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“There are three things that matter in property: location, location, location.”

— Lord Harold Samuel, a real estate tycoon in Britain
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The 2014 Nobel Prize in Physiology or Medicine

May-Britt Moser, John O’Keefe and Edvard I. Moser
for their discoveries of cells that constitute a positioning system in the brain.
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Bat, echoes and navigation

Hiryu, Shizuko, et al. "On-board telemetry of emitted sounds from free-flying bats: 
compensation for velocity and distance stabilizes echo frequency and amplitude." 
Journal of Comparative Physiology A 194.9 (2008): 841-851.
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Daniel Kish, a human echo-locator
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“You took my sonar concept and applied it to every phone in the city. With half the city
feeding you sonar, you can image all of Gotham. This is *wrong*.”

— Lucius Fox, The Dark Knight
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Motivation

� You land at Geneva airport with the Swiss train schedule but no map.

Lausanne Geneva Zürich Neuchâtel Bern

Lausanne 0 33 128 40 66

Geneva 33 0 158 64 101

Zürich 128 158 0 88 56

Neuchâtel 40 64 88 0 34

Bern 66 101 56 34 0

Distances in minutes between five Swiss cities
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Sensor network localization problem

Sensor network deployed on a rock glacier

(SensorScope project)

� We measure the distances between the sensor nodes;

� The distances are noisy and some are missing;

� How do we reconstruct the locations of the sensors?
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Molecular conformation problem

Density map and structure of a

molecule [10.7554/elife.01345]

� We measure the distances between the atoms;

� The distances are given as intervals, and some are missing;

� How do we reconstruct the molecule?
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Echo Simultaneous Localization and Mapping (Echo SLAM)

� We consider an unknown room (A)

� A robot moves inside the room autonomously (B)

� At every step, the robot measures the room impulse
response (C)

� How do we simultaneously recover the room shape and the
robot location?
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Euclidean Distance Matrix

� Consider a set of n points in d dimensions: X ∈ R
d×n,

� edm(X) contains the squared distances between the points, edm(X)ij = ‖xi − xj‖2,
� Equivalently, edm(X) is a linear function of the Gramian G = X�X.

� Rank of the Gramian G is d .
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Rank testing of Euclidean distance matrix (EDM)

� What can we say about ‖xi − xj‖2
when x ∈ R

d?
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EDM properties: rank

� The rank of an EDM depends only on the embedding dimension of the points:

Theorem (Rank of EDMs)

Rank of an EDM corresponding to points in Rd is at most d + 2.

� Note that the rank depends on the affine dimension of the points.
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EDM properties: essential uniqueness

� EDMs are invariant to rigid transformations (translation, rotations, reflections):

edm(X) = edm(RX+ b1�).
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Forward and inverse problem related to EDMs

Forward problem

Inverse problem

� Forward problem: given the points X, find the EDM edm(X).

� Inverse problem: given the distances ‖xi − xj‖2, find the points X.

• Distances may be noisy;

• Some distances may be missing;

• We may loose the naming of the distances:

• Significantly harder than the forward problem!
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Sometimes we measure distances without names

� We measure a set of distances, we lost their
labels: combinatorial problem;

� Correct labels generate a low-rank matrix;

� Wrong labels generate a full-rank matrix;

� Hard to solve; harder when the distances are
noisy.
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Application 1: Can you hear the shape of a room?

� One cannot hear the shape of a drum....
but can one hear the shape of a room?
(Using a source and 5+ microphones)

� Each microphone records the room
impulse response (B), the peaks being
the reflections on the wall.

� Using the image source model, we
transform walls to points.

� Problem 1: unlabeled distance problem

� Problem 2: some peaks do not
correspond to any reflection, some
reflections may be missing.
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Application 1: Echo sorting algorithm

� We know the geometry of the microphone array,
that is an EDM.

� For each microphone, we have a set of possible
distances to the image sources,

� Location of the image sources: combinatorial search.

� EDM completion regularized by the rank is stable to
noise and computationally feasible.
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Application 1: It works... at EPFL

22



Application 1: It works... at the Lausanne cathedral!
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When we know the room, we can rake the cocktail party!

Interference

Source

Classic 
Beamformer
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When we know the room, we can rake the cocktail party!

Interference

Source

Rake receiver

Classic 
Beamformer
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Application 2: Sparse Phase Retrieval

Forward problem

Inverse problem

� (A) We measure a sparse auto-correlation function a(x).

� The support of the ACF are the distances between the elements of the original signal.

� The distances are unlabeled and noisy.

� (B) We recover the support of f (x) by labeling the distances.

� Knowing the support, it is easy to recover the amplitudes.
25



Application 2: Algorithm for Sparse Phase Retrieval

Forward problem

Inverse problem

� Distance measurements are shift invariant, we set the first element at the origin.

� The support of the signal is a subset of the support of the autocorrelation function.

� Greedy algorithm selects the best element from the support of the measured ACF.

� Cost function: distance between the support of the ACF of the partial solution and the
support of the measured ACF.
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Application 2: Algorithm performance

� Percentage of success as a function of the complexity of the signal (# of deltas) and
noise affecting the ACF.
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Application 3: Echo SLAM

� We would like to localize a robot (B) inside
an unknown room (A)

� The robot walks autonomously; we know
statistics of the step size and direction.

� After each step, a sound is emitted and
measures the room impulse response (C):

• Source located on the robot or,

• Source fixed in the room.

� Each peak in the RIR likely corresponds to
an image source.

� Echo SLAM: Simultaneous Localization And
Mapping based on echoes.
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Application 3: Echo SLAM with fixed sound source

Estimated IS

Image source Measured distance

Robot trajectoryRobot location

Room

1st step of the robot

� At each step, we measure the RIR and
determine the distance from the image
sources.

� At the 1st step, initialization of the
probability distribution of the image sources.

� At each step, the robot moves autonomously
and we update the probability distributions.

� The accuracy of the estimated image sources
improves step after step.

� The estimated image sources are then used
to estimate the room shape.
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Application 4: Multidimensional unfolding

1
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� Multidimensional unfolding:

• Divide the points into two subsets,

• Measure the distances between the points belonging to different subsets,

• Other distances are unknown.

� Example: calibration of microphones with sources at unknown locations.

� Many distances are missing, the measured ones are noisy.
30



Application 4b: Calibrate ten microphones with a fingersnap

� Unknown room.

� Every microphone measures the
echoes coming from the walls (or
image sources).

� We measure the unlabeled
distances between microphones
and sources.

� Sort the echoes to localize the
mics!
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Application 5: Calibration in ultrasound tomography

� Ultrasound transceivers deployed on a circle (A), their location is unknown.

� Each transceiver can measure the distance w.r.t. the transceivers in front.

� We can fill the EDM, with structured missing entries (B).

� Problem: estimate the locations of the transceiver to improve the imaging performance.
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Application 5: Calibration in ultrasound tomography

Uncalibrated device Calibrated device

� Solution of the ultrasound tomography when measuring water (1500 m/s).

� Calibration improves significantly the tomographic imaging.
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How do we skin the cat?

� Wide array of possible applications,

� We need flexible and efficient algorithms!

� Large matrix with small rank, having missing and/or noisy entries.

� Idea: enforce the rank while minimizing the distance from the measurements.

� Problem: Rank constraints are non-convex: hard to enforce!
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Algorithm 1: Multidimensional scaling (MDS)

Classical Multidimensional scaling (MDS)

� Choose x1 = 0, then the first column of D = edm(X), call it d1, is diag(X�X),

� Construct the Gram matrix: G = −1
2(D− 1d�

1 − d11
�),

� The point set is obtained via SVD G = X�X.

Problem: How do we deal with missing entries?
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Algorithm 2: Alternated rank descent

Measured EDM Measurement constraint Rank constraint

Filling entries Alternate 
descent

� We measure an EDM with missing and noisy entries.

� We fill the missing entries by enforcing the rank constraint.

� Alternate between enforcing the measured distances and the rank constraint.
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Algorithm 3: Alternating descent of the s-stress function

Alternating descent on the s-stress function

� Minimize the s-stress,∑
(i ,j)∈E

(‖xi − xj‖2 − d̃ij)
2

� Alternate between minimizing individual
coordinate component of each point xi

True location Estimated location
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Algorithm 4: Semidefinite relaxation

� The Gram matrix G is positive semidefinite,
W is the mask defining the measured distances,
D̃ contains the measured distances.

� D is linear in X (remember,
D = diag(X)1T + 1 diag(X)T − 2X)

� Together with the rank, it’s a complete description!

minimize
G

∥∥∥W ◦
(
D̃− edm(G)

)∥∥∥2
F

subject to G positive semidefinite

G geometrically centered

��������������rank(G) ≤ d

d12d13

23d

The EDM cone for 3 points
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Algorithms comparison

Algorithm Pros Cons

Classical MDS Very simple No missing distances
Handles noise Unnatural cost function

Alternated rank descent Missing distances, noise Scales poorly
Handles noise Unnatural cost function

Alternating Descent Simple
on s-stress Good cost function (s-stress) Convergence issues

Missing distances, noise

SDR Good cost function Slow
Missing distances, noise Can’t enforce the embedding
Handles constraints on distances dimension
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Algorithms: performance w.r.t. missing entries
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Algorithms: what happens for a specific application?

� Consider the calibration problem with an increasing number of sound sources,

� We have more information, but not every algorithm can exploit it!
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The choice of algorithm is fundamental and not trivial
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Overview

� Motivation

� Euclidean Distance Matrices (EDM) and their properties

� Forward and inverse problems related to EDMs

� Applications of EDMs

� Algorithms for EDMs

� Conclusions and open problems
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A small selection of open problems

� Distance matrices on manifolds � Projections of EDMs on subspaces

� Efficient algorithms for distance
labeling

� Analytical local minimum of s-stress

global min.

local max.
saddle
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Conclusions

Application missing distances noisy distances unlabeled distances

Wireless sensor networks * � � ×
Molecular conformation � � ×

Hearing the shape of a room * × � �

Echo SLAM * × � �

Indoor localization × � �

Calibration * � � ×
Sparse phase retrieval * × � �

* Applications that we have discussed in this talk.
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Thank you for your attention!

Googlecar

Batmobile with echolocation
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