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2 / 23Interferometric imaging in the SKA era
Our previous work highlighted...

• Convex optimisation - ”Compressed sensing imaging techniques for

radio interferometry”, MNRAS, 2009

• Compressive sensing - ”Spread spectrum for imaging techniques in

radio interferometry”, MNRAS, 2009

• Software - ”PURIFY: a new approach to radio-interferometric
imaging”, MNRAS, 2014

• Google our most recent publications...



3 / 23Interferometric imaging in the SKA era
Big Data challenge

◮ Increase the resolution and sensitivity up to two orders of

magnitude over current instruments

Terapixel images huge dynamic range

◮ Unprecedented amount of data to be processed: orders of
magnitude beyond image size.



4 / 23Measurement model
Inverse problem

◮ Measurement equation

y(u) =

∫

D(l , u)x(l )e−2iπu·l
d

2l

◮ Discretised version of the ill-posed inverse problem

y = Φx + n with Φ = GF

◮ x ∈ RN
+ the intensity image of interest

◮ Φ ∈ C
M×N a linear map; image domain to visibility space

◮ y ∈ CM the measured visibilities
◮ G ∈ CM×kN gridding matrix modelling DDEs
◮ F ∈ CkN×N Fourier matrix with zero padding



5 / 23Ill-posed inverse problem
SKA u–v coverage
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6 / 23Traditional imaging techniques
CLEAN

◮ Greedy iterative deconvolution algorithm
◮ Select atoms associated with brightest pixel of residual image
◮ Build the solution implicitly imposing sparsity in image space

x(t) = x(t−1) + T

(

Φ†
(

y −Φx(t−1)
)

)

◮ Forward - backward like structure

◮ Forward step (major cycle) in the gradient direction of the ℓ2

norm of the residual image
◮ Backward step (minor cycle) with non-linear sparsity-enforcing

operator T
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8 / 23Traditional imaging techniques
CLEAN limitations

◮ Sub-optimal imaging quality & manual intervention

◮ Convex optimisation can deal with significantly more complex
signal models in automatic mode

◮ Not scalable to SKA data sizes
◮ Scalability of imaging methods should leverage

◮ Fast transform operators modelling both data and image

◮ Data Dimensionality reduction

◮ Parallel and distributed processing



9 / 23Data splitting
Problem formulation (1)
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Problem formulation (1)
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Problem formulation (1)
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Problem formulation (1)
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10 / 23Data splitting
Problem formulation (1)

=
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◮ Huge number of visibilities y

◮ Distribute and process the blocks independently in parallel
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Problem formulation (1)
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12 / 23Enforcing sparsity priors
Problem formulation (2)
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E.g. Average sparsity - a
collection of wavelet bases to
regularise the ill-posed prob-
lem, way beyond CLEAN.
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13 / 23Distributed imaging
Problem formulation (3)

◮ Split the large-scale inverse problem block wise

y j = Φjx + nj with Φj = GjF

y =
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...
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◮ Regularisation of the ill-posed problem

◮ Sparsity constraint for x in a collection of wavelet bases

Ψ =
[

Ψ1 . . . Ψb

]



14 / 23Distributed imaging
Problem formulation (4)

◮ Convex optimisation task

min
x

f (x) + γ

b
∑

i=1

li(Ψ
†
i x) +

d
∑

j=1

hj(Φjx)

◮ Enforce positivity , sparsity and data fidelity

f (z) = ιC(z), C = R
N
+

li(z) = ‖z‖1

hj(z) = ιBj
(z), Bj = {z ∈ C

Mj : ‖z − y j‖2 ≤ ǫj}



15 / 23Distributed imaging
The primal dual approach

◮ Primal problem

min
x

f (x) + γ

b
∑

i=1

li(Ψ
†
i x) +

d
∑

j=1

hj(Φjx)

◮ Dual formulation of the original convex optimisation task

min
ui
v j

f ∗

(

−
b
∑

i=1

Ψi ui −
d
∑

j=1

Φ
†
j v j

)

+
1

γ

b
∑

i=1

l∗
i (ui) +

d
∑

j=1

h∗
j (v j)

◮ Primal dual algorithm
◮ Alternate solving the primal problem and the dual problem
◮ Converges towards a Kuhn-Tucker point
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Advantages of the primal dual approach

◮ Full splitting of the operators and functions

◮ No inversion of the linear operators

◮ Forward-backward iterations applied in parallel for all dual

variables in data, sparsity, and image space

◮ Interlaced and parallel CLEAN-like iteration structure

◮ Randomised updates on the dual variables to reduce
computational and memory needs per iteration

◮ Non-Euclidean updates on the dual variables to accelerate
convergence
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Primal dual algorithm

given x(0)
, x̃(0)

, u
(0)
i

, v
(0)
j

, ũ
(0)
i

, ṽ
(0)
j

, γ, τ, σi

repeat for t = 1, . . .

generate sets P ⊂ {1, . . . , b} and D ⊂ {1, . . . , d}

b
(t)
j

= Mj FZx̃
(t−1)

, ∀j ∈ D

run simultaneously

∀j ∈ D distribute b
(t)
j

and do in parallel

v
(t)
j

=

(

I − PBj

)

(

v
(t−1)
j

+ Gj b
(t)
j

)

ṽ
(t)
j

= G
∗
j v

(t)
i

“CLEAN ṽ j ”

end and gather ṽ
(t)
j

∀i ∈ P do in parallel

u
(t)
i

=

(

I − S γ

σi

)

(

u
(t−1)
i

+ Ψ
∗
i x̃

(t)
)

ũ
(t)
i

= Ψi u
(t)
i

“CLEAN ũi ”

end

end

x̄
(t)

= PC

(

x
(t−1)

− τ

(

b
∑

i=1

σi ũ
(t)
i

+ Z
∗

F
†

d
∑

j=1

ςj M
∗
j ṽ

(t)
j

)

)

“CLEAN x̃”

x̃
(t)

= 2x̄
(t)

− x
(t−1)

until convergence



18 / 23The story of a black hole discovery?
Imaging Cygnus A Galaxy from real data

◮ NRAO recently confirmed discovery of a new source, just 460 pc

from the nucleus of Cygnus A, likely to be a second black hole .

Discovery from JVLA data using CLEAN at X-band (8.5 GHz).

[official optimised pipeline]

◮ My team, in collaboration with NRAO and SKA South Africa, is

confirming discovery from JVLA data at C-band (6.6GHz) using

our convex optimisation algorithm, where CLEAN is blind to this

angular resolution.
[home-made MATLAB solver]



19 / 23The story of a black hole discovery?
CLEAN results at C-band (6.6GHz) - 16GB image



20 / 23The story of a black hole discovery?
Primal Dual results at C-band (6.6GHz) - 16GB image

◮ Super-resolution: restored image at 2.1× the resolution of the instrument.
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CLEAN results at X-band (8.5GHz) - 16GB image



22 / 23The story of a black hole discovery?
Primal Dual results at X-band (8.5GHz) - 16GB image

◮ Super-resolution: restored image at 2.5× the resolution of the instrument.



23 / 23Concluding with new project award
A 4 year project was recently funded jointly by the Swiss NSF & South African NRF

◮ Partners :

◮ Edinburgh: Prof Wiaux
◮ SKA South Africa: Prof Smirnov (with Profs Gain & Cress)
◮ EPFL: Prof Thiran (with Profs Vandergheynst & Kneib)

◮ Researchers :

◮ EPFL - Edinburgh: 1 Postdoctoral researcher (3 years)
◮ SKA South Africa: 2 PhD Students (4 years)

◮ Science :

◮ Scalable Algorithms for hyperspectral and polarisation imaging
◮ HPC implementation
◮ Validation from Meerkat data
◮ New discoveries...
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