

Euclidean Distance Matrices:

A Short Walk Through Theory, Algorithms and Applications Ivan Dokmanić, Miranda Kreković, Reza Parhizkar, Juri Ranieri and Martin Vetterli

Overview

- Motivation
- ► Euclidean Distance Matrices (EDM) and their properties
- ► Forward and inverse problems related to EDMs
- ► Applications of EDMs
- ► Algorithms for EDMs
- ► Conclusions and open problems

"There are three things that matter in property: location, location, location."

— Lord Harold Samuel, a real estate tycoon in Britain

The 2014 Nobel Prize in Physiology or Medicine

May-Britt Moser, John O'Keefe and Edvard I. Moser for their discoveries of cells that constitute a positioning system in the brain.

Bat, echoes and navigation

Hiryu, Shizuko, et al. "On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude." Journal of Comparative Physiology A 194.9 (2008): 841-851.

Daniel Kish, a human echo-locator

"You took my sonar concept and applied it to every phone in the city. With half the city feeding you sonar, you can image all of Gotham. This is *wrong*."

— Lucius Fox, The Dark Knight

Motivation

▶ You land at Geneva airport with the Swiss train schedule but no map.

	Lausanne	Geneva	Zürich	Neuchâtel	Bern
Lausanne	0	33	128	40	66
Geneva	33	0	158	64	101
Zürich	128	158	0	88	56
Neuchâtel	40	64	88	0	34
Bern	66	101	56	34	0

Distances in minutes between five Swiss cities

Motivation

▶ You land at Geneva airport with the Swiss train schedule but no map.

	Lausanne	Geneva	Zürich	Neuchâtel	Bern
Lausanne	0	33	128	40	66
Geneva	33	0	158	64	101
Zürich	128	158	0	88	56
Neuchâtel	40	64	88	0	34
Bern	66	101	56	34	0

Distances in minutes between five Swiss cities

Locations (red) and estimated locations (black) of the cities.

Sensor network localization problem

Sensor network deployed on a rock glacier (SensorScope project)

- ▶ We measure the distances between the sensor nodes;
- ► The distances are noisy and some are missing;
- ▶ How do we reconstruct the locations of the sensors?

Molecular conformation problem

- We measure the distances between the atoms;
- ▶ The distances are given as intervals, and some are missing;
- ▶ How do we reconstruct the molecule?

Density map and structure of a molecule [10.7554/elife.01345]

- ► We consider an unknown room (A)
- ▶ A robot moves inside the room autonomously (B)
- At every step, the robot measures the room impulse response (C)
- ► How do we simultaneously recover the room shape and the robot location?

- ► We consider an unknown room (A)
- ► A robot moves inside the room autonomously (B)
- At every step, the robot measures the room impulse response (C)
- ► How do we simultaneously recover the room shape and the robot location?

- ► We consider an unknown room (A)
- ► A robot moves inside the room autonomously (B)
- At every step, the robot measures the room impulse response (C)
- ► How do we simultaneously recover the room shape and the robot location?

- ► We consider an unknown room (A)
- ► A robot moves inside the room autonomously (B)
- At every step, the robot measures the room impulse response (C)
- ► How do we simultaneously recover the room shape and the robot location?

Overview

- ► Motivation
- Euclidean Distance Matrices (EDM) and their properties
- ► Forward and inverse problems related to EDMs
- ► Applications of EDMs
- ► Algorithms for EDMs
- ► Conclusions and open problems

Euclidean Distance Matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{x}_1 & \dots & \mathbf{x}_5 \\ \mathbf{I} & \mathbf{I} \end{bmatrix} \quad \operatorname{edm}(\mathbf{X}) = \begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{x}_1 & \dots & \mathbf{x}_5 \end{bmatrix}$$

$$\operatorname{edm}(\mathbf{X}) =$$

- ▶ Consider a set of n points in d dimensions: $\mathbf{X} \in \mathbb{R}^{d \times n}$,
- lacktriangledown edm(f X) contains the squared distances between the points, edm(f X) $_{ij}=\|f x_i-f x_j\|^2,$
- ▶ Equivalently, edm(\mathbf{X}) is a linear function of the Gramian $\mathbf{G} = \mathbf{X}^{\top}\mathbf{X}$.
- ▶ Rank of the Gramian **G** is *d*.

▶ What can we say about $\|\mathbf{x}_i - \mathbf{x}_j\|^2$ when $\mathbf{x} \in \mathbb{R}^d$?

What can we say about $\|\mathbf{x}_i - \mathbf{x}_j\|^2$ when $\mathbf{x} \in \mathbb{R}^d$?

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} = \langle \mathbf{x}_{i} - \mathbf{x}_{j}, \mathbf{x}_{i} - \mathbf{x}_{j} \rangle$$

$$= \langle \mathbf{x}_{i}, \mathbf{x}_{i} \rangle + \langle \mathbf{x}_{j}, \mathbf{x}_{j} \rangle - 2 \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

$$g_{ij} \stackrel{\text{def}}{=} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle, \quad \mathbf{G} \stackrel{\text{def}}{=} (g_{ij})$$

$$\text{edm}(\mathbf{X}) = -2\mathbf{G} + \mathbf{1} \operatorname{diag}(\mathbf{G})^{T} + \operatorname{diag}(\mathbf{G})\mathbf{1}$$

$$\Rightarrow \operatorname{rank}(\operatorname{edm}(\mathbf{X})) \leq \operatorname{rank}(\mathbf{G}) + 1 + 1$$

$$= d + 2$$

What can we say about $\|\mathbf{x}_i - \mathbf{x}_j\|^2$ when $\mathbf{x} \in \mathbb{R}^d$?

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} = \langle \mathbf{x}_{i} - \mathbf{x}_{j}, \mathbf{x}_{i} - \mathbf{x}_{j} \rangle$$

$$= \underbrace{\langle \mathbf{x}_{i}, \mathbf{x}_{i} \rangle}_{g_{ii}} + \underbrace{\langle \mathbf{x}_{j}, \mathbf{x}_{j} \rangle}_{g_{jj}} -2 \underbrace{\langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle}_{g_{ij}}$$

$$= \underbrace{\langle \mathbf{x}_{i}, \mathbf{x}_{i} \rangle}_{g_{ii}} + \underbrace{\langle \mathbf{x}_{j}, \mathbf{x}_{j} \rangle}_{g_{ij}} -2 \underbrace{\langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle}_{g_{ij}}$$

$$= \underbrace{\langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle}_{g_{ij}}, \mathbf{G} \stackrel{\text{def}}{=} (g_{ij})$$

$$= \operatorname{cdm}(\mathbf{X}) = -2\mathbf{G} + \mathbf{1} \operatorname{diag}(\mathbf{G})^{T} + \operatorname{diag}(\mathbf{G})\mathbf{1}$$

$$\Rightarrow \operatorname{rank}(\operatorname{edm}(\mathbf{X})) \leq \operatorname{rank}(\mathbf{G}) + 1 + 1$$

What can we say about $\|\mathbf{x}_i - \mathbf{x}_j\|^2$ when $\mathbf{x} \in \mathbb{R}^d$?

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} = \langle \mathbf{x}_{i} - \mathbf{x}_{j}, \mathbf{x}_{i} - \mathbf{x}_{j} \rangle$$

$$= \underbrace{\langle \mathbf{x}_{i}, \mathbf{x}_{i} \rangle}_{g_{ii}} + \underbrace{\langle \mathbf{x}_{j}, \mathbf{x}_{j} \rangle}_{g_{ij}} -2 \underbrace{\langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle}_{g_{ij}}$$

$$g_{ij} \stackrel{\text{def}}{=} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle, \mathbf{G} \stackrel{\text{def}}{=} (g_{ij})$$

$$\mathsf{edm}(\boldsymbol{\mathsf{X}}) = -2\boldsymbol{\mathsf{G}} + \boldsymbol{\mathsf{1}}\operatorname{diag}(\boldsymbol{\mathsf{G}})^{\mathcal{T}} + \operatorname{diag}(\boldsymbol{\mathsf{G}})\boldsymbol{\mathsf{1}}^{\mathcal{T}}$$

$$\Rightarrow \operatorname{rank}(\operatorname{edm}(\mathbf{X})) \le \operatorname{rank}(\mathbf{G}) + 1 + 1$$
$$= d + 2$$

What can we say about $\|\mathbf{x}_i - \mathbf{x}_j\|^2$ when $\mathbf{x} \in \mathbb{R}^d$?

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2} = \langle \mathbf{x}_{i} - \mathbf{x}_{j}, \mathbf{x}_{i} - \mathbf{x}_{j} \rangle$$

$$= \langle \mathbf{x}_{i}, \mathbf{x}_{i} \rangle + \langle \mathbf{x}_{j}, \mathbf{x}_{j} \rangle - 2 \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$

$$g_{ij} \stackrel{\text{def}}{=} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle, \quad \mathbf{G} \stackrel{\text{def}}{=} (g_{ij})$$

$$\text{edm}(\mathbf{X}) = -2\mathbf{G} + \mathbf{1} \operatorname{diag}(\mathbf{G})^{T} + \operatorname{diag}(\mathbf{G})\mathbf{1}^{T}$$

$$\Rightarrow \operatorname{rank}(\operatorname{edm}(\mathbf{X})) \leq \operatorname{rank}(\mathbf{G}) + 1 + 1$$

$$= d + 2$$

EDM properties: rank

▶ The rank of an EDM depends only on the embedding dimension of the points:

Theorem (Rank of EDMs)

Rank of an EDM corresponding to points in \mathbb{R}^d is at most d+2.

▶ Note that the rank depends on the affine dimension of the points.

EDM properties: essential uniqueness

▶ EDMs are invariant to rigid transformations (translation, rotations, reflections):

$$\operatorname{edm}(\mathbf{X}) = \operatorname{edm}(\mathbf{RX} + b\mathbf{1}^{\top}).$$

Overview

- Motivation
- ► Euclidean Distance Matrices (EDM) and their properties
- Forward and inverse problems related to EDMs
- ► Applications of EDMs
- ► Algorithms for EDMs
- ► Conclusions and open problems

- ► Forward problem: given the points **X**, find the EDM edm(**X**).
- ▶ Inverse problem: given the distances $\|\mathbf{x}_i \mathbf{x}_j\|^2$, find the points **X**.
 - Distances may be noisy
 - Some distances may be missing;
 - We may loose the naming of the distances:
 - Significantly harder than the forward problem!

- ► Forward problem: given the points **X**, find the EDM edm(**X**).
- ▶ Inverse problem: given the distances $\|\mathbf{x}_i \mathbf{x}_j\|^2$, find the points **X**.
 - Distances may be *noisy*;
 - Some distances may be missing;
 - We may loose the naming of the *distances*:
 - Significantly harder than the forward problem!

- ► Forward problem: given the points **X**, find the EDM edm(**X**).
- ▶ Inverse problem: given the distances $\|\mathbf{x}_i \mathbf{x}_j\|^2$, find the points **X**.
 - Distances may be noisy;
 - Some distances may be *missing*;
 - We may loose the naming of the *distances*:
 - Significantly harder than the forward problem!

- ► Forward problem: given the points **X**, find the EDM edm(**X**).
- ▶ Inverse problem: given the distances $\|\mathbf{x}_i \mathbf{x}_j\|^2$, find the points **X**.
 - Distances may be noisy;
 - Some distances may be missing;
 - We may loose the naming of the *distances*:
 - Significantly harder than the forward problem!

- ► Forward problem: given the points **X**, find the EDM edm(**X**).
- ▶ Inverse problem: given the distances $\|\mathbf{x}_i \mathbf{x}_j\|^2$, find the points **X**.
 - Distances may be noisy;
 - Some distances may be missing;
 - We may loose the naming of the *distances*:
 - Significantly harder than the forward problem!

- ► Forward problem: given the points **X**, find the EDM edm(**X**).
- ▶ Inverse problem: given the distances $\|\mathbf{x}_i \mathbf{x}_j\|^2$, find the points **X**.
 - Distances may be noisy;
 - Some distances may be missing;
 - We may loose the naming of the *distances*:
 - Significantly harder than the forward problem!

Sometimes we measure distances without names

- ► We measure a set of distances, we lost their labels: combinatorial problem;
- Correct labels generate a low-rank matrix;
- Wrong labels generate a full-rank matrix;
- Hard to solve; harder when the distances are noisy.

Overview

- ► Motivation
- ► Euclidean Distance Matrices (EDM) and their properties
- ► Forward and inverse problems related to EDMs
- Applications of EDMs
- ► Algorithms for EDMs
- ► Conclusions and open problems

Application 1: Can you hear the shape of a room?

- One cannot hear the shape of a drum....
 but can one hear the shape of a room?
 (Using a source and 5+ microphones)
- ► Each microphone records the room impulse response (B), the peaks being the reflections on the wall.
- ▶ Using the image source model, we transform walls to points.
- ▶ Problem 1: unlabeled distance problem
- Problem 2: some peaks do not correspond to any reflection, some reflections may be missing.

Application 1: Can you hear the shape of a room?

- One cannot hear the shape of a drum....
 but can one hear the shape of a room?
 (Using a source and 5+ microphones)
- ► Each microphone records the room impulse response (B), the peaks being the reflections on the wall.
- ▶ Using the image source model, we transform walls to points.
- ▶ Problem 1: unlabeled distance problem
- Problem 2: some peaks do not correspond to any reflection, some reflections may be missing.

Application 1: Can you hear the shape of a room?

- One cannot hear the shape of a drum....
 but can one hear the shape of a room?
 (Using a source and 5+ microphones)
- ► Each microphone records the room impulse response (B), the peaks being the reflections on the wall.
- Using the image source model, we transform walls to points.
- ▶ Problem 1: unlabeled distance problem
- Problem 2: some peaks do not correspond to any reflection, some reflections may be missing.

Application 1: Can you hear the shape of a room?

- One cannot hear the shape of a drum....
 but can one hear the shape of a room?
 (Using a source and 5+ microphones)
- ► Each microphone records the room impulse response (B), the peaks being the reflections on the wall.
- Using the image source model, we transform walls to points.
- ▶ Problem 1: unlabeled distance problem
- Problem 2: some peaks do not correspond to any reflection, some reflections may be missing.

- ► We know the geometry of the microphone array, that is an EDM.
- ► For each microphone, we have a set of possible distances to the image sources,
- ▶ Location of the image sources: combinatorial search.
- ▶ EDM completion regularized by the rank is stable to noise and computationally feasible.

- ► We know the geometry of the microphone array, that is an FDM
- ► For each microphone, we have a set of possible distances to the image sources,
- ▶ Location of the image sources: combinatorial search.
- ▶ EDM completion regularized by the rank is stable to noise and computationally feasible.

- ► We know the geometry of the microphone array, that is an FDM.
- ► For each microphone, we have a set of possible distances to the image sources,
- ▶ Location of the image sources: combinatorial search.
- ▶ EDM completion regularized by the rank is stable to noise and computationally feasible.

- ► We know the geometry of the microphone array, that is an FDM.
- ► For each microphone, we have a set of possible distances to the image sources,
- ▶ Location of the image sources: combinatorial search.
- ► EDM completion regularized by the rank is stable to noise and computationally feasible.

Application 1: It works... at EPFL

Application 1: It works... at the Lausanne cathedral!

When we know the room, we can rake the cocktail party!

24

When we know the room, we can rake the cocktail party!

24

Application 2: Sparse Phase Retrieval

- \blacktriangleright (A) We measure a sparse auto-correlation function a(x).
- ▶ The support of the ACF are the distances between the elements of the original signal.
- ► The distances are unlabeled and noisy.
- ▶ (B) We recover the support of f(x) by labeling the distances.
- ► Knowing the support, it is easy to recover the amplitudes.

- ▶ Distance measurements are shift invariant, we set the first element at the origin
- ▶ The support of the signal is a subset of the support of the autocorrelation function.
- ▶ Greedy algorithm selects the best element from the support of the measured ACF.
- ► Cost function: distance between the support of the ACF of the partial solution and the support of the measured ACF.

- ▶ Distance measurements are shift invariant, we set the first element at the origin.
- ▶ The support of the signal is a subset of the support of the autocorrelation function.
- ▶ Greedy algorithm selects the best element from the support of the measured ACF.
- ► Cost function: distance between the support of the ACF of the partial solution and the support of the measured ACF.

- ▶ Distance measurements are shift invariant, we set the first element at the origin.
- ▶ The support of the signal is a subset of the support of the autocorrelation function.
- ▶ Greedy algorithm selects the best element from the support of the measured ACF.
- ► Cost function: distance between the support of the ACF of the partial solution and the support of the measured ACF.

- ▶ Distance measurements are shift invariant, we set the first element at the origin.
- ▶ The support of the signal is a subset of the support of the autocorrelation function.
- ▶ Greedy algorithm selects the best element from the support of the measured ACF.
- ► Cost function: distance between the support of the ACF of the partial solution and the support of the measured ACF.

Application 2: Algorithm performance

▶ Percentage of success as a function of the complexity of the signal (# of deltas) and noise affecting the ACF.

- ▶ We would like to localize a robot (B) inside an unknown room (A)
- ► The robot walks autonomously; we know statistics of the step size and direction.
- After each step, a sound is emitted and measures the room impulse response (C):
 - Source located on the robot or,
 - Source fixed in the room.
- ► Each peak in the RIR likely corresponds to an image source.
- ► Echo SLAM: Simultaneous Localization And Mapping based on echoes.

- ▶ We would like to localize a robot (B) inside an unknown room (A)
- ► The robot walks autonomously; we know statistics of the step size and direction.
- ► After each step, a sound is emitted and measures the room impulse response (C):
 - Source located on the robot or,
 - Source fixed in the room.
- ► Each peak in the RIR likely corresponds to an image source.
- Echo SLAM: Simultaneous Localization And Mapping based on echoes.

- ▶ We would like to localize a robot (B) inside an unknown room (A)
- ► The robot walks autonomously; we know statistics of the step size and direction.
- ► After each step, a sound is emitted and measures the room impulse response (C):
 - Source located on the robot or,
 - Source fixed in the room.
- ► Each peak in the RIR likely corresponds to an image source.
- ► Echo SLAM: Simultaneous Localization And Mapping based on echoes.

- ▶ We would like to localize a robot (B) inside an unknown room (A)
- ► The robot walks autonomously; we know statistics of the step size and direction.
- After each step, a sound is emitted and measures the room impulse response (C):
 - Source located on the robot or,
 - Source fixed in the room.
- ► Each peak in the RIR likely corresponds to an image source.
- Echo SLAM: Simultaneous Localization And Mapping based on echoes.

- ► At each step, we measure the RIR and determine the distance from the image sources.
- At the 1st step, initialization of the probability distribution of the image sources.
- At each step, the robot moves autonomously and we update the probability distributions.
- ► The accuracy of the estimated image sources improves step after step.
- ▶ The estimated image sources are then used to estimate the room shape.

2nd step of the robot

- At each step, we measure the RIR and determine the distance from the image sources.
- At the 1st step, initialization of the probability distribution of the image sources.
- At each step, the robot moves autonomously and we update the probability distributions.
- ► The accuracy of the estimated image sources improves step after step.
- ▶ The estimated image sources are then used to estimate the room shape.

3rd step of the robot

- At each step, we measure the RIR and determine the distance from the image sources.
- At the 1st step, initialization of the probability distribution of the image sources.
- ▶ At each step, the robot moves autonomously and we update the probability distributions.
- ► The accuracy of the estimated image sources improves step after step.
- ► The estimated image sources are then used to estimate the room shape.

4th step of the robot

- At each step, we measure the RIR and determine the distance from the image sources.
- At the 1st step, initialization of the probability distribution of the image sources.
- ▶ At each step, the robot moves autonomously and we update the probability distributions.
- ► The accuracy of the estimated image sources improves step after step.
- ► The estimated image sources are then used to estimate the room shape.

5th step of the robot

- ► At each step, we measure the RIR and determine the distance from the image sources.
- At the 1st step, initialization of the probability distribution of the image sources.
- ▶ At each step, the robot moves autonomously and we update the probability distributions.
- ► The accuracy of the estimated image sources improves step after step.
- ► The estimated image sources are then used to estimate the room shape.

9th step of the robot

- At each step, we measure the RIR and determine the distance from the image sources.
- At the 1st step, initialization of the probability distribution of the image sources.
- ▶ At each step, the robot moves autonomously and we update the probability distributions.
- ► The accuracy of the estimated image sources improves step after step.
- ▶ The estimated image sources are then used to estimate the room shape.

10th step of the robot

- ► At each step, we measure the RIR and determine the distance from the image sources.
- At the 1st step, initialization of the probability distribution of the image sources.
- ▶ At each step, the robot moves autonomously and we update the probability distributions.
- ► The accuracy of the estimated image sources improves step after step.
- ► The estimated image sources are then used to estimate the room shape.

Application 4: Multidimensional unfolding

- ► Multidimensional unfolding:
 - Divide the points into two subsets,
 - Measure the distances between the points belonging to different subsets,
 - Other distances are unknown.
- ▶ Example: calibration of microphones with sources at unknown locations.
- Many distances are missing, the measured ones are noisy.

Application 4b: Calibrate ten microphones with a fingersnap

- Unknown room.
- Every microphone measures the echoes coming from the walls (or image sources).
- We measure the unlabeled distances between microphones and sources.
- ► Sort the echoes to localize the mics!

31

Application 5: Calibration in ultrasound tomography

- ▶ Ultrasound transceivers deployed on a circle (A), their location is unknown.
- ► Each transceiver can measure the distance w.r.t. the transceivers in front.
- ▶ We can fill the EDM, with structured missing entries (B).
- ▶ Problem: estimate the locations of the transceiver to improve the imaging performance.

Application 5: Calibration in ultrasound tomography

- ► Solution of the ultrasound tomography when measuring water (1500 m/s).
- ► Calibration improves significantly the tomographic imaging.

Outline

- ► Motivation
- ► Euclidean Distance Matrices (EDM) and their properties
- ► Forward and inverse problems related to EDMs
- ► Applications of EDMs
- ► Algorithms for EDMs
- ► Conclusions and open problems

How do we skin the cat?

- ► Wide array of possible applications,
- We need flexible and efficient algorithms!

- ► Large matrix with small rank, having missing and/or noisy entries.
- ▶ Idea: enforce the rank while minimizing the distance from the measurements.
- Problem: Rank constraints are non-convex: hard to enforce!

Algorithm 1: Multidimensional scaling (MDS)

Classical Multidimensional scaling (MDS)

- ▶ Choose $\mathbf{x}_1 = \mathbf{0}$, then the first column of $\mathbf{D} = \operatorname{edm}(\mathbf{X})$, call it d_1 , is $\operatorname{diag}(\mathbf{X}^\top \mathbf{X})$,
- lacktriangle Construct the Gram matrix: $\mathbf{G} = -\frac{1}{2}(\mathbf{D} \mathbf{1}d_1^{ op} d_1\mathbf{1}^{ op})$,
- ▶ The point set is obtained via SVD $\mathbf{G} = \mathbf{X}^{\top}\mathbf{X}$.

Problem: How do we deal with missing entries?

Algorithm 1: Multidimensional scaling (MDS)

Classical Multidimensional scaling (MDS)

- ▶ Choose $\mathbf{x}_1 = \mathbf{0}$, then the first column of $\mathbf{D} = \operatorname{edm}(\mathbf{X})$, call it d_1 , is $\operatorname{diag}(\mathbf{X}^{\top}\mathbf{X})$,
- lacktriangle Construct the Gram matrix: $\mathbf{G} = -\frac{1}{2}(\mathbf{D} \mathbf{1}d_1^{ op} d_1\mathbf{1}^{ op})$,
- ▶ The point set is obtained via SVD $\mathbf{G} = \mathbf{X}^{\top}\mathbf{X}$.

Problem: How do we deal with missing entries?

Algorithm 2: Alternated rank descent

- ▶ We measure an EDM with missing and noisy entries.
- ▶ We fill the missing entries by enforcing the rank constraint.
- ▶ Alternate between enforcing the measured distances and the rank constraint.

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 1

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 2

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round 3

Alternating descent on the s-stress function

- Minimize the s-stress, $\sum_{(i,j)\in E} (\|\mathbf{x}_i \mathbf{x}_j\|^2 \widetilde{d}_{ij})^2$
- ► Alternate between minimizing individual coordinate component of each point **x**_i

Round N

Algorithm 4: Semidefinite relaxation

- The Gram matrix G is positive semidefinite,
 W is the mask defining the measured distances,
 D contains the measured distances.
- **D** is linear in **X** (remember, **D** = diag(**X**)1^T + 1 diag(**X**)^T − 2**X**)
- ▶ Together with the rank, it's a complete description!

minimize
$$\left\| \mathbf{W} \circ \left(\widetilde{\mathbf{D}} - \operatorname{edm}(\mathbf{G}) \right) \right\|_F^2$$
 subject to \mathbf{G} positive semidefinite \mathbf{G} geometrically centered $\operatorname{rank}(\mathbf{G}) \leq d$

The EDM cone for 3 points

Algorithms comparison

Algorithm	Pros	Cons	
Classical MDS	Very simple	No missing distances	
	Handles noise	Unnatural cost function	
Alternated rank descent	Missing distances, noise	Scales poorly	
Alternated rank descent	Handles noise	Unnatural cost function	
	Trandles noise	Offilatural Cost function	
Alternating Descent	Simple		
on s-stress	Good cost function (s-stress)	Convergence issues	
	Missing distances, noise		
CDD			
SDR	Good cost function	Slow	
	Missing distances, noise	Can't enforce the embedding	
	Handles constraints on distances	dimension	

Algorithms: performance w.r.t. missing entries

Algorithms: what happens for a specific application?

- ▶ Consider the calibration problem with an increasing number of sound sources,
- ▶ We have more information, but not every algorithm can exploit it!

The choice of algorithm is fundamental and not trivial

Overview

- Motivation
- ► Euclidean Distance Matrices (EDM) and their properties
- ► Forward and inverse problems related to EDMs
- ► Applications of EDMs
- ► Algorithms for EDMs
- ► Conclusions and open problems

A small selection of open problems

▶ Distance matrices on manifolds

Efficient algorithms for distance labeling

► Projections of EDMs on subspaces

► Analytical local minimum of s-stress

Conclusions

Application	missing distances	noisy distances	unlabeled distances
Wireless sensor networks *	✓	V	×
Molecular conformation	✓	✓	×
Hearing the shape of a room *	×	✓	✓
Echo SLAM *	×	✓	✓
Indoor localization	×	✓	✓
Calibration *	✓	✓	×
Sparse phase retrieval *	×	✓	✓

^{*} Applications that we have discussed in this talk.

Literature

- ▶ I.Dokmanić, R.Parhizkar, J.Ranieri, and M.Vetterli, *Euclidean Distance Matrices: A Short Walk Through Theory, Algorithms and Applications*, to appear (November 2015) in IEEE Signal Processing Magazine.
- ▶ R.Parhizkar, A.Karbasi, S.Oh, M.Vetterli, *Calibration Using Matrix Completion with Application to Ultrasound Tomography*, IEEE Transaction on Signal Processing, 2013.
- ▶ I.Dokmanić, R.Parhizkar, A.Walther, Y.M.Lu, and M.Vetterli, *Acoustic echoes reveal room shape*, Proceedings of the National Academy of Sciences, 2013.
- ▶ J.Ranieri, A.Chebira, Y.M.Lu, and M.Vetterli, *Phase Retrieval for Sparse Signals: Uniqueness Conditions and Algorithms* in preparation.
- ▶ R.Parhizkar, *Euclidean Distance Matrices: Properties, Algorithms and Applications*, PhD Thesis EPFL, 2013.
- ▶ I.Dokmanić, Listening to Distances and Hearing Shapes: Inverse Problems in Room Acoustics and Beyond. PhD Thesis EPFL. 2015.

Acknowledgments

- ▶ Farid Movahedi Naini for helping with the numerical experiments.
- Funding resources:
 - Swiss National Science Foundation, Grant 200021 138081.
 - European Research Council SPARSAM, Grant 247006.
 - Google Focused Research Award.
 - Google PhD fellowship.

Thank you for your attention!

Googlecar

Batmobile with echolocation

