fib could be extracted. The

send argument primitive is a bit more ambiguous; however,

the relation fib
send argument−−−−−−−−→ sum could be extracted based on

the unambiguous relation fib
spawn next−−−−−−→ sum .

B. Work Stealing Scheduler

Figure 5 shows the design of the work-stealing scheduler.

The scheduler has a task queue and a scheduler client per

PE, a number of scheduler servers, and a stealing network to

connect clients and servers. The task queues are local BRAM-

based double-ended queues that are directly connected to the

PEs via streaming interfaces. The scheduler clients connect

the task queues with the work-stealing network. The scheduler

servers connect the network with memory-based task queues

that could extend the hardware queues.

The interaction between the different scheduler clients serv-

ing different PEs implements a Cilk-inspired work-stealing

policy. (i) If the queue is empty or near-empty, the client issues

a task request over the work-stealing network and waits to

receive a task. On receiving the task, the client pushes it to

the queue to be executed by the corresponding PE. (ii) If the

local queue has enough available tasks, the client listens to the

network for any stealing requests. If it finds any, it pops the

request from the network, pops a task from its local queue,

and pushes it to the network. (iii) If the local queue of that

client is near-full or full, the client pops a task from the queue

and pushes it to the network without waiting for any requests.

143

Requests
Unit

Data
Unit

Server /
Client

Requests
Unit

Data
Unit

Server /
Client

Requests

Requests

Tasks

Tasks

Scheduler
Network

R
eq

ue
st

s

Ta
sk

s

Fig. 6: Scheduler Network consists of two ring networks cir-

culating task data and requests among servers and clients. Low

resource utilization of ring networks helps system scalability.

This third functionality does not exist in software-based TLP,

as they do not suffer from hardware queues of limited size.

The scheduler servers prevent the clients from saturating the

network and from starving: (i) If they detect a contention in

the network, they offload tasks to a memory-based task queue.

(ii) If task requests are detected in the network, servers pop

tasks from the memory queues and insert them to the network.

Our architecture does not impose any restriction on the number

of scheduler servers, and they can be increased to enhance the

performance of the scheduler as they hide the latency of the

memory accesses through parallel network provisioning. Such

clients need initialization from the host with the base addresses

of their private memory-based queues and the available size,

which can be extended at runtime.

C. Scheduler Networks

The scheduler networks (Figure 6) are designed to be cheap

and scalable: we have opted for two parallel ring networks

communicating in opposite directions. Due to their topology,

they are more efficient implementing a stealing policy different

from the one used in software TLP. Doing random work-

stealing in hardware would require point-to-point communi-

cation between the different stealing servers, adding much

latency going through the ring network or requiring some form

of a crossbar interconnect. We decided to use a different policy

where if a stealing server wants a task, it issues a generic

stealing request which is pushed to the first ring network,

namely the requests network. The ring network takes this

request and rotates it each cycle to a different client or server

on the network. Some of these will have tasks in their local

queues allowing them to serve these requests. A task is pushed

on the other ring network (data) that flows in the opposite

direction to the requests network; from there it would be

popped by the requesting server. Each instance of the work

stealing network connects to at least as many clients as there

are PEs for the corresponding task. Yet, since PEs of a specific

type are also allowed to spawn tasks of other types, the ring

network is easily extended with clients for PEs of a different

type, so that these can spawn (but not execute) tasks. All

Closure Allocator Network

sum Closure
Allocator Memory

Hierarchy

Task x
PEs

fib
PEs

Al
lo

c.
Bu

ffe
rs

Al
lo

c.
Bu

ffe
rs

Al
lo

c.
C

lie
nt

s
Al

lo
c.

C
lie

nt
s

Al
lo

c.
Se

rv
er

s
Al

lo
c.

Se
rv

er
s

Scheduler
fib

AXI
AXI-stream
Handshake

Fig. 7: Our system pre-allocates closures in bulk, rather than

allocating them one-by-one. Closure Allocator delivers pre-

allocated closure addresses from the memory to PEs.

components are inexpensive, and the architecture is sufficiently

scalable that it can be extended to hundreds of PEs.

D. Closure Allocator

The closure allocator, shown in Figure 7, allows PEs to issue

the spawn next operation described by the Cilk programming

model. We divide the spawn next operation into two parts. The

first consists of providing base addresses of empty closures and

is the task of the closure allocator. This distributes preallocated

closure addresses of a specific task type to all the PEs that

can spawn next that task. The second part is to write the join

counter and ready arguments values to the address of the empty

closure. PEs should not block when writing to memory, so a

write buffer handles the writes and frees immediately the PEs.

The closure allocator is inspired by the work-stealing sched-

uler, but significantly simpler. It too has a ring network, single

in this case, where the allocation servers inject addresses of

empty closures. All PEs sending arguments to a particular

closure type have a closure client; this pops addresses from

the ring and places them in a private buffer connected to the

PE with a streaming interface. The purpose is that PEs, when

executing a spawn next operation, always have a ready closure

address to insert into the task they spawn.

E. Arguments Notifier

The arguments notifier, shown in Figure 8, provides atomic

access to the join counters of the closures waiting for argu-

ments and schedules them when ready to execute. When a PE

writes an argument to the closure of a waiting task, it must also

announce this write to the argument notifier. The arguments

notifier is yet another variations of the same scheme: a ring

network, a number of servers, and clients for each PE that

is sending an argument. The clients, one per PE executing

a send argument of a particular closure type, gather closure

addresses from the PEs via streaming interfaces and inject

them on the ring network. Servers pop closure addresses from

the network and decrement and check the join counters of

the closures. Modifying the counter must be implemented

144

Task x
PEs

Ready tasks
to scheduler

Argument Notifier Network

sum Argument
Notifier

Memory
Hierarchy

fib
PEs

Ar
g.

Bu
ffe

rs
Ar

g.
C

lie
nt

s

Ar
g.

Se
rv

er
s

Ar
g.

Se
rv

er
s

Scheduler
sum

Scheduler
fib

AXI
AXI-stream
Handshake

Fig. 8: Argument Notifier collects generated arguments from

PEs to fill in the arguments of successor tasks. When all the

arguments of a task are ready, the argument notifier moves

it to the corresponding scheduler. We omit connections from

sum PEs to the argument notifier for brevity.

TABLE I: Example configuration of HardCilk for Fibonacci.

fib PEs = 16 Scheduler Servers = 4

sum PEs = 8 Scheduler Servers = 4

Closure Servers = 1 Argument Servers = 4

spawn fib ⇒ fib

spawn next fib ⇒ sum

send argument fib ⇒ sum sum ⇒ sum

atomically, so only one server can access a particular closure.

We shard the addresses so that different servers can handle

a subset of addresses atomically and in parallel. Finally, if

a server determines that a task has become ready (i.e., its

join counter is null), it injects the task into the appropriate

work-stealing network. For this, the generator instantiates an

additional scheduler client for each argument server.

F. HardCilk Generator

HardCilk is an open-source Chisel generator [4] that pro-

duces the complete shell RTL necessary for a Cilk application;

the user has only the PEs, possibly designed by an HLS tool,

and the memory interface. The generator needs a number of

parameters to run, essentially from two classes: (a) Some

express the relations between tasks that could be extracted

automatically from Cilk code as mentioned in Section III-A

and the nature of these tasks (size and nature in bits, etc.).

(b) Other parameters influence the degree of parallelism and

the performance of the system. These include the number of

PEs of each type and the number of servers of each network.

Table I shows an example configuration for the architectural

generator that we have for the Fibonacci Cilk code.

IV. EVALUATION

Evaluation methodology. In our evaluation, we use a number

of synthetic benchmarks engineered to test individual parts of

TABLE II: Definitions of parameters used in the evaluation.

Tn The actual measured runtime of the application on n processors

T ′
n The theoretical perfect speedup for a computation on n

compute units (= T1/n)

Efficiency
(η)

The ratio between T ′
n to Tn represents the efficiency of the

scheduler to achieve the maximum theoretical speedup

1 task benchmark1 (depth):
2 if(depth == 0):
3 wait(DELAY_CYCLES)
4 else:
5 for(i in range(BRANCH_FACTOR)):
6 wait(DELAY_CYCLES)
7 spawn benchmark1(depth - 1)

Fig. 9: Benchmark 1 testing the work-stealing scheduler.

our system. Our benchmarks, while being synthetic, exhibit

the parallelism characteristics of applications that we target—

i.e., those with high degrees of control-dominated parallelism.

We prefer focusing on system-level optimizations and charac-

teristics rather than improving application-specific execution

schemes, which are already explored by prior work [10], [3].

We use the definitions in Table II to characterize task parallel

applications used in our evaluation.

Evaluation environment. We use a SystemC-based cycle-

accurate simulation environment for performance modelling.

The generator is used for creating RTLs for various hard-

ware configurations used by our benchmarks. Then, RTL is

converted to SystemC modules using Verilator. We leverage

transaction-level modelling (TLM) for memory transactions

between the RTL and the SystemC modules. In particular, we

use Xilinx-provided open-source AXI-to-TLM bridge modules

for RTL-SystemC interfacing. Our simulation environment

provides an approximate model of memory with configurable

access latency and bandwidth. We choose the simulation

parameters to mimic the HBM characteristics available on

FPGA boards designed for data centres, such as Alveo U55C.

A. Benchmarks

Our benchmarks are based on the knary benchmark used

to evaluate the original Cilk scheduler [5]. The benchmarks

have two main controlling parameters, shown in Figures 9, 10,

and 11, which are DEPTH and BRANCH FACTOR. Those

two parameters allow controlling the degree of parallelism

of the workload by controlling the critical-path length and

the amount of parallelism at each level of execution. An-

other parameter is SERIAL TASKS, in Figure 11, which

controls the number of dependent tasks within each DEPTH

level where SERIAL TASKS is less than or equal to the

BRANCH FACTOR. We set the parameters for the different

benchmarks guided by the OpenCilk [7] analysis tool and

select values corresponding to the targeted applications.

The benchmarks are designed to test different functionalities

of our architecture. Benchmark 1, shown in Figure 9, is

designed to evaluate the main scheduler component described

in Section III-B. Benchmark 2, shown in Figure 10, is designed

145

1 task benchmark2_1 (depth):
2 if(depth == 0):
3 wait(DELAY_CYCLES /2)
4 spawn benchmark2_2 ()
5 else:
6 for(i in range(BRANCH_FACTOR)):
7 wait(DELAY_CYCLES /2)
8 spawn benchmark2_2 ()
9 spawn benchmark2_1(depth - 1)

10

11 task benchmark2_2 ():
12 wait(DELAY_CYCLES /2)

Fig. 10: Benchmark 2 testing the system efficiency in ac-

celerating applications composed of multiple types of tasks

executed spatially by different sets of PEs.

1 task benchmark3 (depth):
2 if(depth == 0):
3 wait(DELAY_CYCLES)
4 else
5 for(i in range(iterator , BRANCH_FACTOR)):
6 wait(DELAY_CYCLES)
7 if(i < SERIAL_TASKS):
8 spawn benchmark3(depth - 1)
9 join()

10 else:
11 spawn benchmark3(depth - 1)

Fig. 11: Benchmark 3 testing continuation allocator and

argument notifier. The join statement is used for ease of

understanding; however, we implement it for our system with

the spawn next and send argument primitives.

to test the efficiency of the interaction of two schedulers for

two different tasks. Since our system provides the capability

to divide an application among different types of PEs, we

evaluate that performance does not degrade compared to

having a single type of PEs that executes the whole task.

This benchmark has a workload identical to Benchmark 1;

however, the work is divided among two types of tasks and

hardware PEs. Benchmark 3, shown in Figure 11, introduces a

data dependency in the execution to evaluate the continuation

allocator and the argument notifier. Adding a number of serial

tasks on the execution path reduces the overall parallelism of

the application; however, we ensure that the benchmark has

a degree of parallelism an order of magnitude more than the

compute units. We note that the spawn next write buffer that

accepts the successor task immediately is not yet part of the

RTL output by our generator; for the results, we simulate its

functionality as part of the PE.

B. Efficiency of the Scheduler

Efficiency of OpenCilk [7]. We implement the benchmarks

in OpenCilk as a software baseline. For OpenCilk, the delay

cycles correspond to a number of empty loops. We vary

the delay from 16 loops to 1024 loops to simulate different

workloads, and we report the efficiencies in Figure 12(a).

The results show that for small tasks the scheduler overhead

dominates the execution. This is not particularly surprising and

explains some program refactoring for coarsening the tasks

used in practical applications [11]. Even with big tasks the

efficiency of execution for all the benchmarks converges to

slightly less than 90%, probably because the scheduler logic

in software subtracts a nonnegligible fraction of CPU compute

power from tasks execution.

Efficiency of HardCilk. For our system, the delay is specified

in clock cycles. We configure the system with 28 PEs to cor-

respond to the 28 cores available for OpenCilk. We note that,

even with the difference between the task implementation of

the waiting (the work cycles) between software and hardware

execution elements, the best-case parallelism in the application

is constant because it depends on the ratio between the total

work and the critical-path work. Therefore, the efficiency of

OpenCilk could be compared qualitatively to that of HardCilk.

We vary the task cycles from 8 cycles to 256 cycles to

simulate different workload sizes. Figure 12(b) shows that

HardCilk could achieve near-perfect efficiency when the PEs

execute tasks lasting 32 cycles or more. Unlike OpenCilk, the

scheduler is a separate circuit component and does not subtract

compute cycles from the PEs: 100% efficiency is achievable.

Tasks that execute for small number of cycles (8–16) take

a stronger hit for Benchmarks 2 and 3 than Benchmark 1.

Benchmark 2 indicates that using multiple types of PEs instead

of monolithic PE is efficient for tasks as short as 32 cycles.

Benchmark 3 has the lowest parallelism of the three, but

HardCilk efficiency degradation with smaller tasks is still

significantly better than that of OpenCilk.

C. Scalability of the Scheduler

Figure 13 compares the scalability of OpenCilk and Hard-

Cilk. Experiments run tasks that simulate work execution

either in terms of empty loop iterations for OpenCilk or

cycles for HardCilk. Simultaneous multithreading is turned

off when the thread count is smaller than the number of CPU

cores–28 in our case. OpenCilk shows almost linear scalability

for up to 14 threads, after that point the task management

overhead degrades scalability. With SMT turned on and using

56 execution threads, they compete for the resources of the

same cores, further hampering the performance. In contrast,

HardCilk shows linear scalability for up to 128 PEs. Only at

256 PEs, the scalability is sublinear and we attribute this to

the exacerbated latency of the ring networks.

D. The Effect of System Servers Number on Efficiency

Figure 14(a) shows that HardCilk is capable of masking the

effect of memory latency on task management by exploiting

the available bandwidth with more scheduler servers. The

experiment is executed using Benchmark 1, a task delay of 8

cycles, and 28 PEs. Figure 14(b) shows that HardCilk can sig-

nificantly enhance the efficiency of the system by distributing

atomic join counters access on a larger number of argument

notifier servers. For this experiment, we use Benchmark 3, a

task delay of 64 cycles, 28 PEs, and a memory latency of 35

cycles. With a faster memory, this graph will saturate faster, as

in Figure 14(a). The results show that HardCilk can saturate

146

Fig. 12: Efficiencies of (a) OpenCilk [7] using 28 threads on a 28-core dual CPU system and (b) HardCilk with 28 PEs. For

all benchmarks, OpenCilk efficiency saturates near 90% with the biggest task size while HardCilk already saturates close to

100% for tasks as short as 64 clock cycles. OpenCilk struggles more with Benchmark 3 as it has the lowest parallelism, while

our system achieves better efficiencies with relatively smaller tasks.

Fig. 13: Scalabilities of (a) OpenCilk with tasks of 1024 empty loop iterations and (b) HardCilk with tasks of 256 cycles.

OpenCilk scales linearly up to 14 threads, after which task management overhead degrades scalability. The stability further

degrades when exceeding the number of physical cores. In contrast, HardCilk scales linearly for up to 128 PEs.

the system and achieve around 98% efficiency with 8 argument

notifier servers in this configuration.

E. Decoupled Access/Execute

Decoupled address/execute (DAE) is a classic technique

to reduce the impact of memory-related stalls on program

performance that has seen renewed interest in the design of

hardware accelerators [12], [13], [14]. In a naı̈ve program,

there is a single type of unit that issues both memory accesses

and performs computation. In case of a memory-related stall,

the entire program stalls without doing any useful work.

DAE addresses such stalls by introducing separate access and

execute units: The access unit issues memory accesses, and the

execute unit performs the computation. In case of a memory-

related stall, only the access unit stops and the execution unit

keeps doing useful work. A compiler generates two instruction

streams for a given program, respectively for access and

execute units; access and execute units communicate over a

queue. We make the observation that HardCilk contains all

the architectural elements required to implement DAE: the

queue can be naturally implemented by our task queues and

networks, and we support different types of PEs.

To demonstrate DAE on HardCilk and show how TLP is key

to tolerate potential high latencies of memory hierarchies, we

designed two experiments that traverse nodes in a linked data

structure. The first experiment consists of a single type of PE

that blocks on memory accesses while the second experiment

has a single access PE and varied number of execute PEs.

The task of an execute PE is a node: it performs a constant

amount of computation (128 ns) and issues other execute tasks

for linked nodes. In the blocking case, the execute PE blocks

while the list of adjacent nodes is fetched from memory;

in the DAE case, the access PE fetches them. The access

PE issues nonblocking memory requests to take advantage of

memory-level parallelism (MLP). We model the memory using

memory delay (which we vary) and the maximum number of

outstanding requests (i.e., its bandwidth, which we fix to 32).

The triangle-series in Figure 15 shows the execution time for

the blocking case. The execution time shows a great sensitivity

to the memory latency. This is because the MLP is limited by

147

Fig. 14: System sensitivity to memory latency varying (a) the

number of scheduler servers (Benchmark 1, task delay = 8

cycles, PE count = 28) and (b) the number of argument notifier

servers (Benchmark 3, task delay = 64 cycles, PE count = 28,

memLatency = 35 cycles). Experiments show that the system

design can mitigate memory latency problems by exploiting

bandwidth.

Fig. 15: Comparison of execution times for decoupled ac-

cess/execute and blocking PE cases. For both, we fix the

computation time to 128 ns and model a memory supporting

32 outstanding requests. We observe that while the execution

time of the blocking PE exhibits a latency sensitivity, DAE

execution time is latency-insensitive as long as the memory

bandwidth is greater than the compute bandwidth.

the number of available execute PEs, making it impossible to

take advantage of the full memory bandwidth. The point-series

in Figure 15 shows the execution time for DAE, which is now

insensitive to memory access latency as long as the memory

bandwidth is sufficient. The memory bandwidth gets saturated

because the access PE can exploit MLP to a greater extent.

The access PE can be implemented in an application-

independent fashion. That is, our framework can provide a

single access PE to be used by a large breadth of different ap-

plications. If a user were to identify critical long-latency loads,

it would be easy for a compiler to split a task and achieve this

TABLE III: Resource utilization. The first section lists the

costs of individual components: C = client, S = server,

Alloc = closure allocator, Sch = scheduler, Arg = argument

notifier, q = task queue, and buf = buffer. The second section

shows the total HardCilk hardware cost for different numbers

of PEs running Benchmark 2.

LUT Util. FF Util. BRAM Util.

Avail. 1,303,680 100.00% 2,607,360 100.00% 2,016 100.00%

AllocC. + buf. 52 0.00% 147 0.01% 0 0.00%

AllocS. 793 0.06% 1,243 0.05% 0 0.00%

SchC. + q. 985 0.08% 969 0.04% 8 0.40%

SchS. 1,940 0.15% 556 0.02% 0 0.00%

ArgC. + buf. 112 0.01% 94 0.00% 0 0.00%

ArgS. 685 0.05% 801 0.03% 0 0.00%

8 PEs 13,283 1.02% 13,076 0.50% 64 3.17%

16 PEs 22,842 1.75% 21,785 0.84% 128 6.35%

32 PEs 42,079 3.23% 39,230 1.50% 256 12.70%

64 PEs 79,792 6.12% 74,027 2.84% 512 25.40%

128 PEs 155,172 11.90% 143,707 5.51% 1,024 50.79%

insensitivity with an automatic code transformation.

F. Synthesis Results

To evaluate the resource utilization of HardCilk, we synthe-

sized the system in Benchmark 2 for AMD FPGAs. We report

our synthesis results in Table III for the FPGA with part num-

ber xcu280-fsvh2892-2L-e, which is used by Alveo U280

data centre FPGA board, using Vivado 2022.2. Our design

works at a clock frequency of 250 MHz.

For most resource types, utilization is a small fraction of

those available. Figure 16 shows that the resource utilization

increases linearly with the increasing number of PEs. How-

ever, BRAM utilization, compared to other resource types, is

particularly high. The synthesized design contains task queues

of 32 items for 256-bit tasks and task queues are the only

type of resource that use BRAMs. Synthesis reports indicate

that Vivado uses 8 BRAM primitives with a width of 32 bits

and a depth of 1024 elements to implement them. This is not

ideal: only a small fraction (32/1024 = 3.125%) of the BRAM

resources are actually utilized. However, our design relies on

double-ended queues, for which BRAMs are the most suitable

memory resource on FPGAs. We reckon that a more optimized

implementation might access a single BRAM primitive in

several cycles of a faster clock to share the resource across

queue and improve the efficiency.

V. RELATED WORK

A fairly small number of papers already explored the use

of TLP on FPGAs. One of the first efforts implemented

k-mean clustering with OpenCL atomics [15]. The paper

performed load balancing via work-stealing managed on the

host side, but host-side management of scheduling led to

148

Fig. 16: Resource utilization relative to 8 PEs. As the number

of PEs increase, resource utilization increases linearly.

a high performance overhead. TaPaSCo [16] used a similar

software-side management of tasks but provided a tool flow

to produce accelerators integrated into usable systems-on-chip.

The accelerators were produced based on an HLS description

of the accelerator core. Cascabel [10] tried to overcome

the need for multiple round-trips between the host and the

accelerators for task management. For this, it added on-

chip task scheduling and launching capabilities to TaPaSCo.

Nonetheless, Cascabel used a BRAM-based stack limiting

the recursion depth, had generally limited flexibility, and

blocked PEs for the duration of subtask recursive execution;

the versatility was therefore unmatched to the expectations of

software programmers. TAPAS [17] used pipelined dataflow

execution units with dynamic task scheduling to execution

tiles. Further, it supported recursive parallelism. Yet, the paper

has no discussion of load balancing and load imbalance is

visible in the results. TAPA [18] is similar to TAPAS, but uses

a static mapping of tasks to execution units. The paper focuses

more on reducing HLS code size and accelerating software

simulation and hardware generation.

ParallelXL [3] is probably the piece of prior work that

is closest to our goals. Like HardCilk, ParallelXL provides

on-chip dynamic load balancing and dynamic task spawning.

ParallelXL developed full hardware support for the execution

model introduced in Cilk [5] and used HLS to generate

accelerators from C++ descriptions of the tasks, much as we

do. Yet, as we anticipated in the introduction, we feel that

ParallelXL did not exploit some key opportunities to specialize

in hardware key pieces of functionality, such as adding our

dedicated stealing and continuation support for each task, as

we instead did. On the other hand, although implemented

in hardware, most of their architecture strongly reminds of

a classic multicore architecture, with PEs implementing all

possible tasks and the interconnect network loaded with all

messages. We believe that the authors left on the table a

significant potential that a reconfigurable TLP system could

profitably exploit. Unfortunately, their design is neither open-

source nor available directly from the authors, so we could

not compare quantitatively to it.

Commercial HLS tools also provide limited support for

TLP: Vivado by Xilinx/AMD, for instance, makes it possible

to simply instantiate a single hardware unit per task (a C/C++

function) and connects these units using hardware FIFOs.

There is no out-of-the-box solution for load balancing in

case of multiple hardware units and it is thus more of a

support for streaming processing. Moreover, deadlocks are

possible: FIFOs implemented purely using FPGA resources

are naturally bounded [19]. Clearly, with what existed prior to

HardCilk we were still far from being able to run state-of-the-

art task parallel software on FPGAs. We hope that this work

is a significant step in this direction.

VI. CONCLUSION

In this paper we argue that software-like TLP deserves to be

a first-class citizen in HLS tools targeting FPGAs. We think

TLP management is a perfect task for efficient spatial imple-

mentation and have shown that it is possible to conceive a few

relatively simple components and some dedicated networks

to support very efficiently arbitrary combinations of tasks. In

doing that, we have ensured that any critical hardware resource

is virtualized into main memory, when needed, to give the

same resource-agnostic experience one gets in software TLP.

We exploit the massive parallelism of TLP applications to

ensure that PEs are constantly busy irrespective of the latency

of critical components such as DRAM. The result is HardCilk:

an open-source Chisel generator [4] that creates the complete

task management system for Cilk-like TLP applications.

We have built a set of synthetic workloads that gave insights

into the efficiency of our architecture. In particular, we have

shown that even our simple work-stealing and continuation

components achieve an almost perfect efficiency for a broad

set of execution parameters; all HardCilk needs is to scale up

some critical resources depending on the application charac-

teristics and the level of parallelism in the hardware. While

we have modelled memory accesses from our system, we

have deliberately excluded user memory accesses from most

of our synthetic benchmarks, because the construction of an

efficient memory system for TLP-like applications is a totally

orthogonal problem. Yet, we have also shown that our efficient

fine-grain TLP is perfectly apt to implement tasks so as to

mask the memory system latency making memory bandwidth

the accelerator bottleneck rather than latency; this can be

achieved through simple code refactoring that most likely a

compiler could automate.

Finally, we note that HardCilk is not yet integrated into

a TLP compiler or library but that its integration seems

perfectly feasible: Already, most parameters input to HardCilk

are directly obtainable by static analysis of the TLP code

whilst PEs can be completely designed with commercial HLS

tools. Other sizing parameters that HardCilk needs to generate

the full system may require some design-space exploration, but

our experiments show that their effect is clear and predictable,

boding well for simple heuristics. Ultimately, we aim to

develop a comprehensive Cilk-like compiler for FPGAs, and

we believe that HardCilk is its cornerstone.

149

REFERENCES

[1] J. Blanuša, R. Stoica, P. Ienne, and K. Atasu, “Manycore clique
enumeration with fast set intersections,” Proc. VLDB Endow.,
vol. 13, no. 12, p. 2676–2690, jul 2020. [Online]. Available:
https://doi.org/10.14778/3407790.3407853

[2] J. Blanusa, P. Ienne, and K. Atasu, “Scalable fine-grained parallel cycle
enumeration algorithms,” in Proceedings of the 34th ACM Symposium
on Parallelism in Algorithms and Architectures, ser. SPAA ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
247–258. [Online]. Available: https://doi.org/10.1145/3490148.3538585

[3] T. Chen, S. Srinath, C. Batten, and G. E. Suh, “An Architectural Frame-
work for Accelerating Dynamic Parallel Algorithms on Reconfigurable
Hardware,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Oct. 2018, pp. 55–67.

[4] M. Shahawy, C. Sönmez, C. Belentepe, and P. Ienne, “Hardcilk:
Cilk-like task parallelism for fpgas,” Apr. 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.10971564

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” SIGPLAN Not., vol. 30, no. 8, p. 207–216, aug 1995. [Online].
Available: https://doi.org/10.1145/209937.209958

[6] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation, ser. PLDI ’98. New York, NY, USA: Association
for Computing Machinery, 1998, p. 212–223. [Online]. Available:
https://doi.org/10.1145/277650.277725

[7] T. B. Schardl and I.-T. A. Lee, “Opencilk: A modular and extensible
software infrastructure for fast task-parallel code,” in Proceedings of
the 28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 189–203. [Online].
Available: https://doi.org/10.1145/3572848.3577509

[8] C. F. Joerg, “The Cilk system for parallel multithreaded computing,”
Ph.D. Thesis, Massachussetts Institute of Technology, Boston, Mass.,
Jan. 1996.

[9] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[10] C. Heinz and A. Koch, “On-Chip and Distributed Dynamic Parallelism
for Task-based Hardware Accelerators,” Journal of Signal Processing
Systems, vol. 94, no. 9, pp. 883–893, Sep. 2022. [Online]. Available:
https://doi.org/10.1007/s11265-022-01759-2

[11] J. Blanuša, R. Stoica, P. Ienne, and K. Atasu, “Manycore clique enumer-
ation with fast set intersections,” Proceedings of the VLDB Endowment,
vol. 13, no. 11, pp. 2676–90, Jul. 2020.

[12] J. E. Smith, “Decoupled access/execute computer architectures,” ACM
Transactions on Computing Systems (TCS), vol. 2, no. 4, pp. 289–308,
Nov. 1984.

[13] T. Chen and G. E. Suh, “Efficient data supply for hardware accelerators
with prefetching and access/execute decoupling,” in Proceedings of
the 49th Annual International Symposium on Microarchitecture, Taipei,
Taiwan, Oct. 2016, pp. 1–12.

[14] T. J. Ham, J. L. Aragón, and M. Martonosi, “Decoupling data supply
from computation for latency-tolerant communication in heterogeneous
architectures,” ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 14, no. 2, pp. 16:1–16:27, Jun. 2017.

[15] N. Ramanathan, J. Wickerson, F. Winterstein, and G. A. Constantinides,
“A Case for Work-stealing on FPGAs with OpenCL Atomics,” in
Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. Monterey California USA: ACM,
Feb. 2016, pp. 48–53. [Online]. Available: https://dl.acm.org/doi/10.
1145/2847263.2847343

[16] C. Heinz, J. Hofmann, J. Korinth, L. Sommer, L. Weber,
and A. Koch, “The TaPaSCo Open-Source Toolflow: for the
Automated Composition of Task-Based Parallel Reconfigurable
Computing Systems,” Journal of Signal Processing Systems,
vol. 93, no. 5, pp. 545–563, May 2021. [Online]. Available:
https://link.springer.com/10.1007/s11265-021-01640-8

[17] S. Margerm, A. Sharifian, A. Guha, A. Shriraman, and G. Pokam,
“TAPAS: Generating Parallel Accelerators from Parallel Programs,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Oct. 2018, pp. 245–257.

[18] Y. Chi, L. Guo, J. Lau, Y. Choi, J. Wang, and J. Cong,
“Extending high-level synthesis for task-parallel programs,” in
29th IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines, FCCM 2021, Orlando, FL, USA,
May 9-12, 2021. IEEE, 2021, pp. 204–213. [Online]. Available:
https://doi.org/10.1109/FCCM51124.2021.00032

[19] Xilinx, “Abstract parallel programming model for
hls,” https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/
Abstract-Parallel-Programming-Model-for-HLS, accessed on: March
15, 2023.

150

