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Abstract—One of the main requirements of cognitive radio sys-
tems is the ability to reliably detect the presence of licensed pri-
mary transmissions. Previous works on the problem of detection
for cognitive radio have suggested the necessity of user coopera-
tion in order to be able to detect at the low signal-to-noise ratios
experienced in practical situations. We consider a system of cog-
nitive radio users who cooperate with each other in trying to de-
tect licensed transmissions. Assuming that the cooperating nodes
use identical energy detectors, we model the received signals as
correlated log-normal random variables and study the problem
of fusing the decisions made by the individual nodes. We design
a linear-quadratic (LQ) fusion strategy based on a deflection cri-
terion for this problem, which takes into account the correlation
between the nodes. Using simulations we show that when the obser-
vations at the sensors are correlated, the LQ detector significantly
outperforms the Counting Rule, which is the fusion rule that is ob-
tained by ignoring the correlation.

Index Terms—Cooperative sensing, correlated observations, de-
centralized detection, fusion, linear-quadratic detector.

1. INTRODUCTION

RADITIONALLY, the use of radio frequency bands has

been regulated in most countries through the process of
spectrum allocation in which the use of a particular frequency
band is restricted to the license holders of the band. Within this
framework, spectrum has often been viewed as a scarce resource
in high demand. However, measurements conducted have sug-
gested that most licensed spectrum is often under-utilized with
large spectral holes at different places at different times [1].
Cognitive radio systems have been proposed as a possible so-
lution to the spectrum crisis. The idea is to detect times when a
specific licensed band is not used at a particular place and use
the band for transmission without causing any significant inter-
ference to the transmissions of the license holder.

While detecting the presence of a particular transmission is in
itself a well-studied communication problem, the specific case
of cognitive radio introduces many more constraints on the de-
tection system that make it more involved. First, the SNR of the
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Fig. 1. Guard band. The interior of the primary’s range and the guard band
together form the protected region.

signal from the licensed users (referred to as primary users) re-
ceived by the cognitive users (also called secondary users) can
be extremely small. This is because the secondary users have to
ensure that they do not interfere even with the primary transmis-
sions at the edge of the primary’s coverage area. As illustrated in
Fig. 1, the secondary users located within the primary’s range
or in the guard band around it (jointly referred to as the pro-
tected region) could potentially interfere with the primary users’
communication. Hence, secondary users even at the edge of the
guard band should be able to detect the primary signal even if
decoding the signal may be impossible [2].

Secondly, the secondary users are in general not aware of
the exact transmission scheme used by the primary users. Fur-
thermore, the secondary users may not have access to training
and synchronization signals for the primary transmission. This
means that the secondary users are constrained to use nonco-
herent energy-based detectors (or feature detectors) that have
much poorer performances than coherent receivers under low
SNR.

Added to these issues of low SNR is the hidden-terminal
problem that arises because of shadowing (see Fig. 2). Sec-
ondary users may be shadowed away from the primary user’s
transmitter but there may be primary receivers close to the sec-
ondary users that are not shadowed from the primary trans-
mitter. Hence, if a secondary user transmits, it may interfere
with the primary receiver’s reception. This issue also needs to
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T;: Primary transmitter
Ts: Secondary transmitter
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Fig. 2. Hidden terminal problem. The secondary transmitter is shadowed away
from the primary transmitter but the primary receiver is not.

be addressed in order to design practical solutions to the detec-
tion problem.

Different approaches can be taken to handle the issue of low
SNR. One idea is to average over longer durations of time while
performing the detection. This scheme results in an increased
effective SNR and hence in improved performance but at the
expense of increased delay. Another possibility as suggested in
[2] is to have the primary transmitter send a known pilot signal
whenever it is ON. But this may not be feasible since it would
require the license holders who own the band to redesign their
transmit scheme throughout their network.

An alternative approach is to have users cooperating with
each other to detect the primary signal. Cooperation between
users follows almost as a necessary consequence of the above
constraints. Having multiple cooperating users increases di-
versity by providing multiple measurements of the signal and
thus guarantees better performance at low SNR. Additionally,
having users cooperating over a wide area also provides us
with a possible solution to the hidden-terminal problem, since
this problem would arise only if all the secondary users are
shadowed away from the primary. If the secondary users span
a distance that is larger than the correlation distance of the
shadow fading, it is unlikely that all of them are under a deep
shadow simultaneously.

Previous works on user-cooperation for cognitive radio sys-
tems [3], [4] have considered two kinds of schemes: one where
some kind of joint detection is employed among all the cooper-
ating users and another where the final decision is made based
on hard decisions made by each of the cooperating users. Gath-
ering the entire received data at one place may be very difficult
under practical communication constraints. Moreover, in prac-
tice, cooperation between the cognitive radio users cannot be
guaranteed always, since a user can cooperate with others only
when there are other users in its vicinity monitoring the same
frequency band as itself.
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In this paper, we focus on the more feasible system in which
the individual secondary users make independent decisions
about the presence of the primary signal in the frequency band
that they are monitoring. They communicate their decisions to a
fusion center that makes the final decision about the occupancy
of the band by fusing the decisions made by all cooperating
radios in that area that are monitoring the same frequency
band. In practice, the fusion center could be some centralized
controller that manages the channel assignment and scheduling
for the secondary users. The system could also be one where the
secondary users exchange their decisions and each secondary
user performs its own fusion of all the decisions.

We assume that the fusion center knows the geographic loca-
tions of all cooperating secondary users and hence can learn the
correlation between their observations. However, it is unaware
of the primary’s location. Since the decisions made by the sec-
ondary users contain just one bit of information each, and since
we do not expect to have to keep track of the channel usage fre-
quently, the data rates required for reliably communicating these
decisions to the fusion center are expected to be within practical
limits. Furthermore, the duration of data transmission is also not
expected to affect the delay constraints of the spectrum sensing
system.

In this paper, we address the problem of fusing decisions
made at the cooperating sensors. Fusion of data observed at dis-
tributed sensors is an integral part of any decentralized detec-
tion procedure, and decentralized detection has been an active
research area over the past 20 years. However, most of the sig-
nificant research has been limited to the case where the sensor
observations are conditionally independent under each hypoth-
esis (see, e.g., [5]-[8] for an overview of these results). The case
of correlated observations has also been studied [9], [10], [11],
but the results are often not easy to implement in practice. We
note that for the cognitive radio application we would have to
deal with the fact that the sensors are going to observe condi-
tionally dependent data due to correlated shadowing. The main
contribution of this paper is a suboptimal fusion rule that han-
dles correlation issues and at the same time is not heavily de-
pendent on the model or on exact knowledge of the statistics of
the signal. We show that a rule that uses only the knowledge
of lower order moments of the quantized data yields good per-
formance for different correlation structures. In the subsequent
sections we first introduce the problem formulation, followed
by our proposed solution, and then present our results and con-
clusions.

II. PROBLEM FORMULATION

The basic task of the fusion center is to decide whether or
not the secondary users are located inside the protected region
shown in Fig. 1. As mentioned earlier, we assume that the sec-
ondary users employ energy detectors. Moreover, since the co-
operating secondary users are expected to be located close to
each other and are monitoring the same frequency band, the
distributions of the received powers they see can be modeled
as being identical, albeit not independent. So the problem now
becomes a binary hypothesis testing problem to decide whether
or not the mean received power at their location is higher than
the power expected at the edge of the protected region. When
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the primary is ON and the secondary users are within the pro-
tected region, the power they receive is going to be the sum of
the primary signal power and the noise! power. In this case, we
model the received powers as being log-normally distributed.
The log-normal distribution is a popular choice for modeling
shadowing in wireless systems [12] in which it is assumed that
the received power in decibels is distributed as Gaussian. Here,
we are approximating the sum of the shadowed primary signal’s
power and the noise power to be log-normally distributed. We
also adopt the popular correlation model [13] in which the cor-
relation between the powers in decibels received at two different
sensors decays exponentially with the distance between them.

When the secondary users are outside the protected region,
the power they receive from the primary would be insignificant
compared to the noise. This is particularly true if the primary
is far away or is switched OFF. Under this scenario, the power
at the output of the energy detectors will be simply the sum of
noise power and the power of any interfering signals that may
be present. We assume that both these powers can be measured
with some accuracy at each of the secondary users. However,
perfect knowledge of the noise powers is not feasible in prac-
tice due to the variations in the noise level at the receivers. We
therefore model this uncertainty by modeling the power at the
output of the energy detector as being log-normally distributed
with some known variance as in [14]. This is equivalent to as-
suming that the uncertainty of the noise power is Gaussian in
the decibels scale. Furthermore, we assume that the uncertain-
ties are independent and identically distributed (i.i.d.) across the
secondary users, with the understanding that the uncertainty in
the received power under H is dominated by the thermal noise
at the individual receivers.

The two hypotheses of interest are Hy, the hypothesis that the
primary is present and is located close to the secondary users,
and Hy, the hypothesis that the primary is absent or is far away.
Here, H\) can also be viewed as the hypothesis that a spectral
hole exists and hence the spectrum is free for secondary access.
The cooperating secondary users subtract the estimated value of
the sum of noise and interference powers (in dBm) from their
received powers, to obtain their observations { YL};L Hence, we
have the following statistical model for the vector Y of obser-
vations at the n cooperating secondary users (sensors) under the
two hypotheses

Ho:Y ~N(0,031)
Hy:Y ~N(01,%) with § > g (D

where N (v, M) denotes a Gaussian vector distribution with
mean v and covariance matrix M. Here, 6 is a variable param-
eter representing the mean of the distributions observed under
hypothesis Hy, while j; is the mean total power in dBm re-
ceived at the edge of the guard band minus the mean noise power
in dBm, given by

1 = E[101log;,(1 + SNR)]dB

'We are implicitly assuming that the noise includes interference from other
distant users of the spectrum.
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Fig. 3. Decentralized detection setup.

where SNR is the random signal-to-noise ratio at the edge of the
guard band when the primary is ON, o( quantifies the uncer-
tainty in noise power, 1 is the vector of all ones, Y is the matrix
with elements X;; = cr% p%i where d;; is the distance between
nodes indexed by ¢, and 7, p is a measure of the correlation-co-
efficient between nodes separated by unit distance, and o7 is the
net variance under H;. The parameter p is related to the corre-
lation distance D¢ [13] by the relation p = exp(—1/Dc).

The constraint that our system should meet is to guarantee
that the probability of interfering with the primary transmission
is less than some pre-specified limit p;. We assume that the sec-
ondary users use the spectrum for transmission whenever they
detect a spectral hole. Hence, in our problem, the probability
of interfering with the primary transmission would be equal to
the probability of making an erroneous decision about the hy-
pothesis under H;. Hence, our system should guarantee that
the probability of making an erroneous decision under hypoth-
esis Hq should be lower than the constraint on the probability
of interference. Moreover, this constraint should be met for all
values of # greater than or equal to g1 in (1). This is a composite
binary Neyman-Pearson hypothesis testing problem [15]. Now
since we do not have any prior information about the distribu-
tion of the mean powers #, we have to design our system under a
robust detection or universally most powerful detection frame-
work [15]. This means that we have to design our system such
that it meets the interference probability constraint with equality
for the least favorable value of #, which in our case occurs when
6 is equal to fi1.

To summarize, we have reduced our detection problem (1) to
a simple Neyman-Pearson hypothesis testing problem between
the two modified hypotheses

Hy:Y ~N(0,081)
Hy:Y ~N(11l,%). )

In our system model, the final decision about the hypothesis
is made at the fusion center which has access only to the bi-
nary-valued decisions made by the sensors based on their indi-
vidual observations {Y;}}. We use {U;}] to represent the de-
cisions made at the individual sensors and U to represent the
vector of decisions made by all sensors. Hence, we have the de-
centralized Neyman-Pearson hypothesis testing problem illus-
trated in Fig. 3.
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We now introduce some additional notation. We use p; to
denote the distributions of the Y;’s, 4 = 1,2,...,n and g; for
the distributions of the U;’s, ¢« = 1,2,...,n, under hypothesis
H;, 7 =0,1. We also use P; to denote the probability measure
under hypothesis H; and E; to denote the expectation operator
under hypothesis H;,j = 0,1.

III. DETECTION RULE AT THE NODES

In the system we consider, each cognitive radio is designed
without expecting cooperation from other users in the detection
process, with the understanding that we do not always expect
a particular radio to be close enough to other radios that are
also monitoring the same primary signal. Hence, we assume that
the detector employed at each radio meets the probability of in-
terference constraint on its own. Since we further assume that
the signals received at the cooperating users are identically dis-
tributed, the detectors used by the cooperating users will also be
identical. Moreover, the optimal test used by sensor ¢ to deter-
mine its decision U; will be a likelihood ratio test on its obser-
vation Y; [15]. It will be of the form

Ui = T{og(L(vi))>r}

where I{} is the indicator function, which takes on
value 1 when its argument is true and O otherwise,
LY;) = (p1(V2))/(po(Y3)) is the likelihood ratio of the
observation at node ¢ and 7 is the threshold employed at every
node. The threshold 7 is chosen so that the probability of
making an incorrect decision at the node under hypothesis
H, is equal to the constraint on the interference probability,
p1. The identical likelihood ratio tests used at the sensors are
represented by () in Fig. 3.

For the Gaussian hypotheses described in (2), the log-likeli-
hood ratio of the observations will be a quadratic function of
Y; in general [15]. Hence, node ¢ would have to compare a
quadratic function of its observation to a threshold and obtain
its decision in the form of bit U;. These bits are communicated
to the fusion center where the final decision about the hypothesis
is made. The symbol §(.) in Fig. 3 represents the final decision
made at the fusion center.

IV. FUSION OF DECISIONS

The problem of optimal fusion of decentralized observations
has been studied in many works [10], [11]. It is known that the
optimal fusion rule is to compute the joint likelihood ratio of
the bits and compare it with a threshold chosen so as to meet
the interference probability requirement [10]. This solution, in
general, requires the knowledge of the joint statistics of the bits
under both hypotheses. The results of [11] show how the op-
timal fusion rule can be expressed in terms of the conditional
correlation coefficients of all orders, which again requires the
knowledge of the joint statistics of the bits.

However, in our problem, the U;’s are binary quantized ver-
sions of correlated Gaussian variables under H+, and hence their
joint statistics are not easy to compute especially for large values
of n. In this paper, we present some simple suboptimal fusion
strategies that circumvent this problem. The structure of these
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detectors can be obtained using only partial statistical informa-
tion about the quantized observations. However, the threshold to
be used at the fusion center for a target interference probability
will need to be estimated using simulations. This would be the
case with all possible fusion rules since analytical expressions
for the error probabilities of the fusion rules can be obtained
only when the joint statistics of the sensor decisions are avail-
able.

A. Counting Rule

One of the simplest suboptimal solutions to the data fusion
problem is the Counting Rule [16] (also referred to as the Voting
Rule), which just counts the number of sensor nodes that vote in
favor of H; and compares it with a threshold. Equivalently, the
decision is based solely on the type [17] of the received vector
of bits. The threshold value has to be set using simulations since
the joint statistics under H; are not available. It is easy to see
that under the special scenario where the observations are i.i.d
across the sensors under both hypotheses, this is the optimal rule
since the joint likelihood ratio of the bits is a function of only
the type of the received bit vector. Thus this would be a reason-
able fusion strategy even when nothing is known about the cor-
relation structure. How well a rule designed for a decentralized
hypothesis test with correlated observations makes use of the
correlation information could thus be quantified by comparing
its performance with that of the counting rule for the same ob-
servations. Moreover, the fact that the fusion center threshold
for even a simple fusion rule like the Counting Rule needs to be
set using simulations suggests that the same is to be expected
for more sophisticated fusion rules.

B. Linear Quadratic Detector

In this section, we present the main contribution of this
paper—a general suboptimal solution to the fusion problem
that uses partial statistical knowledge and gives better per-
formance than the one obtained by ignoring the correlation
information completely.

This solution makes use of the second-order statistics of the
local decisions {U;}} under H; and the fourth-order statistics
under Hj in the form of moments. Since the observations are
independent under H, the moments under Hy, are easily cal-
culated or estimated. The second-order moments under H; can
be obtained by calculating or estimating just the pairwise statis-
tics under H;. We note that obtaining information about these
moments is in general a lot easier than obtaining the entire joint
statistics of the signals especially when there are a large number
of cooperating nodes.

We consider fusion rules in the class of linear-quadratic (LQ)
detectors, i.e., detectors that compare a linear-quadratic function
of U with a threshold. Since we are including quadratic terms as
well while computing our detection metric, we expect to see im-
proved performance over the Counting Rule that is purely linear.
Moreover, since we are using only moment information about
U, this detector is quite general and can be used for all classes of
distributions of the signals. We seek to optimize over the class of
LQ detectors using the generalized signal-to-noise ratio or de-
flection criterion [18]. If X represents the observations in some
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detection problem, the deflection of a detector that makes a de-
cision by comparing a function T'(X) to a threshold is defined
as

[EA(T (X)) — Eo(T(X))]?

br="—"" @) @

Although deflection cannot be related directly to the error-prob-
ability for non-Gaussian observations, a detector with a higher
value of deflection is expected to have better error-probability
performance than one with a lower value of deflection. We show
using simulations that the optimal deflection-based LQ detector
that we derive in this section gives improved error performance
over the Counting Rule in correlated environments.

Following [19], we solve for the optimal LQ detector. Since
we now have quadratic terms as well, the values that we assign
to the bits become significant. Values of 1 or O assigned to the
decision random variables U; do not make much sense simply
because they are not representative of the actual values taken by
the signal Y;. The question then becomes: what values should
be assigned to the decision variables?

For a binary hypothesis test involving two Gaussian vector
distributions with equal variances and arbitrary covariances, it
can be shown that [15] the optimal centralized detection rule is,
in general, to compare a linear quadratic function of the obser-
vations with a threshold. In this case, the detection metric can
be viewed as a linear quadratic function of the log-likelihood
ratios of the individual random variables. This observation sug-
gests that an intelligent choice of values to be assigned to the
quantized observations in our problem would be the log-likeli-
hood ratios of the bits themselves.

Hence, we express our decision metric as

TX)=h'X+X"MX 4)

where X is the vector of log-likelihood ratios of the received
bits with means under Hy subtracted. The components of X are

given by
q1(Us) q1(U;)
= o (573) - 0 o (5555

while b is a vector of length n and M is an n X n square matrix.
It is important to note that X; can be computed directly from U;
without any added information since the log-likelihood function
and its expected value can be obtained directly from the first-
order distributions of the bits which are assumed to be known at
the fusion center.

We need to find the optimal LQ metric of the form (4) that
maximizes the deflection given by (3). Clearly, this optimization
will require the knowledge of up to the second-order statistics of
the bits under H; and up to the fourth-order statistics of the bits
under H since these terms explicitly appear in the expression
for the deflection (3).

Define matrix C = E[XX "]. Since adding a constant to
the decision metric leaves the deflection unchanged, (4) can be
replaced by a new decision metric given by

$(2)=12"2 (5)

where z is now an (n? +n) x 1 vector and Z is an (n® +n) x 1
vector given by
Z=[X1...X,, X{-Cu...X1X,—C1,

XoX1 —Co1...X2X,, — Coy

Xp Xy = Cy oo X2 = Con] "

In other words, we form Z by appending X with the raster-
scanned form of XX T — (. So the first n elements of Z are
the elements of X, the next n are the elements of the first row
of XX — C, followed by the elements of the second row of
XX — C, and so on. Similarly, z can be viewed as a vector
formed by appending vector h with matrix M in raster-scanned
form. So the problem of finding optimal A and M reduces to
solving for the optimal z that maximizes the deflection for this
decision metric.

From the construction of Z it is easy to see that Z has zero
mean under Hy. Hence, applying (3) to (5), we have deflection
for S(Z) given by

Ds

_[Ei(2"Z) - Eo(z" 2))?
B Varg(z " Z)

(2" p)?
- 2z'Kz
where i = E1(Z) and K = Eo(ZZ"). Matrix K is a function
of the s_econd—, third-, and fourth-order moments of X;’s under
Hj, and vector g is a function of the first- and second-order
moments under 7‘11. Since these moments are assumed known,
vector 1 and matrix K are known at the fusion center a priori.
In general, K is positive semi-definite but not strictly positive
definite. But it can be shown that the vector z that drives the
denominator of (6) to zero drives the numerator also to zero.
This is because if z" Kz = 0, we have

(6)

Eo(z" 22 z) = Eo((z72)*) =0
whence z " Z = 0 w.p. 1. Therefore,

Ei(z"Z)=2"p=0
which would mean that the two distributions of S(Z) have the
same mean. Since we do not desire this, it is sufficient to perform
the optimization of (6) over those x vectors that do not lie in the
singular space of matrix K.

Since K is positive semi-definite, it can be diagonalized as
K = VAV where V is a unitary matrix and A is a diagonal
matrix with nonnegative entries. Therefore, (6) can be written
as

(@"w? (&' p)?

= 7
2Kz  i"AZ M
which can be reduced to
(T 11a)?
DS = = —7 (8)

~T —~
ZTa NaZa

where i = V'pand 2 = V7'z. Equation (8) follows by
defining A, as the diagonal matrix containing only the nonzero
diagonal elements of A and defining 2, and j, as the vectors
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composed of the corresponding elements of z and ji, respec-
tively. Hence, we just have to optimize over z,.
Now (8) can be written as

(2T AN i)

(iv_aTA}z/QA}l/Q;)
<(A;/2£)T (Aa1/2£)> ’
(w'z) (vz)
AR (A
3 R
The right hand side of (9) is of the form ((zTw)/(|z|))? which

is maximized when the vectors z and w are collinear. It follows
that the optimal z, satisfies

Dg =

(A222a) = kA2 (10)
where £ in (10) is any constant, which can be chosen to be unity
without loss of optimality, to give
(Za)opt = A, 'ifa. (11)
Since A, contains only the positive eigenvalues of A as diag-
onal elements it is nonsingular and (11) is well-defined. Hence,
the optimal decision metric from (5) has the form
Sopt(Z) = xoptTZ = lfg}:tTZ
= fia A2, (12)
where Z = VT Z and z is obtained by keeping only the terms
of Z corresponding to those of ji that appear in ji,, and the
optimal deflection obtained is thus
(DS)opt = fia ' A7 fia- (13)
Hence, the deflection-optimal LQ detector compares the metric
given by (12) to a threshold chosen so as to obtain equality in
the probability of interference constraint. This threshold would
have to be set using simulations since the statistics of the de-
tection metric are not available. Since the detection metric is
discrete-valued, randomization may also be required to achieve
equality in the interference probability constraint. Clearly, the
computation of fi and K requires only the knowledge of up to
the fourth-order statistics of the decision variables under H and
up to the second-order statistics under H;. Hence, the detector
based on (12) can be used for all distributions of the original
observations as long as these lower order statistics can be cal-
culated.

C. Quantifying the Simulation Complexity

For both the LQ detector and the Counting Rule, the fusion
center threshold has to be set using simulations since the joint
statistics of the bits are unknown. In this section, we study the
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dependence of simulation complexity on the problem parame-
ters.

Let W denote the test statistic at the fusion center in either
the LQ detector or the Counting Rule. We are interested in de-
termining 7 so that P;(W < 7) meets some target proba-
bility of interference requirement p; with equality. In general,
we need randomization between two different thresholds for
gaining equality in the interference probability requirement.

For a known 7, we can estimate p = P;(W < 7) by gen-
erating an i.i.d. sequence of variables Wy, W5, ..., W under
hypothesis H; and then obtain our estimate p of p as

1 N
P = N Z;I{m<r}

where 7 is the indicator function. The ratio of the standard de-
viation o of this estimate to the value of p can be calculated to
be

1-p
p pN ~

Hence, in order to obtain a standard deviation of not more than
ap we need to generate and average over N = (1 — p)/(a?p)
ii.d. random variables with the same distribution as W. Since
we are interested in threshold values that yield values of p close
to p1, we need average only over N = (1 — pr)/(a?pr) random
variables. In practice, the value of 7 can be fixed by determining
the point where the empirical cumulative distribution (c.d.f.) of
the sequence {W;}V equals pr. Since the detection statistic for
both the scenarios described earlier are discrete random vari-
ables, there may be no point where the c.d.f. becomes exactly
equal to pr. In such a case, we have to randomize [15] between
two thresholds which correspond to the points where the c.d.f.
gets closest to p; from above and below, respectively. The ran-
domization parameter can be set after the two thresholds are de-
termined up to the desired level of accuracy.

Thus, the number of iterations required depends only on the
target interference probability and the percentage accuracy that
we desire and is independent of other parameters in the problem
like the number of cooperating users. The number of cooper-
ating users, however, affects the size of the alphabet to which
W belongs. This alphabet size grows exponentially with the
number of sensors 7. A trivial upper bound on the size of this
alphabet is 2™ since the decision metric is a function of n binary
variables.

V. SIMULATION RESULTS

Since analytical expressions for the error probabilities of
these detectors cannot be obtained, we need to resort to sim-
ulations for estimating their performances. For our detection
problem, the performance metrics of interest are the proba-
bility of successfully detecting the presence of spectral holes
given by Py(6(U) = Ho) and the probability of interference
under Hy given by Py (6(U) = Hy), where 6 represents the
final decision about the hypothesis made at the fusion center.
The performance of a detector can be illustrated by plotting
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TABLE 1
TABLE OF DETECTION PROBABILITIES

P Probability of detecting spectral holes
(probability of Single Counting LQ detector with LQ detector with Centralized

interference) sensor rule predetermined sensor threshold | sensor threshold varied detector

0.001 0.01240 0.0218 0.0552 0.0663 0.2155

0.004 0.0458 0.0851 0.1522 0.1657 0.4920

0.007 0.0790 0.1486 0.2109 0.2181 0.6266

0.01 0.1127 0.2153 0.2698 0.2865 0.7130
X Tsﬂggéitii?:: ' 5 performing the detection. The performance curve obtained with
".'f 025/ ,ﬁgﬂz‘gﬁgggﬁg e + 4 th.e single sensor detector is illustrated in Fig: 4. The points Qb-
a° |_* Counting Rule | o w tained by applying the LQ detector and Counting Rule for fusing
g o2k C . * | thedecisions of all sensors are also shown on the same graph. As
= 0 . expected, the performances of the detectors that make use of the
‘g ) o ¢ . information from all the sensors are better than the one that uses
é L . decisions made at a single sensor. In particular, the LQ detector
3 . is seen to give around two to three times the detection proba-
3 e ¢ . bility as that of the single sensor detector for the interference
;T 5 . probability values considered even though the observations are
g 005 3 * | highly correlated (the distance spanned by the nodes is equal to
T b half the correlation distance of the shadow fading). It can also be

I I I I I I I
0O 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Probability of interference (P1(5 =H) -

Fig. 4. Comparison of performance obtained with a single sensor and detection
probabilities obtained with LQ detector and Counting Rule for nine sensors uni-
formly placed inside a unit square with parameters set to p = 0.6, 7 = 3.4
dB, 0; = 2.1 dB and 0o = 1 dB. Also shown is the performance of the LQ
detector when statistical information is inaccurate.

the detection probability under H against the probability of
interference under H; obtained with the detector.

A. Comparison of Performances

The two rules obtained in the previous section were simulated
for a network of nine cooperating nodes uniformly placed inside
aunit square with the distance between nearest neighbors kept at
0.5. The correlation parameter p appearing in the ¥ matrix in (2)
was kept at p = 0.6. This effectively amounts to assuming that
the length of the side of the square is around half the correlation
distance, since exp(—0.5) ~ 0.6. Assuming a mean received
SNR of 0 dB at the edge of the guard band, a shadowing standard
deviation of 4 dB and a noise uncertainty oy = 1 dB, we get the
value of the mean total power at the edge of the guard band, 11,
to be 3.4 dB and the effective standard deviation of the received
power under Hy, o071, to be 2.1 dB. We carried out simulations
for the different cases outlined below.

1) Sensor Thresholds Fixed a Priori Based on Interference
Probability Required: We simulated the two rules for proba-
bility of interference values in the range 0.001 to 0.01. The sen-
sors use identical likelihood ratio tests for obtaining their deci-
sion variables U;. The threshold used at the sensors is chosen
such that the probability of making a wrong sensor decision
under H; equals the constraint on the probability of interfer-
ence. We allow for randomization [15] at the fusion center while

inferred that the LQ detector yields a substantial gain over the
Counting Rule, especially at low values of interference proba-
bility, which would be the region of interest for the cognitive
radio application. We have listed the exact values obtained in
Table I.

2) Incorrect Correlation Statistics: This simulation studies
the effects of incorrect correlation information on the perfor-
mance of the LQ detector. We keep the node configuration the
same as before, but assume that the locations of the nodes are
known only up to an accuracy within +0.3 of the correct value.
In other words, the locations are known only up to an accuracy
of 30% of the width of the square within which the cooperating
secondaries are located. We further include a mismatch in the
estimate of parameter p by assuming that the fusion center uses
a incorrect value of 0.1 while computing the required statistical
information. As we see in Fig. 4, the performance drop in the
LQ detector is very little and it still gives a significant advan-
tage over the Counting Rule detector. It was observed in other
simulations that there is no perceptible drop in performance of
the LQ detector for lower distance offsets.

3) Sensor Thresholds Varied: So far in this paper, we have
assumed that the individual sensors have to set their thresholds
assuming that they are not going to obtain any additional help
from other users. We now relax this assumption and allow the
users to choose their thresholds from a set of values close to the
original predetermined threshold. We still restrict them to use
the same threshold. The algorithm performs a limited search in
afinite set of sensor thresholds and chooses the one that gives the
best error performance at the fusion center. This choice would
depend on both the configuration of the cooperating users as
well as the target interference probability.

The detection probabilities for the LQ detector obtained by al-
lowing the users to vary their thresholds is also listed in Table I.
Clearly, the values in the table indicate that additional gains in
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Fig. 5. Comparison of performances of LQ and Counting Rule detectors as a
function of correlation parameter p.

detection probability can be obtained, as expected. This, how-
ever, would require additional communication overheads be-
tween the fusion center and the individual users. Moreover, there
is no simple criterion to optimally choose the threshold to be
used at the individual users for a given interference probability
and known correlation information. Searching over the entire
real number line for possible threshold values is clearly not a
feasible solution.

4) Centralized Detector: In Table I, we have also included
the detection probabilities obtained by employing the central-
ized detection rule. This detector performs the joint likelihood
ratio test on the entire vector of unquantized observations Y.
Clearly, it performs much better than the other detectors that
use only the decision variables U, thus illustrating the loss in
performance incurred due to making binary decisions at the co-
operating nodes.

B. Comparison of Performances as a Function of Correlation

In this simulation, we compare the performances of the LQ
detector and the Counting Rule detector for different values of
the correlation parameter p. Other signal parameters and the
configuration of the nodes is kept the same as in Section V-A.
The interference probability is kept fixed at 0.001 and the de-
tection probability obtained with the detectors is plotted as a
function of p. As in Section V-Al, the sensors use identical
quantizers with threshold chosen such that the probability of
making a wrong sensor decision under H; equals the constraint
on the probability of interference. As seen in Fig. 5, the LQ de-
tector outperforms the Counting Rule detector for all values of p
greater than 0.4. For low values of correlation, the observations
at the sensors are nearly independent under both hypotheses.
Hence the Counting Rule, being the optimal detector for i.i.d.
observations, performs better than the suboptimal LQ detector.
For values of the correlation greater than 0.4, the performance
of the Counting Rule detector steadily decreases and converges
to that obtained with a single sensor, while the performance of
the LQ detector starts increasing for higher correlation values.
The nonmonotonic behavior of the performance of the LQ de-
tector as a function of correlation is due to the fact that the value
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Fig. 6. Performance of optimal centralized detector as a function of correlation
parameter p.

of the correlation parameter affects the detection problem in two
different ways. There are primarily two different features in the
signals that help us distinguish between the two hypotheses.

The first feature is the difference in the distributions of the
signal at any single sensor. The ability to distinguish between
the two hypotheses by exploiting only this feature decreases as
the value of p increases since the amount of diversity or the
amount of independent information that we get about the hy-
potheses decreases as p increases. This behavior is seen in the
case of the Counting Rule detector, which relies primarily on the
difference between the means of the quantized signals to distin-
guish between the two hypotheses.

The second feature that we can exploit is the difference in the
amount of correlation existing between the observations under
the two hypotheses. The ability to distinguish between the two
hypotheses based on this feature clearly increases as p increases.

Hence, in detectors that try to exploit both these features, we
expect to see a nonmonotonicity in performance as a function of
p. This kind of behavior is seen in both the LQ detector (Fig. 5)
which exploits both these features from the quantized obser-
vations as well as in the optimal centralized detector (Fig. 6),
which makes optimal use of all the unquantized observations.

C. Averaging Over Topologies

Here, we average the performances obtained with the detec-
tion rules over different topologies of the network. We consider
different random topologies obtained by randomly scattering 9
cooperating users within a unit square and compare the average
performances obtained by employing the different detectors. We
use the same signal parameters as in Section V-A. As seen in
Fig. 7, the LQ detector still outperforms the Counting Rule sig-
nificantly.

VI. CONCLUSION

Our results clearly suggest that even when the observations
at the sensors are moderately correlated, it is important not to
ignore the correlation between the nodes for fusing the local
decisions made at the secondary users. In such scenarios, the
LQ detector provides a simple fusion rule that yields significant
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Fig.7. Comparison of performances of various detectors averaged over random
configurations of nine nodes within a unit square.

performance gains over the Counting Rule while still using only
partial statistical knowledge about the correlated decision vari-
ables. The Counting Rule is useful in a system where the corre-
lation between the observations at the users is small.

The LQ detector is also applicable for more general statistical
models for the signals, since all it requires is information about
the lower order moments about the correlated decision variables,
which can be easily calculated for most standard signal models.
Itis expected that for a system comprising a larger number of co-
operating nodes, better detection probabilities could be obtained
with the LQ detector, even without varying the thresholds at the
cooperating users. We could also generalize the LQ detector to
the scenario where the cooperating users employ higher level
quantizers. However, for such an application, the task of the fu-
sion center would become more complex since computing the
moments required for the LQ detector would become more in-
volved. Moreover, designing the quantizers to be used at the
sensors would also be nontrivial since we would now have to
set multiple thresholds at each sensor.

The performance of the LQ detector can be further improved
through some extensions. One such method as we illustrated in
Section V-A3, is to allow the cooperating users to select their
thresholds based on knowledge about the number of cooperating
sensors and the correlation structure. However, as mentioned
earlier, this scheme requires added communication overheads.

A different approach is possible in a system where the users
act as fusion centers after obtaining the decisions made by the
other users. In particular, each sensor could fuse its unquantized
observation with the decisions that are made at the other sensors.
Since we are using one unquantized observation, we expect to
see an improvement in performance. The moment information
required for this fusion method is different from what was re-
quired for the earlier method, but still requires only the pairwise
statistics under H; and up to fourth-order statistics under Hy.

Another possible extension of this work is to combine such a
cooperative spectrum sensing system with the system that con-
trols the sensing and access policies of the cooperating users
[20]. The joint design of sensing and access policies from a
single user’s perspective has been studied in previous works

[21]. In our problem, we have a group of sensors cooperatively
sensing the spectrum. We could extend the level of coopera-
tion to include the access policies as well. In such a system
the sensing and access policies to be used by all the cooper-
ating users could be jointly designed so as to maximize the net
throughput of the cooperating users.

The results on decentralized detection obtained in this paper
are also useful in a more general context as we illustrate in [22].
They could, for instance, be used in sensor networks when the
observations are conditionally dependent under either hypoth-
esis.
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