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Abstract

The detection of adaptive loci in the genome is essential as it gives the possibility of
understanding what proportion of a genome or which genes are being shaped by natural
selection. Several statistical methods have been developed which make use of molecular
data to reveal genomic regions under selection. In this paper, we propose an approach to
address this issue from the environmental angle, in order to complement results obtained
by population genetics. We introduce a new method to detect signatures of natural selection
based on the application of spatial analysis, with the contribution of geographical informa-
tion systems (GIS), environmental variables and molecular data. Multiple univariate logistic
regressions were carried out to test for association between allelic frequencies at marker
loci and environmental variables. This spatial analysis method (SAM) is similar to current
population genomics approaches since it is designed to scan hundreds of markers to assess
a putative association with hundreds of environmental variables. Here, by application
to studies of pine weevils and breeds of sheep we demonstrate a strong correspondence
between SAM results and those obtained using population genetics approaches.
Statistical signals were found that associate loci with environmental parameters, and these
loci behave atypically in comparison with the theoretical distribution for neutral loci. The
contribution of this new tool is not only to permit the identification of loci under selection
but also to establish hypotheses about ecological factors that could exert the selection
pressure responsible. In the future, such an approach may accelerate the process of hunting
for functional genes at the population level.
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Introduction

 

Uncovering the genetic basis of adaptation to different
environments represents a goal of central importance in
evolutionary biology (Storz 2005). The detection of signatures
of natural selection within the genomes of organisms is

key, since it may allow a greater understanding of what
proportion of a genome or which genes are being shaped
by ongoing natural selection. Such studies are also of funda-
mental biological interest because they can reveal the very
nature of adaptation and speciation (MacCallum & Hill
2006). In general, regions of the genome that are under
selection are likely to be of functional importance,
and inferences regarding selection may provide important
information (Nielsen 2005). The discovery of such genomic
regions is the keystone of promising applications in
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health, conservation biology and selective breeding (Luikart

 

et al

 

. 2003).
Various methods have been developed to reveal genomic

regions that are likely to be the target of natural selection
(Vasemägi & Primmer 2005). Some of them belong to the
‘candidate-gene’ approach and take a particular locus as a
starting point and assess whether it has been affected by
selection (Phillips 2005; Wright & Gaut 2005). This can be
done, for example, by using neutrality tests based on DNA
sequence variation (Ford 2002; Nielsen 2005). Another
category of methods aims at identifying quantitative trait
loci (QTL) involved in the expression of adaptive traits.
Usually, such QTL are detected by measuring statistical
associations between phenotypic values and genotypes at
molecular markers in a mapping population (Mackay 2001;
Erickson 

 

et al

 

. 2004).
Although these two kinds of approaches have proved

helpful in many cases, their application is nevertheless often
limited to relatively few well-studied species (Phillips 2005)
or to populations that have been studied long enough
to allow environmental variance to be adequately incor-
porated (e.g. Wilson 

 

et al

 

. 2006). They usually require a priori
information that may not be easily accessible for nonmodel
organisms, such as phenotypic or family data (QTL detec-
tion) or information about the sequence and/or function
of the studied gene (Ford 2002; Erickson 

 

et al

 

. 2004).
Fortunately, alternative strategies are now possible with
the development of population genomics, which enables
genome selection studies in the absence of prior knowledge
about the selectively advantageous gene or phenotype
(Storz 2005). Population genomics relies on the principle
that loci across the genome are influenced by genome-wide
evolutionary forces (e.g. genetic drift, gene flow), whereas
locus-specific forces, such as selection, imprint a particular
pattern of variability on linked loci only (Luikart 

 

et al

 

. 2003).
By comparing the genetic diversity of many loci across the
genome, it is then possible to reveal loci displaying an
atypical variation pattern, which are likely to be linked to
those genomic regions affected by selection (Black 

 

et al

 

. 2001).
Therefore, in contrast to candidate-gene-based methods,
strategies making use of population genomics do not focus
on a few loci only, but rather depict the effect of selection
over the whole genome (Storz 2005).

However, the population genomics approach still makes
use of genetic models in order to identify those adaptive
genes, thus resting on hypotheses that are not always veri-
fiable, like the Hardy–Weinberg equilibrium. Moreover,
this strategy makes it possible to detect possible adaptive
loci, but this still remains difficult and above all it is
often not possible to link them up with specific selection
pressures (environmental for example).

In this paper, we propose an approach to address the
issue from an environmental perspective in order to com-
plement results obtained by population genetic models.

We introduce a new method to detect signatures of natural
selection based on the application of spatial analysis.
With the contribution of geographical information systems
(GIS), environmental data, molecular data and multiple
univariate logistic regressions, we test for association
between the allelic frequencies at molecular markers and data
from various environmental variables. This spatial analysis
method (SAM) is totally different from the population
genomics approach, although both are designed to scan
hundreds of molecular markers and have a common goal
that is to identify loci likely to be under natural selection.

We applied this approach to two case studies. The first
concerns large pine weevil (

 

Hylobius abietis

 

) populations
at 20 infested European sites (Fig. 1). This major pest of
conifer plantations is widespread throughout European
managed forests, where its life cycle and activity vary
according to location (reviewed in Day 

 

et al

 

. 2004). The
combination of a large geographical range together with
large populations, where genetic drift is likely to be minor
(Conord 

 

et al

 

. 2006), makes it a potentially good candidate
to detect signatures of natural selection throughout various
environmental gradients at the continental scale. In this
case, 10 environmental variables were exploited in order to
look for signatures of natural selection within the genome of
the pine weevil, which was analysed using 83 polymorphic
amplified fragment length polymorphism (AFLP) markers
(with band frequency varying between 0.09 and 0.86).

The second case study focuses on breeds of sheep (

 

Ovis
aries

 

) sampled in the context of the European ECONO-
GENE Project, whose goal was to address the conservation
of sheep and goat genetic resources in marginal agrosystems
in Europe (http://www.econogene.eu). Fifty-seven sheep
breeds originating from European and Middle Eastern
countries were analysed (Fig. 2). As agriculture spread from
the Middle East via southeastern Europe to the rest of Europe
in the Neolithic (Ryder 1983), numerous sheep breeds were
developed. This was partly due to selection by man but
also to climatic and other environmental variables, since
Europe is a geographically complex continent with a particu-
larly wide variety of landscapes and climates: highland
regions of the Alps contrast to lowland plains of Poland,
Germany or the Netherlands, and the oceanic wet and cold
climate of northern Europe to the dry Mediterranean.
Further, there is no palaeoevidence for wild sheep having
been indigenous to Europe during the Pleistocene (Clutton-
Brock 1999), hence rapid adaptation to hostile environments
is expected to have shaped at least some of the genomic
diversity in marginal European sheep breeds. We thus
expected that evidence for divergent selection should be
detected in European sheep, both as a response to human-
mediated selection and due to environmental selection
pressures on marginal habitat. Here, genomic diversity was
estimated using 31 microsatellite markers (mean expected
heterozygosity 0.72).
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Both case studies (

 

Hylobius abietis

 

 and

 

 Ovis aries

 

) were
also analysed using the population genomics methodology
described in Beaumont & Nichols (1996) in order to
compare the results provided by the two approaches.

 

Materials and methods

 

Spatial Analysis Method

 

SAM is based on one of six concepts of spatial analysis
distinguished by Goodchild (1996). In order to connect
genetic information with geo-environmental data (i.e.
information characterizing animal or plant organisms
with properties of their surroundings), we utilize 

 

spatial
coincidence

 

 analysis. This approach associates information
levels and is able to compare across them thanks to their
common geographical coordinates. Thus SAM requires a
geo-referenced data set comprising one or more environ-
mental variables describing the sampling location (for
instance mean monthly precipitation), and a geo-referenced
molecular marker data set for the study population(s).

Logistic regression is then used to provide a measure
of the association between the frequency of molecular
markers or AFLP bands and the environmental parameters
at each site. AFLP data are ideal for logistic regression

because they provide binomial information. However,
in the case of microsatellites, it is necessary to encode the
data: each allele is set to ‘1’ if it occurs in a given individual,
and to ‘0’ if not. Then the association is tested between each
allele and each environmental parameter. Logistic regression
is used to assess the significance of the models constituted
by all possible [marker 

 

↔

 

 environmental variable] pairs,
and to highlight the markers implicated in the most signi-
ficant models as potential candidates for linkage to genomic
regions involved in adaptation. To this end, the signi-
ficance of coefficients calculated by the logistic regression
function is evaluated by statistical tests addressing the
question of whether a model including an environmental
variable is more informative about the response variable
than a model with a constant only. In logistic regression,
the comparison of observed with predicted values is based
on the log-likelihood function. Following Hosmer &
Lemeshow (2000), we used the likelihood ratio (

 

G

 

) and
Wald tests to determine the significance of the models:

(a) The likelihood ratio or 

 

G

 

 statistic is

where 

 

L

 

 is the likelihood of the initial model (with a constant
only) and 

 

L

 

′

 

 is the likelihood of the new model including

Fig. 1 Spatial distribution of the studied pine weevil populations in Europe (black dots). Limousin populations are: (1) Royère, (2) Maussac,
(3) Bellechassagne, (4) Annouillards, (5) Basville, (6) Ebraly and (7) Pontgibaud; and Ardèche populations are: (8) St Etienne de Lugdares,
(9) Lachamp Raphaël, (10) Les Quatre Vios and (11) Mézilhac. [Topography: SRTM30 NASA]
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the examined variable. If added parameters are equal
to zero, this statistic follows a chi-squared distribution,
where the degrees of freedom equal the number of added
parameters (Hosmer & Lemeshow 2000).

(b) The Wald statistic is

where 

 

β

 

 is the maximum likelihood for parameter 

 

i

 

; 

 

b

 

i

 

 is the
maximum likelihood estimate of the parameter 

 

β

 

i

 

, and

 

σ

 

(

 

b

 

i

 

) an estimate of its standard error. Under the null
hypothesis, the resulting ratio follows a normal distribution.
The method to assess the variance is in accordance with
the theory of maximum likelihood (Hosmer & Lemeshow
2000). For both tests, the null hypothesis is that the model
with the examined variable does not explain the observed
distribution better than a model with a constant only.

A model is considered significant only if both tests reject
the corresponding null hypothesis. Indeed, contradictory
observations were found in the literature about their

reliability. Hauck & Donner (1977) consider that the Wald
test behaves in an aberrant manner and often fails to reject
the null hypothesis. Agresti (1990) and Tu & Zhou (1999)
state that the likelihood ratio test outperforms the Wald
statistic, while the performance of the latter is satisfactory
when the size of the samples is large. Whereas Conte & de
Maio (2003) stipulate that the Wald test outperforms the
others and is very effective: in case of large logit coefficients
the standard error is inflated. This lowers the Wald statistic
and leads to type II errors, i.e. false negatives (Menard 2002).

Given the fact that molecular data sets may contain
many markers and that many different environmental
parameters are likely to describe a sampling site, many
univariate models have to be run simultaneously in order
to detect markers likely to be under natural selection. It is
recognized that when one wishes to test several hypotheses
at a common significance level 

 

α

 

 simultaneously, the
generalized type I error probability (the probability of
rejecting at least one of the hypotheses being tested that
is in fact true) is typically much higher than 

 

α

 

 (multiple

Fig. 2 Spatial distribution of sheep breeds through the ECONOGENE study area. 1. Churra Braganzana, 2. Spanish Merino I and II, 3. Rubia
del Molar, 4. Colmenarena, 5. Exmoor Horn, 6. Manchega, 7. Welsh Mountain, 8. Scottish Blackface, 9. Segurena, 10. Swaledale, 11. Thones
et Marthod, 12. delle Langhe, 13. Bergamasca, 14. German Merino (Merinolandschaf), 15. German Grey Heath, 16. Rhoensheep, 17. White/
Brown Mountain, 18. Laticauda, 19. Gentile di Puglia, 20. Altamurana, 21. Pomeranian, 22. Cikta, 23. Polish Merino, 24. Hungarian Merino,
25. Shkodrane, 26. Bardhoka, 27. Hungarian Tsigaia, 28. Kameniec, 29. Polish Mountain (Gorska), 30. Ruda, 31. Wrzosowska, 32.
Keffaleneas, 33. Orino, 34. Magyar Racka, 35. Zelazna, 36. Kalarritiko, 37. Karagouniko, 38. Transylvanian Merino, 39. Pilioritiko, 40.
Skopelos, 41. Turcana, 42. Kymi, 43. Sfakia, 44. Romanian Tsigaia, 45. Anogeiano, 46. Lesvos, 47. Black Karakul, 48. Ossimi, 49. Daglic, 50.
Cypriot fat-tailed, 51. Karayaka, 52. Akkaraman, 53. Morkaraman, 54. Naemi* (Saudi Arabia), 55. Heri* (Saudi Arabia) and 56. Najdi* (Saudi
Arabia) *breeds from Saudi Arabia are not accurately located. [Topography: SRTM30 NASA]
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hypotheses testing). There are a large number of multiple
testing procedures available. We chose to apply the
Bonferroni correction (Shaffer 1995). This correction divides
the desired significance threshold 

 

α

 

 by the number of
comparisons (the number of models simultaneously
processed). Although this correction is known to be very
conservative (Garcia 2004; Narum 2006), we chose to
efficiently limit the number of significant models in order
to restrict the analysis to robust candidate associations.
Moreover, the application developed easily allows adapta-
tion of the confidence threshold and thus one can gradually
take more models into consideration.

The processing of the numerous resulting models has been
automated within the 

 

sam

 

 program developed in Matlab®,
and makes use of the GLMfit (generalized linear model
fitting, MacCullagh & Nelder 1989) function. The procedure
manages the number of models to be calculated (the user
has to indicate the number of markers and the number
of environmental variables to be processed), solves the
likelihood equations allowing the maximum likelihood
estimates of the parameters to be determined, calculates
the 

 

P

 

-values associated with both 

 

G

 

 and Wald statistical
tests for each model, generates graphs with response
curves for each model, and exports tables in text format to
be imported in any spreadsheet or statistical software.
To analyse the results, an Excel macro was developed in
Visual Basic to set up dynamic tables designed to automati-
cally process the large amount of results provided by the

 

sam

 

 program. It allows the user to set an initial confidence
level and to progressively adapt it in order to identify the
most significant models. Both 

 

sam

 

 and the Excel macro can
be obtained on demand.

The method highlights molecular markers involved in
significant models as defined by both statistical tests, and it
also provides the list of markers revealed by one test only.
Indeed, it may happen that the maximum number of itera-
tions is reached before the maximum likelihood equation is
solved for one of the tests. In this case, the system allows the
user to take the model into consideration if a marker was
detected by a population genetics approach for instance.

 

Population genomics analysis

 

To assess the results provided by 

 

sam

 

, the AFLP data set
was analysed with 

 

dfdist

 

 and the microsatellite data set
with 

 

fdist

 

2. Both programs are modified from 

 

fdist

 

(Beaumont & Nichols 1996). 

 

dfdist

 

 is designed to handle
dominant markers. The 

 

fdist

 

2 method is a 

 

F

 

ST

 

-outlier
test using coalescent simulations to model the behaviour
of neutral loci under a symmetrical island model of popu-
lation structure (Wright 1951). It is based on the principle
that genetic differentiation between populations is expected
to be higher for loci under divergent selection than for the
rest of the genome, considered as neutral. In the 

 

dfdist

 

version, the Bayesian method developed by Zhivotovsky
(1999) is implemented to estimate allele frequencies from
the proportion of recessive phenotypes in the sample.
For each locus, the allele frequencies are used to compute

 

F

 

ST

 

 values conditional on heterozygosity. Loci showing
atypical differentiation behaviour (i.e. 

 

F

 

ST

 

) and lying outside
the simulated neutral distribution are then detected as
outliers. The 

 

fdist

 

 method was selected to directly compare
results for both codominant and dominant markers and
because comparisons across studies have shown that the
approach is relatively robust to violations of its assump-
tions on mutation, migration and population structure
(Beaumont & Nichols 1996).

 

Pine weevil

 

The large pine weevil 

 

Hylobius abietis 

 

L. (Curculionidae) is one
of the most important economic pests of European conifer
forests; the larvae feed under the bark of stumps and roots
of recently felled trees, and take from three months to
two years to develop into adults, depending on location
(Day 

 

et al

 

. 2004), presumably because of climatic conditions
and/or host plant quality (von Sydow & Birgersson 1997;
Thorpe & Day 2002). The adults are active only under cool
climatic conditions, usually in spring and autumn, and
burrow into the soil during hot summers and cold winters;
adults can fly large distances and can live up to four years
(Day 

 

et al

 

. 2004). Because of this complex life cycle, several
climatic factors including temperature, precipitation, soil,
frost and wind speed may have either a direct impact on
larval/adult survival, or a more indirect impact on fitness
through host plant quality, and represent therefore potential
selective forces acting on the pine weevil genome at a large
geographical scale. A total of 367 weevils (larvae and adults)
were collected in 20 managed forest sites across Europe in
Estonia, Poland, Finland, Ireland and France, covering most
of the geographical range of the species in Europe (Fig. 1).

The genome was scanned using AFLP (Vos 

 

et al

 

. 1995;
see Conord 

 

et al

 

. 2006). Briefly, total genomic DNA was
extracted using the DNeasy Tissue Kit (Qiagen) following
the manufacturer’s instructions. It was then digested with
restriction enzymes 

 

Eco

 

RI and 

 

Taq

 

I and ligated to specific
adaptors. Preselective and selective amplifications were
performed as indicated in Conord 

 

et al

 

. (2006), using three
different primer pairs. The fragments were separated on an
ABI Prism 3100 DNA automated sequencer (Applied
Biosystems) and visualized with 

 

genescan® analysis

 

 3.7
(Applied Biosystem) and 

 

genographer

 

 version 1.6.0
(Benham 

 

et al

 

. 1999; available at http://hordeum.oscs.
montana.edu/genographer/). AFLP profiles were recorded
in a matrix as presence (1) or absence (0) of bands for each
individual. A fragment was considered as absent in a given
individual if the electropherogram showed a lack of signal
after normalization of the corresponding peaks. A scoring
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threshold was then set up which generally corresponded
to 10% of the size of the highest peak found among all
compared individuals. Fragments that could not be scored
unambiguously were not included in the analyses. Overall,
367 individuals were screened for 83 AFLP markers.

Analyses with 

 

dfdist 

 

were conducted with individuals
grouped according to the forest region they belong to (i.e.
Landes, Ardèche, Limousin, Estonia-Poland, Ireland,
and Finland), because these have been shown to represent
six homogeneous genetic entities (Conord 

 

et al

 

. 2006). The
sample size ranged from 20 (Landes) to 115 (Limousin).
The expected 

 

F

 

ST

 

 for the island model was 0.0299 (0.0204
without the population of the Landes). The analysis was
carried out using 50 000 simulations.

 

Sheep breeds

 

Fifty-seven sheep breeds, originating from European and
Middle Eastern countries (Fig. 2) were sampled for 17–32
unrelated animals in the original region of the breed from
herdbook flocks, where available. From each farm, three
unrelated individuals were sampled from an average of 10
flocks per breed. Breeds were mainly autochthonous with
one cosmopolitan (Merino) breed, sampled from Germany,
Poland, Hungary, Romania and Spain included (Peter 

 

et al

 

.
2007). The combined effects of demographic (genetic drift,
inbreeding, introgression) and selection (artificial and
natural) are strongly implicated in the loss of diversity
of livestock breeds (Bruford 2004). This system therefore
posed specific, yet potentially important challenges for
detecting signatures of selection within the genome (for
example, the island model is unlikely to apply in many cases),
both to improve our understanding of the mechanisms
underlying livestock genetic change (Luikart 

 

et al

 

. 2003),
but also to assist the discovery of genomic regions
linked to quantitative trait loci implicated in selection and
adaptation (e.g. for disease resistance).

Thirty-one bovine, ovine and caprine microsatellite
markers were used (Peter 

 

et al

 

. 2007) producing a total of
744 alleles whose frequency was compared to environmental
parameters. Markers on all autosomal sheep chromosomes
(OAR) except OAR8, OAR21, OAR22 and OAR23 were
included. DNA extraction was performed by following the
protocol of Montgomery & Sise (1990). Primer sequences,
size ranges, multiplexing information and PCR protocols
of the markers are available from the UN Food and
Agriculture Organization website (http://dad.fao.org/en/
refer/library/guidelin/marker.pdf; FAO 1998) which ranks
markers by typing efficiency (e.g. PCR-amplification,
scoring reliability and lack of ambiguity). Genotyping was
performed on ABI Prism 377 and ABI 3100 semiautomated
DNA analysers (Applied Biosystems), using standard
methodologies (Peter 

 

et al

 

. 2007). In order to link genotype
results with future diversity studies, five ‘reference’ DNA
samples from four breeds were also included in the
genotyping procedure.

In 

 

fdist

 

2, individuals were grouped according to the
breed they belong to (57 populations), with 100 demes, an
expected 

 

F

 

ST

 

 for infinite allele, infinite island model of 0.055.
The real sample size ranged from 17 to 32. The analysis was
carried out using 20 000 simulations. Finally, the results
obtained either with the stepwise or the infinite alleles
model looked the same.

 

Environmental data

 

Altitude was estimated using the 30 arc-second digital
elevation model (DEM) of the Shuttle Radar Topography
Mission (SRTM30, NASA, http://www2.jpl.nasa.gov/srtm/).
Climatic data comprised latitude/longitude grids
with a resolution of 10 min (approximately 12 km at
the latitude of Switzerland) containing nine monthly
variables over global land areas described in Table 1.
These climate data were collated and made available by

Table 1 List of environmental variables. Yearly means only were used in the pine weevil case study. In the sheep case study, monthly values
were used in addition to yearly means, for a total of 13 periods per variable. Thus 118 environmental parameters were used in this analysis
(altitude +9 climatic variables × 13 periods). With the exception of altitude (SRTM30, NASA, http://www2.jpl.nasa.gov/srtm/), environmental
variables were computed by the Climatic Research Unit for the period 1961–2001, http://www.cru.uea.ac.uk (New et al. 2002)

Variable Description

Altitude Altitude computed with NASA SRTM30 Digital Elevation Model
DTR Yearly mean and monthly values of mean diurnal temperature range in °C
FRS Yearly mean and monthly values of number of days with ground frost
PR Yearly mean and monthly values of precipitation in mm/month
PRCV Yearly mean and monthly values of the coefficient of variation of monthly precipitation in percent
REH Yearly mean and monthly values of relative humidity in percentage
SUN Yearly mean and monthly values of percent of maximum possible sunshine
TMP Yearly mean and monthly values of mean temperature in °C
WET Yearly mean and monthly values of wet days (number of days with > 0.1 mm rain per month)
WND Yearly mean and monthly values of wind speed in m/s, 10 metres above the ground
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the Climatic Research Unit, Norwich (CRU) and covers the
period 1961–90 (New 

 

et al

 

. 2002). Yearly means were used
in the pine weevil case study (10 variables), whereas monthly
and yearly values were utilized for the sheep data (118
variables, see Table 1). Monthly variables were considered
in sheep because several management and production
systems based on lambing periods (or seasons) are used in
different breeds (e.g. autumn lamb production, winter
lambing, or spring lamb production).

 

Results

 

Pine weevil

 

sam

 

 identified 11 markers as significant with both tests,
with a significance threshold set to 1.2E-5 (corresponding
to a 99% confidence level including Bonferroni correction).
Four markers (13, 38, 52 and 63) were highly significant
with both tests (Table 2). Among the latter, markers 38,
52 and 63 were still significant for a confidence level of
1.2E-13. Four loci (52, 38, 10 and 68) were detected as
outliers with

 

 dfdist 

 

at the 99% confidence level, and when
the analysis was reiterated at the 95% confidence level, one
additional locus (marker 81) was detected (Fig. 3a). Only
two of these loci, 38 and 52, were also detected by 

 

sam

 

.
However, when the 20 individuals sampled in the Landes
were excluded from the 

 

dfdist

 

 analysis, loci 10 and 68
were no longer detected as outliers by 

 

dfdist

 

, while loci 63
and 13 appeared as outliers as also detected by 

 

sam

 

 (Fig. 3b).
This was done because locus 68 was monomorphic in the
Landes, while locus 10 was nearly fixed (present in 18 out
of 20 individuals). The removal of individuals from Landes
only very slightly modified the results of 

 

sam

 

: marker
13 was detected by 

 

sam

 

 (by 

 

G

 

 test only) at the 1.2E-15
confidence level (after Bonferroni correction), one order of
magnitude higher (1.2E-14) than when Landes was included.

The loci 38 and 52, which were strongly detected by both
methods, appear as the best candidates for selection at the
European scale. Locus 38 was positively correlated with
the number of days of ground frost and negatively with
precipitation, sunshine and diurnal temperature range,
while locus 52 was more commonly found in regions with
increasing diurnal temperature range (Fig. 4).

 

Sheep

 

Alleles absent from almost all breeds, as well as those present
in almost all breeds were removed from the calculations
because they do not contribute in discriminating environ-
mental information. Therefore, the lowest and highest 5%
of the distribution were not taken into account for process-
ing of the models. 744 alleles located at 31 loci were analysed
with 118 topo-climatic variables (see Table 1) for a total of
87 792 models whose significance was assessed.

A total of 141 alleles (19% of the total number of
investigated alleles) were identified by 

 

sam

 

 as significantly
associated with at least one environmental variable with
one of both statistical tests, with a confidence level of 99%
(significance threshold [ST] set to 1.139E-7). Forty alleles
at 21 loci were detected as significantly associated with at
least one environmental parameter with a confidence level
of 99.999% (ST = 1.139E-10), and with both the Wald and 

 

G

 

tests. At this level of significance, there were 407 models for
the Wald test representing 0.46% of the total number of
processed models, and 577 models for the 

 

G test represent-
ing 0.65% of the total number of processed models.
Figure 5(a) shows the corresponding loci with histograms
of the number of related candidate alleles. Of these 21 loci,
six were detected by both sam and fdist2 (HUJ616,
OARFCB193, OARFCB304, MCM140, OARJMP29
and INRA63), with a confidence level of 99% in fdist2
Fig. 6).

Fig. 3 Graphical representation of the results obtained with the dfdist software (Beaumont & Nichols 1996) for pine weevils with the
individuals from the Landes (a) and without the populations from the Landes (b).
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Table 2 Sam results for pine weevil with a significance level of 1.2E-14 (including Bonferroni correction). Only 49 markers on a total of 83 are displayed. On the second line, markers in
bold were identified both by sam and the population genetics theoretical approach. Each cell represents a model, i.e. a molecular marker vs. an environmental parameter. Grey cells with
‘1’ indicate that for this model, the null hypothesis (HO) is rejected with the corresponding test. Black cells with ‘2’ indicate that HO is rejected for both tests. Black arrows indicate models
with P-value < 1E-20 for both tests (default limit set in the Matlab® procedure).
This table also illustrates the way the many results produced by the parallel processing of many univariate logistic regressions—a characteristic of the SAM method—can be sorted out
and how significant models can be visually emphasized.
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FRS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ← 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
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Significance level
with Bonferroni correction
                          = 1.20E-14
Probability to reject H0 1.00E-1
Number of environmental variables 10
Number of molecular markers 83
Total number of models 830
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With a confidence level of 99.99999% (ST = 1.139E-12),
sam identified 18 alleles at 12 loci to be significantly
associated with at least one environmental variable (Fig. 5b).
These alleles are involved in 173 significant models
according to the Wald test (0.19% of the total number of
models processed), and in 251 significant models accord-
ing to the G test (0.28% of the total number of models
processed). Among these 12 loci, five were detected by sam
and fdist2 (HUJ616, OARFCB193, OARFCB304, MCM140,
OARJMP29), also with a confidence level of 99% in fdist2.

Focusing only on the most significant associations detected
by sam, with both tests, five alleles are associated with
environmental variables with a ST set to 1.139E-17. These
alleles were from four loci, SRCRSP9 (two alleles), DYMS1
(one allele), ILSTS28 (one allele) and OARFCB304 (one

allele). Only the last of these was also detected by fdist2
with a confidence level set to 99%.

Table 3 shows the detail of these five alleles and the
environmental variables which gave the most significant
associations found out in the 57 sheep breeds investigated.
Important observations are that locus SRCRSP9 (detected
by sam only) has two alleles (134 and 118) associated with
the higher number of environmental variables (three each
for the most conservative test, with number of wet days for
allele 134, and wind speed for allele 118). DYMS1 (detected
by sam only) associated with the number of wet days,
has previously been shown to be involved in parasite
resistance (Buitkamp et al. 1996). ILSTS28 (allele 127),
detected by sam only, was also associated with the number
of wet days. Locus OARFCB304 (allele 171), which was

Fig. 4 Pine weevil: correlograms showing AFLP markers 38 and 52 significantly associated with diurnal temperature range (DTR), sunshine
duration (SUN), number of days of ground frost (FRS) and precipitation (PR).
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detected by both methods, was associated with the
quantity of precipitation.

Locus OARJMP29, detected by both sam (with a ST of
1.139E-15) and fdist2 (significance level of 99%) was a
negative outlier to the neutral distribution of loci in fdist2
(Fig. 6), and is therefore a candidate locus for balancing
(Beaumont & Balding 2004) or stabilizing selection and is a
locus that has been identified as being linked to disease
resistance in a previous sheep study (Beh et al. 2002).

Discussion

For both the pine weevil and the sheep data, there was a
good correlation between the results of sam and those based
on the population genetics approach chosen. Common
statistical signals emerged from these analyses, which
associated loci and environmental parameters, with these
loci being clearly distinguishable from the theoretical
distribution of neutral loci.

Fig. 5 (a) Histograms of candidate alleles in sheep: 40 alleles are significantly associated with at least one environmental parameter
for a confidence level of 99.999% (significance threshold set to 1.139E-10), and with both Wald and G tests. The fdist2 confidence level is set
to 99%. (b) Histograms of candidate alleles in sheep: 18 alleles are significantly associated with at least one environmental parameter for a
confidence level of 99.99999% (significance threshold set to 1.139E-12), and with both Wald and G tests. The fdist2 confidence level is set
to 99%.

Fig. 6 Graphical representation of the results
obtained with fdist2 (Beaumont & Nichols
1996) for ECONOGENE sheep breeds, with
a confidence level set to 99%. Three loci—all of
which are detected by sam with a significance
threshold of 1.139E-14—possess values in
excess of the neutral distribution. The six
loci, which possess values lower than the
neutral distribution, were also all detected by
sam: OARFCB20 with a significance threshold
(ST) of 1.139E-7, MAF209 with a ST of 1.139E-8,
INRA63 with a ST of 1.139E-10, MCM140 and
MAF65 with a ST of 1.139E-12 and finally
OARJMP29 with a ST of 1.139E-15.
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Pine weevil

In the pine weevil analysis, two loci were strongly detected
by both approaches (loci 38 and 52). Although these two
loci are not in linkage disequilibrium (Conord et al. 2006)
and are therefore independently inherited, they varied
in opposite directions with diurnal temperature range
(DTR): AFLP fragment 38 decreased whereas 52 increased
in abundance with increasing DTR (Fig. 4a, b). Increasing
DTR is generally an indicator of harsh, continental climatic
conditions, which here appeared to exert a selective pressure
on at least two independent regions of the weevil genome.
Moreover, the presence of AFLP fragment 38 was also
associated with locations with a higher number of days
of ground frost (Fig. 4e), and decreased with increasing
precipitation (Fig. 4d); that is, its presence increased with
drought, and cold and drought tolerance involve similar
physiological processes in insects (Sinclair et al. 2003).
Because both the larval and the adult stages overwinter
under the soil, the number of days with ground frost is likely
to strongly affect survival. Precipitation may also represent
a more indirect selective pressure on larval survival through
its effect on soil moisture and on the quality of the resource
of dead wood, which may be more accessible for larval
feeding under wet climatic conditions. Finally, the presence
of fragment 38 decreased at locations with lower sunshine
duration (Fig. 4c), a factor that has been shown to constrain
adult activity (Nordlander et al. 2003).

The weevil analysis also shows evidence for discrepancies
between the two approaches: two loci (68 and 10) strongly
detected by the dfdist method were not detected by sam,
whereas one locus (63) strongly detected by sam was not
detected by dfdist. However, excluding 20 individuals
(from Landes) out of 367 in the dfdist analysis substan-
tially changed the outcome of the analysis, allowing the
detection of three fragments, 38, 52 and 63, also detected
by sam. Unlike all other sampled sites mainly composed of
Norway spruce (Picea abies) and Scots pine (Pinus sylvestris),
the Landes site is unique in being a monoculture of

Pinus pinaster, at the southern edge of the pine weevil’s
geographical range, where both genetic drift and/or host-
specific adaptation may occur. Moreover, only 20 individuals
were sampled in Landes, representing the smallest group
of our dfdist analysis, and this relatively small sample
may not adequately represent the genetic diversity present
in Landes.

Because dfdist first estimates allelic frequencies, and
from that estimation, the genetic distances among samples
(FST), it is strongly dependent on sample size, whereas sam,
being individual-centred is independent from local sample
size effects. Therefore, for this data set, dfdist appears to
be more sensitive both to site-specific effects (genetic
drift and/or local selection) and to sample size, than the
SAM approach, perhaps an unsurprising finding given the
fact that dfdist assumes neutrality to conform to expecta-
tions under an island model to explain patterns of genetic
diversity and differentiation.

Sheep

When the sheep dataset was analysed, a highly conserva-
tive approach to assessing the statistical power of the analysis
was taken and here we have restricted our comments to a
few examples, which follow. One striking example is an allele
at locus DYMS1, which was associated with precipitation
levels using sam. Previously, this locus has been shown to
be linked to parasite resistance in Scottish Blackface sheep,
one of the breeds in this study and which is found in the
highest precipitation environments (Buitkamp et al. 1996).
In this study, the authors found that class I and class II
major histocompatibility complex alleles were associated
with faecal egg counts following natural, predominantly
Ostertagia circumcincta infection. However, it is not clear
why this locus is associated with disease resistance, since
no further data are available which implicate this linkage
group with disease resistance phenotypes. This locus was
not detected as an outlier using fdist (population genetic)
analysis. Disease resistance is also implicated in the outlier

Table 3 Sheep breeds: the five alleles most likely to be under natural selection with the environmental variables involved in the
corresponding most significant models. Values between brackets represent the number of variables involved in theses models. For example,
on the first line, ‘sunshine (4)’ means that four sunshine monthly variables are significantly associated with allele SRCRSP9-134

Allele G test: climatic variables Wald Test: climatic variables
Monthly variable—Wald 
Test (more conservative)

SRCRSP9-134 No. of wet days (8), Rel. 
humidity (4), Sunshine (4)

No. of wet days (3) January, October, November

DYMS1-181 No. of wet days (4) No. of wet days (3) March, September, Yearly mean
SRCRSP9-118 No. of wet days (1), Wind (3) No. of wet days (2), Wind (1) January, October, September
ILSTS28-127 Wind (1), Number of wet days (1) No. of wet days (1) October
OARFCB304-171 Precipitation (1) Precipitation (1) April
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allele at locus OARJMP29, detected by both sam and fdist.
OARJMP29 is the only locus tested here that is located on
sheep chromosome 24. OARJMP29 has previously been shown
to be linked to disease resistance (Beh et al. 2002), and was a
negative outlier (i.e. potentially under stabilizing selection)
in the fdist analysis—this is an intriguing observation since
disease resistance is a QTL which is sometimes associated
with overdominant (heterozygous advantage) selection.

Environmental parameters included in the analysis

SAM is an exploratory method and is not an ideal tool to
be used in the context of hypothesis-deductive reasoning.
It executes a scan of all potential associations between
all available environmental and molecular information,
and thus permits investigation of data sets without being
restricted to the choice of a given number of environ-
mental variables corresponding to one or two working
hypotheses. This has the advantage of preventing the
user from missing important unexpected relationships.
While being exhaustive and thus often dealing with a
large amount of data, the method is also capable of rapidly
highlighting significant relationships according to the signi-
ficance level criteria set by the user in a computationally
efficient way.

Non-independence of environmental parameters is a
potential problem to which the user has to be attentive;
however, sometimes slight differences (in temperature, in
quantity of precipitation, etc.) may be sufficient to trigger
associations to exist. This can be observed, for instance,
with monthly environmental data used in the sheep case
study where a given number of monthly environmental
variables may be associated with a given allele while the
other months for the same variable may not.

Finding accurate environmental data sets constitutes the
main constraint on SAM. The scale of the study will deter-
mine the data available. On a local or regional scale, it is
usually easier either to find existing environmental data,
or to record data with specialized devices (temperature, pre-
cipitation, altitude, sunshine, etc.). On larger geographical
scales, it is necessary to rely on national or international
environmental data sets. At this latter level, the pine weevil
case study is a good example to illustrate the use of free
available data such as the SRTM30 digital elevation
model described above, which has a resolution of about
90 meters, or like the climatology provided by the Climatic
Research Unit in Norwich (New et al. 2002). With the
exception of case studies for which environmental para-
meters can be measured on the field, the drawback of
the SAM related to these elements is that it is necessary for
researchers either to acquire the necessary skills in GIS
to manage environmental data and to produce the matrices
for computation, or to resort to GIS scientists to produce
the data sets.

SAM and sampling

SAM implies different rules for sampling than standard
analyses in population genetics. The goal is to obtain a
statistically representative number of individuals per type
of landscape, and not per population. Species, breeds or
populations can be taken into consideration later in the
analysis for comparisons, but it is possible to examine a given
environmental factor on several organisms independently
of the concept of population membership. Using sam,
it is more useful to sample individuals in a diversity of
landscapes, in order to highlight a number of potential
associations between loci and environmental parameters.
Constraints lie in the recording of precise geographical
coordinates of samples. It is possible, but rather difficult,
to re-assign locations to previous data sets collected in the
field without having recorded geographical coordinates.
It means that sampling has to be planned with the intention
of using sam. Indeed, the goal is to be able to describe
the area where a studied species occurs as accurately as
possible with environmental data. Thus on the one hand,
a precise location is required, and on the other hand, as
high a resolution as possible of environmental data will
allow the user to obtain the best models. The resolution of
environmental data is the determining factor in the building
of models as it is not useful having recourse to very high
precision coordinates while environmental parameters
characterize a wide area.

This version of sam a priori better suits studies on
large geographical scales, with data coming from several
independent regions. Indeed, on finer scales results can be
influenced by spatial autocorrelation. Further improvements
are planned to develop a sam that explicitly takes into
account spatial structures into the ecological models, based
on the raw-data or the matrix approaches described by
Legendre (1993).

SAM and demography

One of the assumptions of the current population genetics
approach is that all studied populations are at demographic
equilibrium, e.g. that locus specific effects (i.e. outliers) are
due to selection only. If a neutral mutation appears in an
expanding population, while the remaining populations
are at their demographic equilibrium, it may be detected as
an outlier by the dfdist approach. In contrast, if this particular
mutation is not linked to environmental parameters (i.e.
is neutral), it will not be detected by the SAM approach.
Therefore, the latter is more robust than the population
genetics approach to detect adaptive loci when populations
are not at equilibrium.

Extensive conifer plantations in western Europe go
back 200 years (Agnoletti & Anderson 2000) and this recent
range expansion of the host plant together with modern
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harvesting techniques (e.g. clear cutting that favours
local pullulation of this stump-feeding insect) suggests that
weevil populations are probably not at demographic
equilibrium, and that colonization events followed by popu-
lation expansion are frequent. However, using simulations,
Beaumont & Nichols (1996) have tested the effect of different
demographic scenarios (e.g. island vs. colonization models)
on the power of dfdist to detect outliers and found that
these different models produce indistinguishable FST
distributions when FST is not too high (less than 0.5).
Average FST across weevil populations is 0.03 (Conord
et al. 2006) so that the difference observed between dfdist
and sam is unlikely to be due to populations in a nonequili-
brium situation. The only parameter that was shown to
produce skewed FST distributions in dfdist, and consequently
a loss of power in outlier detection, is heterogeneous
rates of migration across populations. However, to obtain
skewed distributions, Beaumont & Nichols (1996) simulated
two groups of populations with extremely different FST
(0.048 and 0.67, respectively). Across weevil populations,
pairwise FST ranges from 0.02 to 0.09. Similarly, the demo-
graphic structure of many sheep populations and breeds is
not at drift/mutation equilibrium (with genetic drift
predominating). FST among sheep populations in the present
study were higher than in pine weevils, with a mean of 0.124
but never achieved values close to 0.5.

Identifying the nature of a potential selective pressure

In comparison with standard methods of detecting signa-
tures of natural selection, sam has the main characteristic
of identifying a potential environmental selection pressure.
The outliers dfdist and fdist2 detect are believed to be
involved in selection processes. While this inference is clear
(Beaumont & Nichols 1996; Beaumont & Balding 2004),
the effective selective pressure cannot be identified. This
is the gap that the SAM can fill as shown by the results
of this study. The knowledge of the nature of the selective
pressure is likely to favour the emergence of working
hypotheses about the role of the regions of the genome which
are linked to the analysed markers, and thus to facilitate the
hunting for genes involved in specific functional processes.
It will then be necessary to take into account the fact that
the distance from the linked site to the actual selected gene
will vary depending on the recombination rate and time
since selection (Wiehe 1998).

Moreover, SAM is independent of any theoretical genetic
model and does not have constraints such as Hardy–
Weinberg equilibrium assumption for example, which is
far from being verified when considering markers involved
in selection. Furthermore, the method is simple, fast, and
provides results in agreement with population genetics
models, with information about the nature of the selective
pressure in addition. But this has to be balanced by the time

required to find and prepare environmental databases. The
option for mutual cross-validation with dfdist/fdist2
confirms loci detected by sam and vice versa, with additional
information on the nature of the potential selective pressure
is another strength of this approach.

Working with codominant, multiallelic markers, a notable
advantage of sam is the statistical power to detect—among
more than two alleles—the association of a particular allele
(e.g. at the locus SRCRSP9 in sheep, see Table 3) with a
given environmental parameter. It is clear that while such
an indication remains a statistical association, circumspec-
tion is required about the potential implication of such an
allele in adaptation, unless analysis is carried out on a locus
known to be involved in adaptive processes and linkage
relationships are established with the ‘neutral’ allele in
question.

Notwithstanding the above, comparison with results
provided by the population genetics approach is important
to highlight the strongest signatures of selection when
environmental parameters are not precisely targeted, and
these were implicated in a large number of loci detected by
sam. The population genetics approach acts as a milestone
of significance and potentially as a form of theoretical
authentication of the results provided by sam, until a
sufficient number of applications carried out in parallel
with dfdist/fdist2 and sam allow further validation of
this new method. Finally, dfdist/fdist2 will, in some
cases, still be necessary to differentiate the type of selection
markers are submitted to (divergent/direction vs. balancing/
overdominant).

Towards landscape genomics

Enabling such simultaneous processing of a very large
amount of data, the method is well suited to the population
genomics approach, carrying out genome-wide tests to
identify markers associated with environmental variables.
It is designed to support the processing of hundreds of
molecular markers against hundreds of environmental
parameters. It is a new tool permitting to identify not only
loci, but also specific ecological parameters which will help
to interpret the role specific regions of the genome may
play, likely to improve our understanding of the genetic
mechanisms of evolution.
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