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Interferometric imaging in the SKA era 2/2
Our previous work highlighted...

e Convex optimisation - "Compressed sensing imaging techniques for
radio interferometry”, MNRAS, 2009

e Compressive sensing - "Spread spectrum for imaging techniques in
radio interferometry”, MNRAS, 2009

e Software - "PURIFY: a new approach to radio-interferometric
imaging”, MNRAS, 2014

e Google our most recent publications...
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Big Data challenge

» Increase the resolution and sensitivity up to two orders of
magnitude over current instruments

Terapixel images huge dynamic range

» Unprecedented amount of data to be processed: orders of
magnitude beyond image size.
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Measurement model 42

Inverse problem

> Measurement equation

()= / DI, u)x(I)e 21 21

» Discretised version of the ill-posed inverse problem
y=®x+n with ® =GF

x € RY the intensity image of interest

® c CM*N 3 linear map; image domain to visibility space
y € CM the measured visibilities

G € CM*¥N gridding matrix modelling DDEs

F € C*N*N Fourier matrix with zero padding
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SKA u-v coverage
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Traditional imaging techniques 6/23
CLEAN

» Greedy iterative deconvolution algorithm
» Select atoms associated with brightest pixel of residual image
» Build the solution implicitly imposing sparsity in image space

NORRNCEI ( of (y — ox(tD) )

» Forward - backward like structure
» Forward step (major cycle) in the gradient direction of the ¢,

norm of the residual image
» Backward step (minor cycle) with non-linear sparsity-enforcing

operator T~
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Traditional imaging techniques 5/ 23

CLEAN limitations

» Sub-optimal imaging quality & manual intervention
» Convex optimisation can deal with significantly more complex
signal models in automatic mode
» Not scalable to SKA data sizes
» Scalability of imaging methods should leverage
» Fast transform operators modelling both data and image
» Data Dimensionality reduction

> Parallel and distributed processing
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Data splitting 62

Problem formulation (1)
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Problem formulation (1)
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Problem formulation (1)
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Data splitting 92

Problem formulation (1)

Y1
yo
Y3 =

Ydl

HERIOT
GIWAT'T

UNIVERSITY




Data splitting
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Problem formulation (1)
o]

np

n3

L Nd

» Huge number of visibilities y
» Distribute and process the blocks independently in parallel
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Problem formulation (1)

G1 m
G2 ny
G3 F n ns3
Gd ny
Distributed processing nodes
G & G & G; Gy

yi= % .= (& yvi= 4 Yo= b
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Enforcing sparsity priors
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Problem formulation (2)

Eg. Average sparsity - a
collection of wavelet bases to
regularise the ill-posed prob-
lem, way beyond CLEAN.
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Enforcing sparsity priors 12/

Problem formulation (2)

v,
x= Pl
v,
x = [P
v,
x= B2
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Distributed imaging 13/ 23

Problem formulation (3)

» Split the large-scale inverse problem block wise

yj = ¢jX-|— n; with q’j = GJF

Y1 >,
y=|: ¢=:
d b,

» Regularisation of the ill-posed problem

» Sparsity constraint for x in a collection of wavelet bases

v — [\ul v,
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Problem formulation (4)
» Convex optimisation task
b d

mxin f(x) —I—’yz /,-(ll!:.rx) +Z hj(®;x)
i=1 Jj=1

» Enforce positivity , sparsity and data fidelity

f(z) = wc(2),C =RY
li(z) = ||z[x
hi(z) = w5,(2), Bj={zeCM:|lz—y;l> < ¢}
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The primal dual approach

» Primal problem

b d

min f(x)+ ’yz /i(w:[x) + Z hj(®;x)
i=1 Jj=1

» Dual formulation of the original convex optimisation task

b d b d
min f <— E 1 Vu; — E 1 ¢}vj> + 5 E 1 I (uj) + E 1 hi (vj)
= j= = j=

i

» Primal dual algorithm
» Alternate solving the primal problem and the dual problem
» Converges towards a Kuhn-Tucker point
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Advantages of the primal dual approach

» Full splitting of the operators and functions

» No inversion of the linear operators

» Forward-backward iterations applied in parallel for all dual
variables in data, sparsity, and image space

» Interlaced and parallel CLEAN-like iteration structure

» Randomised updates on the dual variables to reduce
computational and memory needs per iteration

» Non-Euclidean updates on the dual variables to accelerate

convergence
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Primal dual algorithm
©,0 50
i fi i
repeat for t =1, ...
generate sets P C {1,...,b} and D C {1,...,d}

(0)

given x(© s )"((0), u s Dj y Y, T, O

bj(.t) =Mzt Y viep

run simultaneously
Vj € D distribute bj(.t) and do in parallel

P = (I— Ps; ) (vj(.f’l) + Gjbj(.’)) W = vl “CLEAN ;"

(t)

end and gather ¥}
Vi € P do in parallel

ul?) = (I— S ) (ugt’l) 4 w,.*i(‘)) i = vl “CLEAN ;"
G
end
end
) — p. (x(’*l) - ‘r( E o+ z°Ft E ;.7 > “CLEAN %"
i=1
L0 _ oz _ (=)

until convergence
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The story of a black hole discovery? 18 /23
Imaging Cygnus A Galaxy from real data

» NRAO recently confirmed discovery of a new source, just 460 pc
from the nucleus of Cygnus A, likely to be a second black hole .
Discovery from JVLA data using CLEAN at X-band (8.5 GHz).
[official optimised pipeline]

» My team, in collaboration with NRAO and SKA South Africa, is
confirming discovery from JVLA data at C-band (6.6GHz) using
our convex optimisation algorithm, where CLEAN is blind to this

angular resolution.
[home-made MATLAB solver]
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CLEAN results at C-band (6.6GHz) - 16GB image
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The story of a black hole discovery? 2 /23

Primal Dual results at C-band (6.6GHz) - 16GB image

» Super-resolution: restored image at 2.1x the resolution of the instrument.
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CLEAN results at X-band (8.5GHz) - 16GB image
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The story of a black hole discovery? 22
Primal Dual results at X-band (8.5GHz) - 16GB image

> Super-resolution: restored image at 2.5x the resolution of the instrument.
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Concluding with new project award 23 /23
A 4 year project was recently funded jointly by the Swiss NSF & South African NRF

» Partners :

» Edinburgh: Prof Wiaux
» SKA South Africa: Prof Smirnov (with Profs Gain & Cress)
» EPFL: Prof Thiran (with Profs Vandergheynst & Kneib)

» Researchers :

» EPFL - Edinburgh: 1 Postdoctoral researcher (3 years)
» SKA South Africa: 2 PhD Students (4 years)

» Science :

Scalable Algorithms for hyperspectral and polarisation imaging
HPC implementation

Validation from Meerkat data

New discoveries...
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