Learning for Adaptive and Reactive Robot Control Instructions for exercises of lecture 4

Professor: Aude Billard Assistants: Harshit Khurana, Lukas Huber, and Yang Liu Contacts: aude.billard@epfl.ch, harshit.khurana@epfl.ch, lukas.huber@epfl.ch, yang.liuu@epfl.ch

Spring Semester 2023

Introduction

INTRO

This part of the course follows exercises 3.2, 3.3 and 3.5 and programming exercises 3.1 to 3.4 of the book "Learning for Adaptive and Reactive Robot Control: A Dynamical Systems Approach. MIT Press, 2022".

1 Theoretical exercises [1h]

1.1

Design a matrix $A \in \mathbb{R}^{2 \times 2}$ and Lyapunov function shaping matrix $P \in \mathbb{R}^{2 \times 2}$ to ensure that a linear dynamical system (DS),

$$\dot{x} = f(x) = A(x - x^*)$$

with another attractor at the origin $x^* = [0 \ 0]^T$ to be globally, asymptotically stable (GAS) with respect to the conditions stated using either:

(a) A matrix $Q \in \mathbb{R}^{2 \times 2}$ with the following form:

$$Q = q \, \mathbb{I}_2, \quad q \in \mathbb{R}$$

Solution: Remember that, the system is GAS if

$$A^T P + P A = Q, \quad P = P^T \succ 0, \quad Q = Q^T \prec 0$$

with matrix A and P given as:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad P = \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix},$$

The Q matrix is evaluated as

$$Q = \begin{bmatrix} 2a_{11}p_{11} + 2a_{21}p_{12} & a_{11}p_{12} + a_{12}p_{11} + a_{21}p_{22} + a_{22}p_{12} \\ a_{11}p_{12} + a_{12}p_{11} + a_{21}p_{22} + a_{22}p_{12} & 2a_{12}p_{12} + 2a_{22}p_{22} \end{bmatrix}$$
(1)

The diagonal Q matrix is negative definite if q < 0. The following choice of values can achieve this:

$$p_{11} > 0, \ p_{22} = p_{11} \frac{a_{11}}{a_{22}}, \ p_{12} = 0,$$
 and $a_{11} < 0, \ a_{22} < 0, \ a_{12} = (-1)a_{21} \frac{p_{11}}{p_{22}}$

We obtain:

$$Q = \begin{bmatrix} 2a_{11}p_{11} & 0\\ 0 & 2a_{11}p_{11} \end{bmatrix}$$

(b) Optional A matrix $Q \in \mathbb{R}^{2 \times 2}$ with the following form:

$$Q = \begin{bmatrix} q_1 & q_2 \\ q_2 & q_1 \end{bmatrix}, \quad q_1, q_2 \in \mathbb{R}$$

Solution: The matrix Q is negative definite if the eigenvalues are smaller than zero, i.e.,

$$\lambda_{1,2} = q_1 \pm q_2 < 0 \quad \Rightarrow \quad q_1 < 0, \ |q_2| > |q_1|$$

We propose similar values, but only soften the constraints for a_{12}, a_{21} :

$$|a_{12}p_{11} + a_{21}p_{22}| > 2a_{11}p_{11}$$