
Learning for Adaptive and Reactive Robot Control

Instructions for Practical 2

Professor: Aude Billard
Contact: aude.billard@epfl.ch

Spring Semester

Introduction

In this practical you will develop dynamical systems for 3D obstacle avoidance, and control the
motion of a 7 degree-of-freedom panda robot.

1 Part 1: Defining 3D shapes

In this section, we will derive implicit equations for various 3D shapes, and use them to define
the gamma function of each type of obstacle.
A generic gamma function can be constructed using the following formula:

Γ(x,xc) =
||x− xc||
R(x,xc)

(1)

with R(x,xc) the radius from the center of the obstacle xc to the boundary of the obstacle,
in the direction of the point x.
In this practical, all gamma functions are defined in the referential frame of the obstacle center,
so Eq. (1) becomes:

Γ(x) =
||x||
R(x)

(2)

TASK 1 Program the gamma function and its gradient for a vertical, infinite length cylinder.

The cylinder is vertical, so its cross section in the x-y plane is a circle of constant radius
r. Because the cylinder is of infinite length, the height of its center point (z component)
doesn’t matter, and we can define the reference direction to be always in the x-y plane.
Thus R(x,xc) = r. We also don’t need to model its top and bottom surfaces.

1. Program the gamma function in the class Library/VerticalCylinder.m, following
the convention of Eq. (2). The MATLAB implementation uses the variables x, y and
z to represent a 3D vector, and the structure param to store shape-specific variables.

1 % Example of an hypothetical gamma function:
2 gamma = @(x, y, z, param) (x.ˆ2 + y.ˆ2 + z.ˆ2)*param.length

1

Warning: Do not create a vector out of x, y, z to use matlab built-in vector opera-
tions, but rather use element-wise operations like in the example.

2. In the same class, program the gradientGamma function by computing the gradient
of the cylinder gamma function. Use the same notation as for the function gamma.
Your function should return a 3D column vector.
Hint: you can take the gradient of a simpler gamma function like:
Γ(x, y, z) = x2 + y2 − r2 + 1 as only the gradient direction is used afterward.

3. Create some cylinders to verify your implementation. You can do so in section 1 of
the file practical2 main.m by calling the function myWorld.addCylinder() with
the first argument being the cylinder radius in meter and the second one the 3D
position vector.

1 % Create a cylinder with a radius of 0.2m and a position
2 % in the X-Y plane of [-0.4, -0.4]:
3 myWorld.addCylinder(0.2, [-0.4, -0.4, 0]);

TASK 2 Program the gamma function and its gradient for a 3D ellipsoid.
We will use the same model as in task 1. To find the function R(x) for an ellipsoid, we
first consider a simple ellipse as in figure 1.

x = [x y]

x = x /μe

xe = [xe ye]

y = y /μ e

R(x)
 = μ*||x

||

a

b

Figure 1: Radius R(x,xc) from center of ellipse to the point (xe
ye), with equation (xe

a)2+(yeb)
2 = 1

The point xe = (xe
ye) is on the boundary of the ellipse and the vector (xe

ye) is colinear with
(xy). To find R(x), we solve the following equation:

R(x) = ||xe|| = µ ∗ ||x|| with (
xe
a
)2 + (

ye
b
)2 = 1 (3)

which gives µ = 1√
(x
a
)2+(y

b
)2
, with a and b the two semi-axes of an ellipse.

1. Derive an expression for R(x) and Γ(x) using µ. Adapt this formula for a 3D
ellipsoid, then program the gamma function in Library/VerticalEllipsoid

2

2. In the same class, program the gradientGamma function by computing the gradient
of the ellipsoid gamma function. You can use the gradient of this simpler gamma
function instead of the one derived in the previous question:
Γ(x, y, z) = (xa)

2 + (yb)
2 + (zc)

2.

3. Create some ellipsoids to verify your implementation. You can do so in section 1 by
calling the function myWorld.addEllipsoid() with the first argument being a 3D
vector with the three semi-axes in meter and the second one the 3D position vector
of the ellipsoid center.

1 % Create a cylinder with semi-axes a=10cm, b=10cm, c=20cm,
2 % and a center position at [0, 0.2, 0.5].
3 myWorld.addEllipsoid([0.1, 0.1, 0.2], [0, 0.2, 0.5]);

TASK 3 Study the effect of using this formulation for the gamma function. What are the
shortcomings of this method for multiple obstacles with different sizes and shapes ?

1. Place in your world only one ellipsoid with semi axes of 10cm, 20cm and 30cm
respectively. To plot isosurfaces of your gamma fuctions, use the function
myWorld.showGammaIsosurfaces() with an array of isosurfaces values that you want
to plot.
Hint: An isosurface value of 1 correspond to the surface of your obstacle, and values
above 1 are the outside of the obstacle
How does the gamma values increases in different directions of the ellipsoid ? Why
could this be an issue if you want to avoid this obstacle ?

2. Add a cylinder of radius 30cm in a different part of your workspace. Plot again
the isosurface to compare gamma values of the cylinder and ellipsoid. What do you
observe ?

3. Propose another way of constructing the gamma function based on euclidean distance
that would solve these issues. You can drop the constraint of having gamma values
of less than 1 inside the obstacle, but keep a gamma value of 1 at the boundary.
Hint: Define a gamma function whose values have a physical meaning

TASK 4 Implement your new gamma function formulation.

1. Implement the gamma function of a cylinder with this new formulation in the function
gammaDistance of the file Library/VerticalCylinder.m.

2. Do the same for the ellipsoid in the file Library/VerticalEllipsoid.m

3. Do the same for an infinite plane with normal n.
Hint: Use the dot product of your vector x and the normalized vector n to get the
distance of x to the plane

4. Verify that your new gamma function works by plotting the gamma values outside the
obstacle. You can set the optional second parameter of the showGammaIsosurfaces()
function to 1 to use your new function gammaDistance.

3

2 Part 2: Modulating DS for obstacle avoidance

In this section, a nominal DS is modulated using the gamma function derived in the previous
section.
We use the following formulation to modulate a nominal DS ẋ = f(x):

ẋ =

(
K∏
k=1

Mk

)
f(x) with Mk = Ek Dk Ek−1

(4)

with Mk the modulation for each obstacle using the change of basis method. Ek is an
orthogonal basis with the first vector being the local normal to the obstacle. Then Dk is a
diagonal matrix with eigenvalues λ1,2,3 defined as:

λ1(x) = 1− 1

Γk(x)
and λi(x) = 1 +

1

Γk(x)
2 ≤ i ≤ d (5)

TASK 1 Implement the simple modulation method proposed in Eq. (4) and (5) in the function
modulatedDS at the end of the file practical2 main.m.

1. Go over each obstacle stored in the list world.listOfObstacles, compute the change
of basis Ek using the gradient of gamma gradientGamma, then compute Dk from the
gamma function gammaDistance

1 % Get the gamma value of obstacle k at point x
2 world.listOfObstacles(k).gammaDistance(x(1), x(2), x(3))
3

4 % Get the gradient of obstacle k at point x
5 world.listOfObstacles(k).gradientGamma(x(1), x(2), x(3))

2. Compute Mk from Ek and Dk, then use it to modulate the variable xdot modulated

at each obstacle.

3. Place one obstacle in section 1 of practical2 main.m, then run section 2 to display
the robot and the path integrals of the modulated DS. Repeat with multiple obstacles.
How does the modulated DS adapt to these new obstacles ?

4. Run section 3 (or the whole file at once) to see the modulated DS being followed by
the panda robot. What type of collision cannot we avoid with this formulation ?

TASK 2 Improve the modulation method to better handle multiple obstacles, change the
modulation sensitivity for different obstacles, and take into account the robot end effector
size.
We can improve the modulation by adding two more parameters in equation 5.

λ1(x) = 1− wk

Γk(x)
1
ρ

and λi(x) = 1 +
wk

Γk(x)
1
ρ

2 ≤ i ≤ d (6)

The first parameter is the sensitivity ρ which changes the region of modulation around an
obstacle. Small values of ρ reduce the modulation region so the original DS will be less
affected by the obstacle. Large values of ρ increase the modulation region, and are thus

4

helpful for fragile or dangerous obstacles that should not be approached.
The second parameter is the weight wk which depends on the distance to the k-th obstacle,
and thus increase the modulation effect of the closest obstacles.

wk =
K∏

i=1,i ̸=k

Γi(x)− 1

(Γk(x)− 1) + (Γi(x)− 1)
(7)

Using our new gamma function, Γk(x)−1 is the euclidean distance to the obstacle k. When
close to an obstacle, wk approaches 1 and the eigenvalues of equation 6 are unchanged.
When far away from this obstacle, wk is less than 1 and the modulation is reduced.

1. In the main loop of the modulatedDS() function, compute the weight wk for each
obstacle and update the modulation Mk accordingly.
Hint: You can use the gamma array to more efficiently compute the scalar wk for each
obstacle k using the MATLAB function prod()

2. Use the parameter ρ to modulate each obstacle with different sensitivity. This value
is accessible with world.listOfObstacles(k).rho. You can change this value by
passing it as a third (optional) argument when creating an object.

1 % Create a sphere of radius 10cm with default rho value of 1.
2 myWorld.addEllipsoid([0.1, 0.1, 0.1], [0, 0, 0]);
3

4 % Create the same sphere with a rho value of 0.5
5 myWorld.addEllipsoid([0.1, 0.1, 0.1], [0, 0, 0], 0.5);

3. Use the end effector radius ree = world.endEffectorRadius to create a safe spherical
space around the end effector. To do this, you add a margin ree on your gamma value
Γk(x):

Γk
m(x) =

{
Γk(x)− ree if Γk(x) > 1 + ree

1 if Γk(x) ≤ 1 + ree
(8)

4. Test your new modulation method by adding multiple obstacles of different shapes
and sizes, and try different values of ρ (typically between 0.1 and 10) for each obstacle
to simulate more or less fragile obstacles.
Use the simulation environment to simulate the closed loop behaviour of the robot,
and use the keyboard to generate disturbances.

5. Add a very large sphere centered on the robot base to represent the robot workspace
boundary. The robot end-effector should be inside this sphere. Does this modulation
method works for this scenario ?

6. In section 2 of the file practical2 main.m, you can change the flag usingMPC ds to
true to use our MPC-based DS learned using LPVDS like in practical 1. Does the
modulation method still works for non-linear DS ?
Optional: Try implementing your own linear or non-linear DS and passing it as an
argument to the function modulatedDS(), like it was done for the MPC-based DS
called ds control.

TASK 3 (Optional) Make the obstacles move by defining their velocities, and adapt your
modulation to take into account this velocity.

5

You can set a velocity as a function for each obstacle when instantiating them. All velocity
functions will take the obstacle position x and the time t as inputs and output the velocity
as a column vector. You do not need to use the position and time in your function, but
must keep this general form.

1 % Define a constant velocity in Z axis
2 vel func = @(x,t) [0; 0; 1];
3

4 % Define the obstacle velocity as a DS
5 vel func 2 = @(x,t) (A obs * x + b obs);
6

7 % Define a time-varying velocity vector
8 vel func 3 = @(x,t) [10*cos(50*t); 0; 0];

This velocity function can be passed as an optional fourth argument when creating an
obstacle

1 % Create a sphere with 10cm radius at the origin, a rho value of 0.5, ...
and a velocity function

2 myWorld.addEllipsoid([0.1, 0.1, 0.1], [0, 0, 0], 0.5, vel func);

1. Define a linear DS function and use it to make some obstacles move. Run section 3
to see the obstacle move with the robot.

2. Implement a constant and linear velocity function so that your obstacle goes through
the initially planned trajectory. Is there a velocity for which the robot can no longer
avoid the obstacle ? How can you remedy this ?

3. Include the obstacle velocities in your obstacle-avoidance modulation. To take into
account the multiple obstacle velocities, use a weighted average of the velocities, using
the weight computed in equation 7. You can get the current velocity of obstacle k
with world.listOfObstacles(k).velocity.

6

References

[1] Aude Billard, Sina Mirrazavi, and Nadia Figueroa. Learning for Adaptive and Reactive
Robot Control: A Dynamical Systems Approach. MIT press, 2022.

7

	Part 1: Defining 3D shapes
	Part 2: Modulating DS for obstacle avoidance

