Cosmological Information Contents on Light Cone

based on Yoo, Mitsou, Grimm, Durrer, Refregier 2019 JCAP

Jaiyul Yoo

CENTER for THEORETICAL ASTROPHYSICS AND COSMOLOGY
INSTITUTES for COMPUTATIONAL SCIENCE, UNIVERSITY of ZÜRICH

4 February 2020

Cosmological Information

- how much cosmological information available?
 - surveys: galaxy, weak lensing, cmb, supernova, etc
 - <u>complications</u>: systematic errors, statistical fluctuations, observational bias, etc
 - <u>fundamental limitation</u>: cosmic variance
- standard picture in literature (not accurate)
 - survey volume: hypersurface of simultaneity
 - cubic box, counting independent Fourier modes
 - good approximations

Inaccuracies in Standard Picture

- survey volume: not cubic box!
 - hypersurface of <u>simultaneity</u> vs. <u>past light cone</u> volume
 - time evolution: radial correlation, ignored
- all observables: correlated & CV limited!
 - direct <u>observables</u>: flux, angle, redshifts, shape,... affected by *inhomogeneities* and *correlated*
 - galaxy number density, weak lensing shear, and so on
 - luminosity distance: not bg $\bar{D}_L(z)$, but with fluctuations
 - <u>maximum</u> or limited cosmological information available

Inaccuracies in Standard Picture

- host galaxy fluctuations: biased!
 - galaxy bias: sample only over-dense regions
 - luminosity distance: non-zero in a void, but no obs.
 - all cosmological observables: biased!
- correlation along light cone: ignored!
 - inverse covariance is needed
 - angular correlation C_l & inverse covariance is C_l^{-1}
 - 3D correlation P(k) & inverse covariance is **not** $P(k)^{-1}$
 - no radial correlation is considered

Type-Ia Supernova Surveys

- idealized supernova observations:
 - no systematic errors
 - infinite number of observations (no stat. error)
 - all sky, all SN measurements up to maximum redshift
- cosmic variance:
 - information is not infinite!
 - observed flux, angular position, redshift: correlated
 - correctly account for <u>host</u> galaxy fluctuations & <u>radial</u> correlation

Maximum Information

- two cosmological parameters in LCDM: (Ω_m, w_0)
 - fiducial (solid): unbiased host like dark matter
 - more biased host (dashed): sample biased region

• large cosmic variance at low redshift

Systematic Errors in Literature

- over-estimation of cosmological information:
 - without radial correlation (solid)
 - without host galaxy correlation (dashed)

• current surveys: systematics limited

Conclusion

- proper quantification:
 - radial correlation & host galaxy fluctuation
 - over-estimation of cosmological constraining power
 - some priors used, uncertainty in host environment
- go beyond cosmic variance:
 - correlation as a signal, rather than a noise!
 - more information: cross-correlation with other cosmological probes (or multi-tracer method)

Cosmological Information on Light Cone

based on Yoo, Mitsou, Grimm, Durrer, Refregier 2019 JCAP

Jaiyul Yoo

CENTER for THEORETICAL ASTROPHYSICS AND COSMOLOGY
INSTITUTES for COMPUTATIONAL SCIENCE, UNIVERSITY of ZÜRICH

4 February 2020

