
Learning for Adaptive and Reactive Robot Control

Instructions for Practical 1

Professor: Aude Billard
Contact: aude.billard@epfl.ch

Introduction

In this practical, you will apply the Model Predictive Control (MPC) and Dynamical Systems
(DS) methods developed during previous exercise sessions to control the motion of the end-
effector of a 7 degree-of-freedom Panda robot in 3D. You will apply and compare the SEDS
and LPVDS methods to learn the DS. We provide you with different datasets to compare the
performance of the algorithms.

1. The first of these datasets is generated from a theoretical DS, which allows for a ground
truth comparison. The other two datasets are closer to reality.

2. The second dataset is generated from a MPC controller as you saw in the first exercise ses-
sion. It shows you an example of how kinematically and dynamically feasible trajectories
can be generated using MPC and subsequently learned to have a closed-form control law.
To appreciate the advantage to have a closed-form solution, you will test the reactivity of
the system to disturbances you can inject on-line.

3. The third dataset is generated from human demonstrations. This is a noisy dataset. You
will then observe how noise affects performance of the learning and discuss methods to
reduce these imperfections through some pre-processing.

If you skipped the lecture 4 exercises, you need to run the setup code ch3.m file to compile
some libraries before starting the practical.
If you’re using MacOS, there are additional steps to follow BEFORE running setup code ch3.m.
Instructions are available in the READ ME in the lecture4-learning-control-laws/mac setup

directory.

1 Dataset 1: Theoretical DS

The first dataset called theoretical DS dataset.m was generated by sampling path integrals
from a known linear dynamical system using the script dataset/generate theoretical DS.m.
It serves as a warm-up for the practical session, and as a reference on the ideal performances
you can have with SEDS, as it was designed to match the SEDS formulation:

ẋ = f(x; Θ) =
K∑
k=1

γk(x)(A
kx+ bk) (1)

with f(x,Θ) our theoretical dynamical system. To simplify things, we only use one linear
DS (K=1), so γk(x) = 1 and thus:

1



ẋ = f(x; Θ) = Ax+ b (2)

Here we build A from a rotation of π/4 around the x1 axis, and b to have the system converging

to the target x∗ =
[
0.5 0 0.3

]T
:

A = −Rx(π/4) ≈

−1 0 0
0 −0.525 0.851
0 −0.851 −0.525

 b = −A ∗ x∗ ≈

 0.5
−0.255
0.158

 (3)

TASK 1 Use the SEDS algorithm to learn a DS that fits this dataset. To do this, use the
file learning 3D DS.m which is a template file containing code to import a dataset and
export a dynamical system for simulation. At line 60, add your code to learn SEDS, using
solution code from exercise ch3 ex3 seDS.m (step 2a, 2b, 3 and 5) of lecture 4. Answer
the following:

1. Determine the best parameters to fit SEDS. How many gaussians do you need at
minimum for optimal performance (optimal mean-square error)? Change the vari-
able do ms bic to 0, and define the variable nb gaussians manually to test your
hypothesis.

2. Change the boolean do ms bic back to 1 to determine automatically the best number
of Gauss functions. Does this match your estimate?

3. Test each of the two initialization algorithm with the best number of Gauss functions
from BIC and from your own estimate. Does this influence the estimate?

4. Test the two objective functions (MSE or Likelihood) with the optimal set of Gauss
functions from BIC and your own. Does this influence the result?

5. Write you choice of parameters and the best evaluation metrics (step 4) you obtained
with them:

6. [Optional] You can determine numerically A and b (equation 3) by using the corre-
spondence between the SEDS model and a mixture of linear DS (book p.58). In the
case we have one gaussian (K=1):{

A = Σẋx(Σx)
−1

b = µẋ −Aµx

(4)

Σ is the 6-by-6 covariance matrix and µ is the 6-by-1 mean vector, respectively called
Sigma and Mu in ch3 ex3 seDS.m. The upper-left corner (3-by-3 matrix) of Σ is Σx,
and the bottom-left corner is Σẋx. Similarly, the three first rows of µ correspond to
µx and the three bottom rows to µẋ. Because the positions vector have been shifted

into the attractor reference frame, b = x∗ =
[
0 0 0

]T
.

TASK 2 Once you are satisfied with your results for task 2, you can launch the file DS control.m

to simulate the panda robot following your DS. The simulation uses the file ds control.mat

2



that stores your DS. To create this file, you have to run the last part of learning 3D DS.m

with the correct option usingSEDS = true. During the simulation, you can use the key-
board to create force disturbances along the three Euler axes. The key correspondence
is:

• A and D generate forces pointing on either direction of the x̂ axis

• Q and E generate forces pointing on either direction of the ŷ axis

• W and S generate forces pointing on either direction of the ẑ axis

TASK 3 Verify that the panda robot converges to the attractor from different initial positions,
and that the path follows a spiral motion of the theoretical dataset.

TASK 4 [Optional]: Try changing the file dataset/generate theoretical DS.m to imple-
ment your own linear or nonlinear DS. Recall the conditions that need to be satisfied
to have a stable DS and make sure to implement them correctly in 3D. How does the
parameters of the dataset generation affects the results of the learned DS ?

1. optSim.dt: integration timestep

2. optSim.iMax: maximum number of integration steps

3. optSim.tol: tolerance on velocity at attractor (difference to zero)

4. nPoints: length of each trajectory in the dataset

3



2 Dataset 2: Learning Model Predictive Control

The second dataset has been generated from a Model Predictive Control (MPC) trajectory
planner. Similarly to the exercises of lecture 1, this algorithm generates kinematically feasible
trajectories from a random position to a target position. For this practical, we updated the
model to work with the 7 degree-of-freedom Panda robot, added a model of the robot’s dynamic,
and orientation tracking. All these new features make this algorithm very slow to run, making
it impossible to use in real-time applications.

The goal of this section is to approximate the MPC algorithm using SEDS and LPVDS.
To do this, we provide you with a training and a testing dataset composed each of 10 trajec-
tories computed offline by the MPC. You can open them the same way in the template file
learning 3D DS.m by loading MPC train dataset.mat or MPC test dataset.mat at line 26.

TASK 1 Try learning the MPC dataset using SEDS:

1. Create a new file from learning 3D DS.m to learn the MPC dataset using SEDS. We
suggest you start with the following parameters :

• nb gaussians: 12

• Initialization algorithm 1

• Objective function: Likelihood

What is the best result you can get with these parameters ? Can a combination of
them improve your fit ?

2. You can improve your solution by increasing the SEDS parameter options.max iter.
How much better is the solution ? You can use the MPC test dataset.mat to
make sure you are not overfitting the MPC train dataset.mat. To do this, load
MPC test dataset.mat, and run the Plot Resulting DS section, then the Step 4
(Evaluation) section, without re-solving SEDS.

TASK 2 To obtain a better fit, we will try using LPVDS.

Here, there are two main parameters which will affect your computations : the GMM
initialization to estimate the number of gaussians K and the set of constraints used for
the GMMs during optimization.

These parameters have three possible methods each, which are presented here again for
simplicity.
Methods for GMM initialization :

• GMM-EM Model Selection via BIC (est options.type=1)

• CRP-GMM : Bayesian non-parametric mixture model (est options.type=2)

• Physically-Consistent non-parametric mixture model (est options.type=0)

Types of constraints for GMMs during optimization :

• (O1)
{(

Ak
)T

+Ak ≺ 0, bk = −Akx∗ ∀k = 1, . . . ,K

• (O2)
{(

Ak
)T

P + PAk ≺ 0, bk = 0 ∀k = 1, . . . ,K; P = P T > 0

4



• (O3)
{(

Ak
)T

P + PAk ≺ Qk, Qk =
(
Qk

)T ≺ 0, bk = −Akx∗ ∀k = 1, . . . ,K .

1. Create a new file from learning 3D DS.m to learn the MPC dataset using LPVDS.
Use the code from the file ch3 ex4 lpvDS.m (step 2, 3 and 5) of lecture 4.

2. Change the variable est options.type to try the different GMM initialization.
Which one works best ?

3. Change the variable constr type to 0, 1, or 2 to change the type of GMM constraint.
Which one works best ?

4. Report here your best fit for the training and testing datasets. How does it compare
with SEDS ?

5. Export your DS by setting the variable usingSEDS = false, and study the closed
loop simulation of your DS using the file DS control.m

6. Based on your results, compare MPC based Dynamical system with normal MPC.
Give one advantage and one disadvantage when approximating the initial MPC tra-
jectory planner.

5



3 Dataset 3: Teaching a motion using dynamical system

The last type of dataset comes from real-world recordings of the robot’s joint positions and
velocities, that were demonstrated by a human moving the robot’s joints in a passive manner.
We didn’t do any post-processing on the data gathered during the experiment.

Figure 1: Experiement setup, with the panda robot at the attractor, and the demonstration
dataset overlayed in red

Your task here is to reuse the code from Dataset 2 to learn this new dataset using SEDS
or LPVDS, and understand how the imperfections of the real world affect the quality of the
dataset and the fit of the algorithms. Figure out some simple corrections to apply to the dataset
that would improve the fit.

TASK 1 Fit a DS to the demonstration dataset:

1. Start by again creating a new file based on the same template learning 3D DS.m

and modify it to load the dataset demonstration dataset.mat

2. Observe the dataset: do you expect SEDS and LPVDS to achieve similar results or
for one to be better than the other? Verify your assumption by running SEDS and
LPVDS using the same best parameters as found for the MPC solution.

3. Try updating the parameters to improve the fit. What is the best result you can get ?

4. Find at least two reasons why the fit on this dataset is worse than the others.
Hint : find where on the dataset the velocity is not well defined, ambiguous, or of

6



poor quality, resulting in a bad demonstration trajectory.
Hint 1 : Remember that on a real dataset, the velocity starts at zero at the beginning
of the trajectory.

TASK 2 [Optional]: Implement some simple pre-processing on the dataset to correct these
issues. Does the fit improve, and, if so, by how much ?

1. Plot each trajectory one-by-one (line 34 to 38 in learning 3D DS.m) to detect bad
demonstration trajectories, and remove them from the 3D array trajectories (6-
by-nPoints-by-nTraj) .

2. Smooth each trajectory using a low pass filter. We recommend the sgolayfilt

matlab function which is a non causal filter that works very well for this application.

3. Add any other step you judge necessary to improve this dataset.

4. How do these pre-processing steps improve the fit ? Report here your best results.

7



References

[1] Aude Billard, Sina Mirrazavi, and Nadia Figueroa. Learning for Adaptive and Reactive
Robot Control: A Dynamical Systems Approach. MIT press, 2022.

8


	Dataset 1: Theoretical DS
	Dataset 2: Learning Model Predictive Control
	Dataset 3: Teaching a motion using dynamical system

