Learning for Adaptive and Reactive Robot Control
Instructions for Practical 3

Professor: Aude Billard
Contact: aude.billard@epfl.ch

Spring Semester

Introduction

This practical takes place in the LASA robot room ME A3 455 and REHAssist room MED 3
1015, using a Franka Emika Panda robot with 7 degrees of freedom. In this practical you will
teach a task to a Panda robot using kinesthetic demonstrations and the Dynamical Systems
formulation taught throughout the class. You will then control the robot using the learned DS.

The software structure for the practical is as follows: we are using ROS2, with a node
in MATLAB sending cartesian velocity commands computed from a dynamical system, and a
C++ node converting these commands into joint torques for the robot. You will work mainly
with the MATLAB part of the application, but you can also use the terminal to access ROS
topics if needed.

ROS
v v
MATLAB Controller mg > Franka Panda Robot
Application Interface Joint Torgue Controller Receive torques
Record Demonstrations Crientation Controller Send Robot State
Setor Learn DS l Compensates Gravity
Send Twist Commands Rviz
Create Virtual Env for Obstacles Display Live Robot

Display Trajectories

Display Obstacles

Figure 1: Software Structure

The robot is controlled by sending joint torques commands. Our controller tracks the
desired twist (linear and angular velocity) by feedforward linearization and a correction on
twist error. We also control the null space of the robot to stabilize the posture around the
default configuration q:

T=7;+G(@)+C(q,4)q-Dd+719 with 7o =kox N« (q—qp) (1)

with the feedforward terms being 77 the estimated joint torques frictions, G(q) the gravity
torques, and C(q, q)q the Coriolis torques.

Safety Protocol

e Always keep the emergency STOP button within reach and ready to use. Do not hesitate
to use it for any reason. Once pressed, the lights of the robot turn white: Call an assistant
to unlock the robot.

e Only touch and move the robot when the light is blue.

o If the light on the end effector starts flickering, immediately stop trying to to move the
robot. Press the emergency STOP button and call an assistant.

e Whenever you are changing parameters, make sure to first press ”S” to stop sending
commands to the robot.

During this practical, you will be controlling everything using a MATLAB GUI which is
created when launching the practical3 main.m script. With this, you can record demonstra-
tions, learn a DS using those demonstrations and send commands from your DS to the robot,
among other things. Important notes :

e To use the GUI correctly you must first select the interface window, called Figure 1. Make
sure your last mouse click was inside this window before using the keyboard.

e Matlab will display information in the command window whenever a new action begins,
use this to verify that your are using the GUI correctly.

e You only need to run the main script once, as all functions can be called directly from
the command window and code can be edited without needing to close the app. Available
functions and properties are listed at the end of the practical3 main.m script.

1 Part 1: Learning from Kinesthetic Demonstrations

TASK 1 Program a linear DS in Matlab to reach a position in task space. Compare your
results with what you achieved in simulation during the semester.

1. Press”S” in the MATLAB window to be sure the robot position controller is stopped.
Move the robot by hand in the workspace. Which degrees of freedom are controlled,
and which ones are free to move ?

2. Move the robot end effector in the workspace to get a sense of its boundary. Move
slowly the robot to the elbow joint limits. It should automatically stop and blink
blue. Call an assistant to unlock it.

3. Move the end effector to a target position. In the terminal, you can type
ros2 run matlab_bridge print_robot_state.
This runs a small script to display the 3D end effector position in the terminal.

4. In MATLAB’s command window, call the function:
myHub .myDS . setLinearDS(attractor) with the desired attractor as a 3D position
vector to program your linear DS.

5. Press the key "P” (Play) to start the position controller. The robot should now
follow your DS to reach the specified target. Answer the following questions:

e What steady-state error does the robot achieve with this controller? Where does
this error come from?

e How compliant is the robot when you perturb it? Can it still reach the target?
What is the tradeoff between compliance and tracking precision?

Whenever you are changing parameters, make sure to first press ”S” to stop sending commands
to the robot.

TASK 2 Record pick-and-place trajectories so that the robot end effector reaches the inside
of the basket from the top.
You can record a trajectory by pressing the key "R” (record) when starting, then ”S”
(stop) when you finish you demonstration.

Demonstrated trajectories

/_N

Figure 2: Examples of pick-and-place trajectories

1. Record two trajectories starting from close initial positions. When you’re done, you
can press the "L” key (Learn) to start learning with SEDS. If you need to modify
SEDS parameters, you can do so in the function learnSEDS() of the file DS.m, and
press again the "L” key to learn again until you're satisfied with the results.

e Does SEDS fits well your demonstration?
e Does it generalizes well on the whole workspace? What would happen if your
start from another starting position?

2. Press the "P” key to start following your DS and observe the result. In Rviz, you
can see in red the open loop trajectory from your starting point and in green the
robot’s actual path. Do not hesitate to press the emergency stop button before the
robot hits anything.

3. Without deleting your previous dataset, record new trajectories starting from differ-

ent initial conditions to span the whole workspace (see figure 2). Change the learn-
ing algorithm by typing myHub.myDS.algoName = ’LPVDS’, then start the learning

again. Similarly, you can change the LPVDS parameters in the function 1earnLPVDS ()
in the file DS.m.

4. Press the ”P” key to start following your DS. Answer the following questions:

e How well can the robot reproduce your demonstrations? What is the main
challenge?

e How many trajectories are needed for generalization? What other factor affects
generalization?

e How does the quality of your DS affect the tracking performance? What could
happen if the motion is not generalized over the whole workspace?

2 Part 2: Implementing Obstacle Avoidance

TASK 1 Learn a DS to follow the red tape path on the tablers and reach the target without
hitting the obstacle.

1. Use the ”X” key to clear your previous dataset. Record a few trajectories starting
at similar position and following the red path. Don’t approach the obstacle and the
table too much to reduce the chances of collision.

2. Learn the motion using LPVDS and the Physically Consistent Non-Parametric Ini-
tialization (est_options.type = 0). The optimal learning parameters should al-
ready be set.

3. Start the controller to see how well it tracks your DS. Can the robot follow the path
well and avoid all the obstacles at the same time?

TASK 2 Add obstacles and modulate your DS with obstacle avoidance methods

1. Add an ellipsoid in the workspace to represent your obstacle by using
myHub.addEllipsoid(position, axes) with axes the 3D vector of the ellipsoid
semi-axes, and position the 3D vector of it’s center position. The [0,0,0] position is
at the base of the robot. You can call
myHub .updateObstacle (obstacleNumber, newPosition, newDimensions, newRho)
if you need to change the obstacle’s position, dimension, or sensitivity (rho value).
You can use the terminal to match precisely the position in the application and in
your workspace.

% Create a sphere of radius 10cm with default rho value of 1.
myHub.addEllipsoid([0; 0;0], [0.1, 0.1, 0.11);

% Move the sphere (obstacle 1) up by 50cm
myHub.updateObstacle (1, [0; 0; 0.5], [0.1; 0.1; 0.1])

2. In case the modulation is not activated in your DS, you should call the function
myHub.myDS.activateModulation in MATLAB’s command window. Then, press
”P” to command the robot with your modulated DS. Does it now avoid the obstacle?
What about the table?

3. You can now add table avoidance to your DS by adding an horizontal plane in the
workspace to represent the table. You can use the function myHub.addPlane (position,
normal) where normal is the vector normal to the plane. Play the DS again. Can

the robot better avoid the obstacles?
The Rviz display is adapted so the position parameter is the center of the top surface
of the object, to better view and represent an infinite plane.

. Change the sensitivity rho of the obstacles to see their influence on the initial tra-
jectory. What happens if the sensitivity is to large?

o

1 % Set the rho value of the first obstacle to 0.1
2 myDS.myWorld.listOfObstacles(l).rho = 0.1

References

[1] Aude Billard, Sina Mirrazavi, and Nadia Figueroa. Learning for Adaptive and Reactive
Robot Control: A Dynamical Systems Approach. MIT press, 2022.

	Part 1: Learning from Kinesthetic Demonstrations
	Part 2: Implementing Obstacle Avoidance

