Luca Viano

Research Interests:

  • Reinforcement Learning
  • Imitation Learning
  • Optimization

 

Biography

Since September 2021, I am an ELLIS PhD Fellow supervised by Volkan Cevher and co-supervised by Gergely Neu. My first PhD year was kindly supported by the EDIC Excellence Fellowship.

Before that, I worked as Data Scientist at Datapred, I obtained a MSc in Computational Science and Engineering from EPFL and a Bachelor in Engineering Physics from Politecnico di Torino, Italy. Cycling is my main hobby.

Convergence to Equilibrium of No-Regret Dynamics in Congestion Games

V. Cevher; W. Chen; L. Dadi; J. Dong; I. Panageas et al. 

2026. 20th International Conference on Web and Internet Economics, Edinburgh, UK, 2024-12-02 – 2024-12-05. p. 513 – 529. DOI : 10.1007/978-3-032-08560-3_29.

Multi-Step Alignment as Markov Games: An Optimistic Online Mirror Descent Approach with Convergence Guarantees

Y. Wu; L. Viano; K. Antonakopoulos; Y. Chen; Z. Zhu et al. 

Transactions on Machine Learning Research. 2025. num. 12/2025.

Learning Equilibria from Data: Provably Efficient Multi-Agent Imitation Learning

T. Freihaut; L. Viano; V. Cevher; M. Geist; G. Ramponi 

2025. 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, USA, 2025-12-02 – 2025-12-07.

Best of Both Worlds: Regret Minimization versus Minimax Play

A. Müller; J. Schneider; S. Skoulakis; L. Viano; V. Cevher 

2025. Forty-Second International Conference on Machine Learning, Vancouver, Canada, 2025-07-13 – 2025-07-19.

IL-SOAR : Imitation Learning with Soft Optimistic Actor cRitic

S. Viel; L. Viano; V. Cevher 

2025. Forty-Second International Conference on Machine Learning, Vancouver, Canada, 2025-07-13 – 2025-07-19.

Adaptive Bilevel Optimization

K. Antonakopoulos; S. Sabach; L. Viano; M. Hong; V. Cevher 

ACM / IMS Journal of Data Science. 2025. DOI : 10.1145/3728478.

Imitation Learning in Discounted Linear MDPs without exploration assumptions

L. Viano; E. P. Skoulakis; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

Semi Bandit Dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees.

I. Panageas; E. P. Skoulakis; L. Viano; X. Wang; V. Cevher 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July, 23-29, 2023.

What can online reinforcement learning with function approximation benefitfrom general coverage conditions

F. Liu; L. Viano; V. Cevher 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July, 23-29, 2023.

Alternation makes the adversary weaker in two-player games

V. Cevher; A. Cutkosky; A. Kavis; G. Piliouras; E. P. Skoulakis et al. 

2023. 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orlean, USA, December 10-16. 2023.

Identifiability and Generalizability from Multiple Experts in Inverse Reinforcement Learning

P. T. Y. Rolland; L. Viano; N. Schürhoff; B. Nikolov; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

Understanding Deep Neural Function Approximation in Reinforcement Learning via ϵ-Greedy Exploration

F. Liu; L. Viano; V. Cevher 

2022. Thirty-sixth Conference on Neural Information Processing Systems – NeurIPS 2022, New Orleans, USA, November 28 – December 3, 2022.

Proximal Point Imitation Learning

L. Viano; A. Kamoutsi; G. Neu; I. Krawczuk; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

A Natural Actor-Critic Framework for Zero-Sum Markov Games

A. Alacaoglu; L. Viano; N. He; V. Cevher 

2022. 39th International Conference on Machine Learning (ICML), Baltimore, Maryland, USA, July 17-23, 2022.

Robust Inverse Reinforcement Learning under Transition Dynamics Mismatch

L. Viano; Y-T. Huang; K. Parameswaran; A. Weller; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

Contact

e-mail address: [email protected]


EPFL people page


Access map