

Euclidean Distance Matrices:

A Short Walk Through Theory, Algorithms and Applications Ivan Dokmanić, Reza Parhizkar, Juri Ranieri and Martin Vetterli

- Motivation
- ▶ Euclidean Distance Matrices (EDM) and their properties
- Algorithms for EDMs
- Applications of EDMs
- Conclusions and open problems

Motivation

the state

- ▶ We land at the GVA airport and we have lost our map of Switzerland...
- ▶ We have only a train schedule!

	Lausanne	Geneva	Zürich	Neuchâtel	Bern
Lausanne	0	33	128	40	66
Geneva	33	0	158	64	101
Zürich	128	158	0	88	56
Neuchâtel	40	64	88	0	34
Bern	66	101	56	34	0

Distances in minutes between five swiss cities

Locations (red) and estimated locations (black) of the cities.

Sensor network localization problem

Sensor network deployed on a rock glacier

- We measure the distances between the sensor nodes,
- ▶ The distances are noisy and some are missing,
- How do we reconstruct the locations of the sensors?

Molecular conformation problem

- ▶ We measure the distances between the atoms,
- ▶ The distances are given as intervals, and some are missing,
- How do we reconstruct the molecule?

Density map and structure of a molecule [10.7554/elife.01345]

Euclidean Distance Matrix

- Consider a set of *n* points $\mathbf{X} \in \mathbb{R}^{d \times n}$,
- edm(X) contains the squared distances between the points,
- Equivalently, $\operatorname{edm}(\mathbf{X}) = \mathbf{1}\operatorname{diag}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\mathsf{T}} 2\mathbf{X}^{\mathsf{T}}\mathbf{X} + \operatorname{diag}(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{1}^{\mathsf{T}}$.

EDM properties: rank and essential uniqueness

• The rank of an EDM depends only on the dimensionality of the points:

Theorem (Rank of EDMs)

Rank of an EDM corresponding to points in \mathbf{R}^d is at most d + 2.

• EDMs are invariant to rigid transformations (translation, rotations, reflections):

 $\mathsf{edm}(\mathbf{X}) = \mathsf{edm}(\mathbf{RX} + b\mathbf{1}^{\mathsf{T}}).$

- Consider *n* points in \mathbb{R}^d , then we have $\#_X = nd$ degrees of freedom (DoF).
- ► If we describe the points with a symmetric rank-(d + 2) matrix, we have $\#_{DOF} = n(d + 1) \frac{(d+1)(d+2)}{2}$ DoF.

For large n and fixed d, [#]_{Hx} ∼ ^{d+1}/_d: the rank property is not a *tight* description of an EDM.

Forward and inverse problem related to EDMs

- ► Forward problem: given the points **X**, find the EDM edm(**X**).
- ▶ Inverse problem: given the distances $\|\mathbf{x}_i \mathbf{x}_j\|^2$, find the points **X**.
 - Distances may be *noisy*,
 - Some distances may be *missing*,
 - We may loose the naming of the *distances*.
 - Significantly harder than the forward problem.

Examples of inverse problems

Algorithms: multidimensional scaling

Other algorithms

Algorithms: performance comparison

Applications of EDM

Applications: Multidimensional unfolding of echoes

- Multidimensional unfolding:
 - Divide the points in two sets,
 - Measure the distances between the points belonging to different subsets,
 - Other distances are unknown.
- Example: calibration of a microphones with sources at unknown locations.
- Many distances are missing, the measured ones are noisy.

Applications: Calibration in ultrasound tomography

- ► (A) Ultrasound transceivers deployed on a circle, their location is unknown.
- Each transceiver can measure the distance w.r.t. the transceivers in front.
- (B) We can fill the EDM, with structured missing entries.
- ▶ Problem: estimate the locations of the transceiver to improve the imaging performance.

- Distance matrices on manifolds
- Projections of EDMs on lower dimensional subspaces
- Efficient algorithms for distance labeling
- Analytical local minimum of s-stress

- Definition of EDMs
- Properties of EDMs
- Inverse problems with EDMs

Application	missing distances	noisy distances	unlabeled distances
Wireless sensor networks *	 ✓ 	~	×
Molecular conformation	 ✓ 	~	×
Hearing the shape of a room *	×	~	~
Indoor localization	×	~	~
Calibration	 ✓ 	~	×
Sparse phase retrieval *	×	~	~

Literature

- ► Farid Movahedi Naini for helping with the numerical experiments.
- Funding resources:
 - Swiss National Science Foundation, Grant 200021 138081
 - European Research Council SPARSAM, Grant 247006
 - Google ?

Thanks for the attention!

