LIONS publications

2025

Machine learning-aided hysteretic response prediction of double skin composite wall under earthquake loads

S. Wang; W. Wang; Y. Wu; Z. Xie; Y. Gao 

Journal of Building Engineering. 2025. Vol. 101, p. 111837. DOI : 10.1016/j.jobe.2025.111837.

2024

SAMPa: Sharpness-aware Minimization Parallelized

W. Xie; T. M. Pethick; V. Cevher 

38th Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 2024-12-10 – 2024-12-15.

Membership Inference Attacks against Large Vision-Language Models

Zhan Li; Y. Wu; Y. Chen; F. Tonin; E. Abad Rocamora et al. 

2024. 38th Annual Conference on Neural Information Processing Systems, Vancouver Convention Center, 2024-12-10 – 2024-12-15.

REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates

A. Afzal; G. Chrysos; V. Cevher; M. Shoaran 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, 2024-07-21.

Going beyond Compositions, DDPMs Can Produce Zero-Shot Interpolations

J. S. Deschenaux; I. Krawczuk; G. Chrysos; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, 2024-07-21.

Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks

F. Liu; L. Dadi; V. Cevher 

Journal of Machine Learning Research. 2024. Vol. 25.

Truly No-Regret Learning in Constrained MDPs

A. Müller; P. Alatur; V. Cevher; G. Ramponi; N. He 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, 2024-07-21. p. 36605 – 36653.

Mixed Nash for Robust Federated Learning

W. Xie; T. M. Pethick; A. Ramezani-Kebrya; V. Cevher 

Transactions on Machine Learning Research. 2024. Vol. 02.

Universal Gradient Methods for Stochastic Convex Optimization

A. Rodomanov; A. Kavis; Y. Wu; K. Antonakopoulos; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, 2024-07-21.

Learning to Remove Cuts in Integer Linear Programming

P. Puigdemont; E. P. Skoulakis; G. Chrysos; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

Multilinear Operator Networks

Y. Cheng; G. Chrysos; M. Georgopoulos; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, 2024-05-07 – 2024-05-11.

Improving SAM Requires Rethinking its Optimization Formulation

W. Xie; F. Latorre; K. Antonakopoulos; T. M. Pethick; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

Revisiting Character-level Adversarial Attacks for Language Models

E. Abad Rocamora; Y. Wu; F. Liu; G. Chrysos; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

On the Generalization of Stochastic Gradient Descent with Momentum

A. Ramezani-Kebrya; K. Antonakopoulos; V. Cevher; A. Khisti; B. Liang 

Journal Of Machine Learning Research. 2024. Vol. 25, p. 1 – 56.

Graph generative deep learning models with an application to circuit topologies

I. Krawczuk / V. Cevher; Y. Leblebici (Dir.)  

Lausanne, EPFL, 2024. 

Efficient Continual Finite-Sum Minimization

I. Mavrothalassitis; E. P. Skoulakis; L. T. Dadi; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

Imitation Learning in Discounted Linear MDPs without exploration assumptions

L. Viano; E. P. Skoulakis; V. Cevher 

2024. 41st International Conference on Machine Learning (ICML 2024), Vienna, Austria, July 21-27, 2024.

High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization

Y. Chen; F. Liu; T. Suzuki; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

Robust NAS under adversarial training: benchmark, theory, and beyond

Y. Wu; F. Liu; C-J. Simon-Gabriel; G. Chrysos; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

Generalization of Scaled Deep ResNets in the Mean-Field Regime

Y. Chen; F. Liu; Y. Lu; G. Chrysos; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

Efficient local linearity regularization to overcome catastrophic overfitting

E. Abad Rocamora; F. Liu; G. Chrysos; P. M. Olmos; V. Cevher 

2024. 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria, May 7-11, 2024.

2023

Linear Complexity Self-Attention With 3rd Order Polynomials

F. Babiloni; I. Marras; J. Deng; F. Kokkinos; M. Maggioni et al. 

Ieee Transactions On Pattern Analysis And Machine Intelligence. 2023. Vol. 45, num. 11, p. 12726 – 12737. DOI : 10.1109/TPAMI.2022.3231971.

Stable Nonconvex-Nonconcave Training via Linear Interpolation

T. M. Pethick; W. Xie; V. Cevher 

2023. Thirty-seventh Conference on Neural Information Processing Systems, New Orleans, Louisiana, USA, December 10-16, 2023.

A unified stochastic approximation framework for learning in games

P. Mertikopoulos; Y-P. Hsieh; V. Cevher 

Mathematical Programming. 2023. Vol. 203, num. 1-2, p. 559 – 609. DOI : 10.1007/s10107-023-02001-y.

End-to-end kernel learning via generative random Fourier features

K. Fang; F. Liu; X. Huang; J. Yang 

Pattern Recognition. 2023. Vol. 134, p. 109057. DOI : 10.1016/j.patcog.2022.109057.

What can online reinforcement learning with function approximation benefitfrom general coverage conditions

F. Liu; L. Viano; V. Cevher 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July, 23-29, 2023.

Augmented Lagrangian Methods for Provable and Scalable Machine Learning

M. F. Sahin / V. Cevher (Dir.)  

Lausanne, EPFL, 2023. 

Maximum Independent Set: Self-Training through Dynamic Programming

L. Brusca; L. C. Quaedvlieg; E. P. Skoulakis; G. Chrysos; V. Cevher 

2023. 37th Conference on Neural Information Processing Systems (NeurIPS 2023)., New Orlean, USA, December 10-16. 2023.

Distributed Extra-Gradient With Optimal Complexity And Communication Guarantees

A. Ramezani-Kebrya; K. Antonakopoulos; I. Krawczuk; J. Deschenaux; V. Cevher 

2023. 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, May 1-5, 2023.

Revisiting adversarial training for the worst-performing class

T. M. Pethick; G. Chrysos; V. Cevher 

Transactions on Machine Learning Research. 2023. 

When do Minimax-fair Learning and Empirical Risk Minimization Coincide?

H. Singh; M. Kleindessner; V. Cevher; R. Chunara; C. Russell 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July 23-29, 2023.

Federated Learning under Covariate Shifts with Generalization Guarantees

A. Ramezani-Kebrya; F. Liu; T. M. Pethick; G. Chrysos; V. Cevher 

Transactions on Machine Learning Research. 2023. num. 06.

Adversarial Training Should Be Cast As a Non-Zero-Sum Game

A. Robey; F. Latorre; G. J. Pappas; H. Hassani; V. Cevher 

2023

Solving stochastic weak Minty variational inequalities without increasing batch size

T. M. Pethick; O. Fercoq; P. Latafat; P. Patrinos; V. Cevher 

11th International Conference on Learning Representations ICLR2023, Kigali, Rwanda, May 1-5, 2023.

Finding Actual Descent Directions For Adversarial Training

F. Latorre; I. Krawczuk; L. T. Dadi; T. M. Pethick; V. Cevher 

2023. 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, May 1-5, 2023.

Alternation makes the adversary weaker in two-player games

V. Cevher; A. Cutkosky; A. Kavis; G. Piliouras; E. P. Skoulakis et al. 

2023. 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orlean, USA, December 10-16. 2023.

Regularization of polynomial networks for image recognition

G. Chrysos; B. Wang; J. Deng; V. Cevher 

2023. Computer Vision and Pattern Recognition Conference (CVPR), Vancouver, Canada, 18-22 June, 2023.

Robust Training and Verification of Deep Neural Networks

F. R. Latorre Gomez / V. Cevher (Dir.)  

Lausanne, EPFL, 2023. 

Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks

J. Ye†; Z. Zhu; F. Liu; R. Shokri; V. Cevher 

2023. 37th Annual Conference on Neural Information Processing Systems, New Orleans, USA, December 10-16. 2023.

Sample Complexity Bounds for Score-Matching: Causal Discovery and Generative Modeling

Z. Zhu; F. Locatello; V. Cevher 

2023. 37th Annual Conference on Neural Information Processing Systems, New Orleans, USA, December 10-16. 2023.

On the Convergence of Encoder-only Shallow Transformers

Y. Wu; F. Liu; G. Chrysos; V. Cevher 

2023. 37th Annual Conference on Neural Information Processing Systems, New Orleans, USA, December 10-16. 2023.

Efficient Online Clustering with Moving Costs

D. Christou; E. P. Skoulakis; V. Cevher 

2023. 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orlean, USA, December 10-16. 2023.

Regularization of polynomial networks for image recognition

G. G. Chrysos; B. Wang; J. Deng; V. Cevher 

2023. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, CANADA, JUN 17-24, 2023. p. 16123 – 16132. DOI : 10.1109/CVPR52729.2023.01547.

Benign Overfitting in Deep Neural Networks under Lazy Training

Z. Zhu; F. Liu; G. Chrysos; F. Locatello; V. Cevher 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July, 23-29, 2023.

Universal and adaptive methods for robust stochastic optimization

A. Kavis / V. Cevher (Dir.)  

Lausanne, EPFL, 2023. 

DiGress: Discrete Denoising diffusion for graph generation

C. Vignac; I. Krawczuk; A. Siraudin; B. Wang; V. Cevher et al. 

2023. 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, May 1-5, 2023.

Improving Generalization of Pretrained Language Models

R. Karimi Mahabadi / V. Cevher; J. Henderson (Dir.)  

Lausanne, EPFL, 2023. 

Semi Bandit Dynamics in Congestion Games: Convergence to Nash Equilibrium and No-Regret Guarantees.

I. Panageas; E. P. Skoulakis; L. Viano; X. Wang; V. Cevher 

2023. 40th International Conference on Machine Learning (ICML), Honolulu, Hawaii, USA, July, 23-29, 2023.

2022

A Computational Turn in Policy Process Studies: Coevolving Network Dynamics of Policy Change

M. Stauffer; I. Mengesha; K. Seifert; I. Krawczuk; J. Fischer et al. 

Complexity. 2022. Vol. 2022, p. 8210732. DOI : 10.1155/2022/8210732.

Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems

T. M. Pethick; P. Latafat; P. Patrinos; O. Fercoq; V. Cevher 

2022. 10th International Conference on Learning Representations (ICLR 2022), Virtual, April 25-29, 2022.

Beyond Time-Average Convergence: Near-Optimal Uncoupled Online Learning via Clairvoyant Multiplicative Weights Update

G. Piliouras; R. Simm; E. P. Skoulakis 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, Louisianna, USA, November 28-December 9, 2022.

ADAGRAD Avoids Saddle Points

K. Antonakopoulos; P. Mertikopoulos; G. Piliouras; X. Wang 

2022. 38th International Conference on Machine Learning (ICML), Baltimore, MD, Jul 17-23, 2022. p. 731 – 771.

Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models

P. T. Y. Rolland; V. Cevher; M. Kleindessner; C. Russel; B. Schölkopf et al. 

2022. 38th International Conference on Machine Learning (ICML), Baltimore, Maryland, USA, July 17-23, 2022.

Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization

A. Kavis; E. P. Skoulakis; K. Antonakopoulos; L. T. Dadi; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisianna, USA, November 28-December 9, 2022.

UNDERGRAD: A Universal Black-Box Optimization Method with Almost Dimension-Free Convergence Rate Guarantees

K. Antonakopoulos; D. Q. Vu; V. Cevher; K. Y. Levey 

2022. 39th International Conference on Machine Learning (ICML), Baltimore, Maryland, USA, July 17-23, 2022.

A Natural Actor-Critic Framework for Zero-Sum Markov Games

A. Alacaoglu; L. Viano; N. He; V. Cevher 

2022. 39th International Conference on Machine Learning (ICML), Baltimore, Maryland, USA, July 17-23, 2022.

Sound and Complete Verification of Polynomial Networks

E. Abad Rocamora; M. F. Sahin; F. Liu; G. Chrysos; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a Polynomial Net Study

Y. Wu; Z. Zhu; F. Liu; G. Chrysos; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

Proximal Point Imitation Learning

L. Viano; A. Kamoutsi; G. Neu; I. Krawczuk; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

On the Double Descent of Random Features Models Trained with SGD

F. Liu; A. J. Suykens; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, USA, November 28 – December 3, 2022.

Controlling the Complexity and Lipschitz Constant improves Polynomial Nets

Z. Zhu; F. Latorre; G. Chrysos; V. Cevher 

2022. 10th International Conference on Learning Representations (ICLR), Virtual, April 25-29, 2022.

A 16-Channel Neural Recording System-on-Chip With CHT Feature Extraction Processor in 65-nm CMOS

A. Uran; K. Türe; C. Aprile; A. Trouillet; F. Fallegger et al. 

IEEE Journal of Solid-State Circuits. 2022.  p. 1 – 1. DOI : 10.1109/JSSC.2022.3161296.

High Probability Bounds for a Class of Nonconvex Algorithms with AdaGrad Stepsize

A. Kavis; K. Levy; V. Cevher 

2022. 10th International Conference on Learning Representations (ICLR), Virtual, April 25-29, 2022.

Predicting in Uncertain Environments: Methods for Robust Machine Learning

P. T. Y. Rolland / V. Cevher (Dir.)  

Lausanne, EPFL, 2022. 

Extra Newton: A First Approach to Noise-Adaptive Accelerated Second-Order Methods

K. Antonakopoulos; A. Kavis; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, Louisianna, USA, November 28-December 9, 2022.

Augmenting Deep Classifiers with Polynomial Neural Networks

G. G. Chrysos; M. Georgopoulos; J. Deng; J. Kossaifi; Y. Panagakis et al. 

2022. 17th European Conference on Computer Vision (ECCV), Tel Aviv, ISRAEL, Oct 23-27, 2022. p. 692 – 716. DOI : 10.1007/978-3-031-19806-9_40.

The spectral bias of polynomial neural networks

M. Choraria; L. T. Dadi; G. Chrysos; J. Mairal; V. Cevher 

2022. 10th International Conference on Learning Representations (ICLR), Virtual, April 25-29, 2022.

Learning to sample in Cartesian MRI

T. Sanchez / V. Cevher (Dir.)  

Lausanne, EPFL, 2022. 

On The Convergence Of Stochastic Primal-Dual Hybrid Gradient

A. Alacaoglu; O. Fercoq; V. Cevher 

Siam Journal On Optimization. 2022. Vol. 32, num. 2, p. 1288 – 1318. DOI : 10.1137/19M1296252.

Understanding Deep Neural Function Approximation in Reinforcement Learning via ϵ-Greedy Exploration

F. Liu; L. Viano; V. Cevher 

2022. Thirty-sixth Conference on Neural Information Processing Systems – NeurIPS 2022, New Orleans, USA, November 28 – December 3, 2022.

Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization

G. Dresdner; M-L. Vladarean; G. Rätsch; F. Locatello; V. Cevher et al. 

2022. 25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022), [ Virtual only] Valencia, Spain, March 28-30, 2022.

Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)

Z. Zhu; F. Liu; G. Chrysos; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems – NeurIPS 2022, New Orleans, USA, November 28 – December 3, 2022.

Identifiability and Generalizability from Multiple Experts in Inverse Reinforcement Learning

P. T. Y. Rolland; L. Viano; N. Schürhoff; B. Nikolov; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, USA, November 28 – December 3, 2022.

Generalization Properties of NAS under Activation and Skip Connection Search

Z. Zhu; F. Liu; G. Chrysos; V. Cevher 

2022. 36th Conference on Neural Information Processing Systems – NeurIPS 2022, New Orleans, USA, November 28 – December 3, 2022.

No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation

Y-G. Hsieh; K. Antonakopoulos; V. Cevher; P. Mertikopoulos 

2022. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, USA, November 28 – December 9, 2022.

A Newton Frank-Wolfe method for constrained self-concordant minimization

D. Liu; V. Cevher; Q. Tran-Dinh 

Journal Of Global Optimization. 2022. Vol. 83, p. 273 – 299. DOI : 10.1007/s10898-021-01105-z.

2021

Filling gaps in trustworthy development of AI

S. Avin; H. Belfield; M. Brundage; G. Krueger; J. Wang et al. 

Science. 2021. Vol. 374, num. 6573, p. 1327 – 1329. DOI : 10.1126/science.abi7176.

Forward-reflected-backward method with variance reduction

A. Alacaoglu; Y. Malitsky; V. Cevher 

Computational Optimization and Applications. 2021. Vol. 80, p. 321 – 346. DOI : 10.1007/s10589-021-00305-3.

A 16-Channel Wireless Neural Recording System-on-Chip with CHT Feature Extraction Processor in 65nm CMOS

A. Uran; K. Ture; C. Aprile; A. Trouillet; F. Fallegger et al. 

2021. 2021 IEEE Custom Integrated Circuits Conference (CICC), Virtual, April 25-30, 2021. DOI : 10.1109/CICC51472.2021.9431458.

Tensor Methods in Computer Vision and Deep Learning

Y. Panagakis; J. Kossaifi; G. G. Chrysos; J. Oldfield; M. A. Nicolaou et al. 

Proceedings Of The Ieee. 2021. Vol. 109, num. 5, p. 863 – 890. DOI : 10.1109/JPROC.2021.3074329.

Sifting through the Noise: Universal First-Order Methods for Stochastic Variational Inequalities

K. Antonakopoulos; T. M. Pethick; A. Kavis; P. Mertikopoulos; V. Cevher 

2021. NeurIPS 2021 : Thirty-fifth Conference on Neural Information Processing Systems, Sydney, Australia [Virtual only], December 6-14, 2021.

A Plug-and-Play Deep Image Prior

Z. Sun; F. Latorre; T. Sanchez; V. Cevher 

2021. International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2021), Toronto, Canada, June 6-11, 2021. DOI : 10.1109/ICASSP39728.2021.9414879.

Unsupervised Controllable Generation with Self-Training

G. G. Chrysos; J. Kossaifi; Z. Yu; A. Anandkumar 

2021. International Joint Conference on Neural Networks (IJCNN 2021), Shenzhen, China, Jul 18-22, 2021. DOI : 10.1109/IJCNN52387.2021.9534045.

Adaptation in Stochastic Algorithms: From Nonsmooth Optimization to Min-Max Problems and Beyond

A. Alacaoglu / V. Cevher (Dir.)  

Lausanne, EPFL, 2021. 

Sparse non-negative super-resolution – simplified and stabilised

A. Eftekhari; J. Tanner; A. Thompson; B. Toader; H. Tyagi 

Applied And Computational Harmonic Analysis. 2021. Vol. 50, p. 216 – 280. DOI : 10.1016/j.acha.2019.08.004.

The Limits of Min-Max Optimization Algorithms: Convergence to Spurious Non-Critical Sets

Y-P. Hsieh; P. Mertikopoulos; V. Cevher 

2021. 38th International Conference on Machine Learning (ICML 2021), Online, July 18-24, 2021. p. 4337 – 4348.

The Effect of the Intrinsic Dimension on the Generalization of Quadratic Classifiers

F. Latorre; L. T. Dadi; P. T. Y. Rolland; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

Scalable Semidefinite Programming

A. Yurtsever; J. A. Tropp; O. Fercoq; M. Udell; V. Cevher 

SIAM Journal on Mathematics of Data Science. 2021. Vol. 3, num. 1, p. 171 – 200. DOI : 10.1137/19M1305045.

Resource Trade-Offs in Circuits and Systems: from Neurotechnology to Communications

A. Uran / V. Cevher; Y. Leblebici (Dir.)  

Lausanne, EPFL, 2021. 

A reflected forward-backward splitting method for monotone inclusions involving Lipschitzian operators

V. Cevher; C. B. Vu 

Set-valued and Variational analysis. 2021. Vol. 29, p. 163 – 174. DOI : 10.1007/s11228-020-00542-4.

A first-order primal-dual method with adaptivity to local smoothness

M-L. Vladarean; Y. Malitsky; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

An Optimal-Storage Approach to Semidefinite Programming Using Approximate Complementarity

L. Ding; A. Yurtsever; V. Cevher; J. A. Tropp; M. Udell 

Siam Journal On Optimization. 2021. Vol. 31, num. 4, p. 2695 – 2725. DOI : 10.1137/19M1244603.

Robust Inverse Reinforcement Learning under Transition Dynamics Mismatch

L. Viano; Y-T. Huang; K. Parameswaran; A. Weller; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

Convergence of adaptive algorithms for constrained weakly convex optimization

A. Alacaoglu; Y. Malitskyi; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

Kernel Conjugate Gradient Methods with Random Projections

J. Lin; V. Cevher 

Applied and Computational Harmonic Analysis. 2021. Vol. 55, p. 223 – 269. DOI : 10.1016/j.acha.2021.05.004.

An Introductory Guide to Fano’s Inequality with Applications in Statistical Estimation

J. Scarlett; V. Cevher 

Information-Theoretic Methods in Data Science; Cambridge University Press, 2021. p. 487 – 528.

Asynchronous sar adc with unit length capacitors and constant common mode monotonic switching

A. Uran; V. Cevher 

WO2021161163.

2021.

Regret Minimization in Stochastic Non-Convex Learning via a Proximal-Gradient Approach

N. Hallak; P. Mertikopoulos; V. Cevher 

2021. International Conference on Machine Learning (ICML), ELECTR NETWORK, Jul 18-24, 2021.

Poly-NL: Linear Complexity Non-local Layers With 3rd Order Polynomials

F. Babiloni; I. Marras; F. Kokkinos; J. Deng; G. Chrysos et al. 

2021. 18th IEEE/CVF International Conference on Computer Vision (ICCV), ELECTR NETWORK, Oct 11-17, 2021. p. 10498 – 10508. DOI : 10.1109/ICCV48922.2021.01035.

Subquadratic Overparameterization for Shallow Neural Networks

C. Song; A. Ramezani-Kebrya; T. Pethick; A. Eftekhari; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization

K. Levy; A. Kavis; V. Cevher 

2021. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, December 6-14, 2021.

2020

Robust Reinforcement Learning via Adversarial training with Langevin Dynamics

K. Parameswaran; Y-T. Huang; Y-P. Hsieh; P. T. Y. Rolland; C. Shi et al. 

2020

MOSES: A Streaming Algorithm for Linear Dimensionality Reduction

A. Eftekhari; R. A. Hauser; A. Grammenos 

Ieee Transactions On Pattern Analysis And Machine Intelligence. 2020. Vol. 42, num. 11, p. 2901 – 2911. DOI : 10.1109/TPAMI.2019.2919597.

Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes

E. Canepa; S. Salassi; A. L. de Marco; C. Lambruschini; D. Odino et al. 

Nanoscale. 2020. Vol. 12, num. 38, p. 19746 – 19759. DOI : 10.1039/d0nr05366j.

An AC-Coupled Wideband Neural Recording Front-End With Sub-1 mm2×fJ/conv-step Efficiency and 0.97 NEF

A. Uran; Y. Leblebici; A. Emami; V. Cevher 

IEEE Solid-State Circuits Letters. 2020. Vol. 3, p. 258 – 261. DOI : 10.1109/LSSC.2020.3013993.

Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach

N. Hallak; M. Teboulle 

Journal Of Optimization Theory And Applications. 2020. Vol. 186, p. 480 – 503. DOI : 10.1007/s10957-020-01713-x.

Optimization for Reinforcement Learning: From a single agent to cooperative agents

D. Lee; N. He; P. Kamalaruban; V. Cevher 

Ieee Signal Processing Magazine. 2020. Vol. 37, num. 3, p. 123 – 135. DOI : 10.1109/MSP.2020.2976000.

Machine Learning From Distributed, Streaming Data [From the Guest Editors]

W. U. Bajwa; V. Cevher; D. Papailiopoulos; A. Scaglione 

Ieee Signal Processing Magazine. 2020. Vol. 37, num. 3, p. 11 – 13. DOI : 10.1109/MSP.2020.2972654.

On quantifying the quality of acoustic models in hybrid DNN-HMM ASR

P. Dighe; A. Asaei; H. Bourlard 

Speech Communication. 2020. Vol. 119, p. 24 – 35. DOI : 10.1016/j.specom.2020.03.001.

Lipschitz constant estimation for Neural Networks via sparse polynomial optimization

F. Latorre; P. T. Y. Rolland; V. Cevher 

2020. 8th International Conference on Learning Representations, Addis Ababa, ETHIOPIA, April 26-30, 2020.

Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms

J. Lin; V. Cevher 

Journal of Machine Learning Research. 2020. Vol. 21, num. 147, p. 1 – 63.

Convergence without Convexity: Sampling, Optimization, and Games

Y-P. Hsieh / V. Cevher (Dir.)  

Lausanne, EPFL, 2020. 

Double-Loop Unadjusted Langevin Algorithm

P. Rolland; A. Eftekhari; A. Kavis; V. Cevher 

2020. 37th International Conference on Machine Learning (ICLM 2020), Virtual, July 12-18, 2020.

Principal Component Analysis By Optimization Of Symmetric Functions Has No Spurious Local Optima

A. Eftekhari; R. A. Hauser 

Siam Journal On Optimization. 2020. Vol. 30, num. 1, p. 439 – 463. DOI : 10.1137/18M1188495.

Convergences of Regularized Algorithms and Stochastic Gradient Methods with Random Projections

J. Lin; V. Cevher 

Journal of Machine Learning Research. 2020. Vol. 21, num. 20, p. 1 – 44.

Efficient Proximal Mapping of the 1-path-norm of Shallow Networks

F. Latorre; P. T. Y. Rolland; S. N. Hallak; V. Cevher 

2020. 37th International Conference on Machine Learning (ICML), Virtual, July 13-18, 2020.

Conditional gradient methods for stochastically constrained convex minimization

M-L. Vladarean; A. Alacaoglu; Y-P. Hsieh; V. Cevher 

2020. 37th International Conference on Machine Learning (ICML), virtual, July 12-18, 2020.

Random extrapolation for primal-dual coordinate descent

A. Alacaoglu; O. Fercoq; V. Cevher 

2020. 37th International Conference on Machine Learning (ICML 2020), Online, July 13-18, 2020.

Adaptive Gradient Descent without Descent

Y. Malitsky; K. Mishchenko 

2020. 37th International Conference on Machine Learning (ICML 2020), Virtual, July 12-18, 2020.

Optimal Rates for Spectral Algorithms with Least-Squares Regression over Hilbert Spaces

J. Lin; A. Rudy; L. Rosasco; V. Cevher 

Applied and Computational Harmonic Analysis. 2020. Vol. 48, num. 3, p. 868 – 890. DOI : 10.1016/j.acha.2018.09.009.

On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems

P. Mertikopoulos; N. Hallak; A. Kavis; V. Cevher 

2020. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Virtual, December 6-12, 2020.

A new regret analysis for Adam-type algorithms

A. Alacaoglu; Y. Malitsky; P. Mertikopoulos; V. Cevher 

2020. 37th International Conference on Machine Learning (ICLM 2020), Virtual, July 13-18, 2020.

An adaptive primal-dual framework for nonsmooth convex minimization

Q. Tran-Dinh; A. Alacaoglu; O. Fercoq; V. Cevher 

Mathematical Programming Computation. 2020. Vol. 12, p. 451 – 491. DOI : 10.1007/s12532-019-00173-3.

Generating Sparse Stochastic Processes Using Matched Splines

L. Dadi; S. Aziznejad; M. Unser 

Ieee Transactions On Signal Processing. 2020. Vol. 68, p. 4397 – 4406. DOI : 10.1109/TSP.2020.3011632.

Scalable Learning-Based Sampling Optimization For Compressive Dynamic MRI

T. Sanchez; B. Gözcü; R. Van Heeswijk; A. Eftekhari; E. Ilıcak et al. 

2020. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Barcelona, Spain, May 4-8, 2020. p. 8584 – 8588. DOI : 10.1109/ICASSP40776.2020.9053345.

2019

Interactive Teaching Algorithms for Inverse Reinforcement Learning

K. Parameswaran; D. Rati; V. Cevher; S. Adish 

2019. 28th International Joint Conference on Artificial Intelligence, 2019, Macao, China, August 10-16, 2019. p. 2692 – 2700.

Interactive Teaching Algorithms for Inverse Reinforcement Learning

K. Parameswaran; R. Devidze; V. Cevher; A. Singla 

2019. The 28th International Joint Conference on Artificial Intelligence, 2019., Macao, China, August 10-16, 2019.

Fully automated gridding reconstruction for non-Cartesian x-space magnetic particle imaging

A. A. Ozaslan; A. Alacaoglu; O. B. Demirel; T. Cukur; E. U. Saritas 

Physics In Medicine And Biology. 2019. Vol. 64, num. 16, p. 165018. DOI : 10.1088/1361-6560/ab3525.

Chemical machine learning with kernels: The impact of loss functions

Quang Van Nguyen; S. De; J. Lin; V. Cevher 

International Journal Of Quantum Chemistry. 2019. Vol. 119, num. 9, p. e25872. DOI : 10.1002/qua.25872.

Low-rank and sparse subspace modeling of speech for DNN based acoustic modeling

P. Dighe; A. Asaei; H. Bourlard 

Speech Communication. 2019. Vol. 109, p. 34 – 45. DOI : 10.1016/j.specom.2019.03.004.

Inertial Three-Operator Splitting Method and Applications

V. Cevher; C. B. Vu; A. Yurtsever 

SIAM Conference on Optimization – OP17, Vancouver, British Columbia, Canada, May 22-25, 2017.

Iterative Classroom Teaching

S. T. Yeo; K. Parameswaran; A. Singla; M. Arpit; T. L. C. Asselborn et al. 

2019. 33rd AAAI Conference on Artificial Intelligence / 31st Innovative Applications of Artificial Intelligence Conference / 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Hawaii, USA, January 27 – February 1, 2019. p. 5684 – 5692. DOI : 10.1609/aaai.v33i01.33015684.

Efficient learning of smooth probability functions from Bernoulli tests with guarantees.

P. T. Y. Rolland; A. Kavis; A. Immer; A. Singla; V. Cevher 

2019. 36th International Conference on Machine Learning (ICML 2019), Long Beach, USA, June 9-15, 2019.

A 24 kb Single-Well Mixed 3T Gain-Cell eDRAM with Body-Bias in 28 nm FD-SOI for Refresh-Free DSP Applications

J. Narinx; R. Giterman; A. Bonetti; N. Frigerio; C. Aprile et al. 

2019. 15th IEEE Asian Solid-State Circuits Conference (A-SSCC), Macao, PEOPLES R CHINA, Nov 04-06, 2019. p. 219 – 222. DOI : 10.1109/A-SSCC47793.2019.9056985.

UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization

A. Kavis; K. Y. Levy; F. Bach; V. Cevher 

2019. 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, December 8-14, 2019.

Sparse Inverse Problems Over Measures: Equivalence Of The Conditional Gradient And Exchange Methods

A. Eftekhari; A. Thompson 

Siam Journal On Optimization. 2019. Vol. 29, num. 2, p. 1329 – 1349. DOI : 10.1137/18M1183388.

Fast and Provable ADMM for Learning with Generative Priors

F. R. Latorre Gomez; A. Eftekhari; V. Cevher 

2019. 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, December 8-14, 2019.

Robust Adaptive Decision Making: Bayesian Optimization and Beyond

I. Bogunovic / V. Cevher; J. D. Haupt (Dir.)  

Lausanne, EPFL, 2019. 

Stochastic Frank-Wolfe for Composite Convex Minimization

F. Locatello; A. Yurtsever; O. Fercoq; V. Cevher 

2019. NeurIPS 2019 : Thirty-third Conference on Neural Information Processing Systems, Vancouver, Canada, December 8-14, 2019.

A Learning-Based Framework for Quantized Compressed Sensing

R. Karimi Mahabadi; J. Lin; V. Cevher 

IEEE Signal Processing Letters. 2019. Vol. 26, num. 6, p. 883 – 887. DOI : 10.1109/LSP.2019.2898350.

Scalable Convex Optimization Methods for Semidefinite Programming

A. Yurtsever / V. Cevher (Dir.)  

Lausanne, EPFL, 2019. 

Data-driven Measurement Designs for Magnetic Resonance Imaging

B. Gözcü / V. Cevher (Dir.)  

Lausanne, EPFL, 2019. 

Convergence of the Exponentiated Gradient Method with Armijo Line Search

Y-H. Li; V. Cevher 

Journal of Optimization Theory and Applications. 2019. Vol. 181, p. 588 – 607. DOI : 10.1007/s10957-018-1428-9.

Rethinking Sampling in Parallel MRI: A Data-Driven Approach

B. Gözcü; T. Sanchez; V. Cevher 

2019. 27th European Signal Processing Conference (EUSIPCO), Coruña, Spain, September 2-6, 2019. DOI : 10.23919/EUSIPCO.2019.8903150.

Streaming Principal Component Analysis From Incomplete Data

A. Eftekhari; G. Ongie; L. Balzano; M. B. Wakin 

Journal Of Machine Learning Research. 2019. Vol. 20.

An Inexact Augmented Lagrangian Framework for Nonconvex Optimization with Nonlinear Constraints

M. F. Sahin; A. Eftekhari; A. Alacaoglu; F. R. Latorre Gomez; V. Cevher 

2019. NeurIPS 2019 : Thirty-third Conference on Neural Information Processing Systems, Vancouver, Canada, December 8-14, 2019.

A 4.8pJ/b 6Gb/s ADC-Based PAM-4 Wireline Receiver Data -Path with Cyclic Prefix in 14nm FinFET

G. Kim; L. Kull; D. Luu; M. Braendli; C. Menolfi et al. 

2019. 15th IEEE Asian Solid-State Circuits Conference (A-SSCC), Macao, PEOPLES R CHINA, Nov 04-06, 2019. p. 239 – 240. DOI : 10.1109/A-SSCC47793.2019.9056940.

A Conditional Gradient-Based Augmented Lagrangian Framework

A. Yurtsever; O. Fercoq; V. Cevher 

2019. 36th International Conference on Machine Learning (ICML 2019), Long Beach, USA, June 9-15, 2019.

Streaming Low-Rank Matrix Approximation With An Application To Scientific Simulation

J. A. Tropp; A. Yurtsever; M. Udell; V. Cevher 

SIAM Journal on Scientific Computing. 2019. Vol. 41, num. 4, p. A2430 – A2463. DOI : 10.1137/18M1201068.

On the convergence of stochastic primal-dual hybrid gradient

A. Alacaoglu; O. Fercoq; V. Cevher 

2019

Conditional Gradient Methods via Stochastic Path-Integrated Differential Estimator

A. Yurtsever; S. Sra; V. Cevher 

2019. 36th International Conference on Machine Learning (ICML 2019), Long Beach, USA, June 9-15, 2019.

A 161mW 56Gb/s ADC-Based Discrete Multitone Wireline Receiver Data-Path in 14nm FinFET

G. Kim; L. Kull; D. Luu; M. Braendli; C. Menolfi et al. 

2019. IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, Feb 17-21, 2019. p. 476 – 478. DOI : 10.1109/ISSCC.2019.8662505.

Overlapping Multi-Bandit Best Arm Identification

J. Scarlett; I. Bogunovic; V. Cevher 

2019. The 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, July 7-12, 2019. p. 2544 – 2548. DOI : 10.1109/ISIT.2019.8849327.

Almost surely constrained convex optimization

O. Fercoq; A. Alacaoglu; I. Necoara; V. Cevher 

2019. 36th International Conference on Machine Learning (ICML 2019), Long Beach, USA, June 9-15, 2019.

On Certifying Non-Uniform Bounds against Adversarial Attacks

C. Liu; R. Tomioka; V. Cevher 

2019. 36th International Conference on Machine Learning (ICML)’2019, Long Beach, USA, June 9-15, 2019.

2018

Near-Optimal Noisy Group Testing via Separate Decoding of Items

J. Scarlett; V. Cevher 

IEEE Journal of Selected Topics In Signal Processing. 2018. Vol. 12, num. 5, p. 902 – 915. DOI : 10.1109/JSTSP.2018.2844818.

On the linear convergence of the stochastic gradient method with constant step-size

V. Cevher; C. B. Vu 

Optimization Letters. 2018. Vol. 12, p. 1 – 11. DOI : 10.1007/s11590-018-1331-1.

Optimal Convergence for Distributed Learning with Stochastic Gradient Methods and Spectral Algorithms

J. Lin; V. Cevher 

2018

Generalization of Referenceless Timing Mismatch Calibration Methods for Time-Interleaved ADCs

A. Uran; M. Kilic; Y. Leblebici 

2018. 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, July 2-5, 2018. DOI : 10.1109/PRIME.2018.8430340.

A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming

A. Yurtsever; O. Fercoq; F. Locatello; V. Cevher 

2018. the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, July 10-15, 2018.

Online Adaptive Methods, Universality and Acceleration

K. Y. Levy; A. Yurtsever; V. Cevher 

2018. 32nd Conference on Neural Information Processing Systems conference (NIPS 2018), Montreal, Canada, December 3-8, 2018. p. 6500 – 6509.

Near-Optimal Noisy Group Testing via Separate Decoding of Items

J. Scarlett; V. Cevher 

2018. IEEE International Symposium on Information Theory, Colorado, USA., June 17-22. 2018. p. 2311 – 2315. DOI : 10.1109/ISIT.2018.8437667.

Optimal Distributed Learning with Multi-pass Stochastic Gradient Methods

J. Lin; V. Cevher 

2018. 35th International Conference on Machine Learning, Stockholm, Sweden, July 10 -15, 2018.

Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces

J. Lin; V. Cevher 

2018. 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, July 10-15, 2018.

A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization

Q. Tran Dinh; O. Fercoq; V. Cevher 

SIAM Journal on Optimization. 2018. Vol. 28, num. 1, p. 96 – 134. DOI : 10.1137/16M1093094.

Robust Maximization of Non-Submodular Objectives

I. Bogunovic; J. Zhao; V. Cevher 

2018. International Conference on Artificial Intelligence and Statistics (AISTATS), Lanzarote, Canary Islands, April, 9-11, 2018.

An area and power efficient on-the-fly LBCS transformation for implantable neuronal signal acquisition systems

C. Aprile; J. Wüthrich; L. Baldassarre; Y. Leblebici; V. Cevher 

2018. ACM International Conference on Computing Frontiers 2018, Ischia, Italy, May 8-10, 2018. p. 228 – 231. DOI : 10.1145/3203217.3203260.

Stochastic Forward-Douglas-Rachford Splitting for Monotone Inclusions

V. Cevher; C. B. Vu; A. Yurtsever 

Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions; Springer International Publishing, 2018.

Learning-Based Compressive MRI

B. Gözcü; R. Karimi Mahabadi; Y-H. Li; E. Ilıcak; T. Çukur et al. 

IEEE Transactions On Medical Imaging. 2018. Vol. 37, num. 6, p. 1394 – 1406. DOI : 10.1109/TMI.2018.2832540.

Learning without Smoothness and Strong Convexity

Y-H. Li / V. Cevher (Dir.)  

Lausanne, EPFL, 2018. 

A single-phase, proximal path-following framework

Q. Tran Dinh; A. Kyrillidis; V. Cevher 

Mathematics of Operations Research. 2018. Vol. 43, num. 4, p. 1326 – 1347. DOI : 10.1287/moor.2017.0907.

Stochastic Three-Composite Convex Minimization with a Linear Operator

R. Zhao; V. Cevher 

2018. 21st International Conference on Artificial Intelligence and Statistics (AISTATS) 2018, Lanzarotte, Spain, April 9-11, 2018.

Dimension-free Information Concentration via Exp-Concavity

Y-P. Hsieh; V. Cevher 

2018. Algorithmic Learning Theory (ALT) 2018, Lanzarote, Spain, April 7-9, 2018. p. 451 – 469.

Mirrored Langevin Dynamics

Y-P. Hsieh; A. Kavis; P. T. Y. Rolland; V. Cevher 

2018. Thirty-second Conference on Neural Information Processing Systems (NIPS), Montréal, p. 2878 – 2887.

Smoothing Alternating Direction Methods for Fully Nonsmooth Constrained Convex Optimization

Q. Tran Dinh; V. Cevher 

Large-Scale and Distributed Optimization; Springer, 2018.

High Dimensional Bayesian Optimization via Additive Models with Overlapping Groups

P. T. Y. Rolland; J. Scarlett; I. Bogunovic; V. Cevher 

2018. AISTATS, Lanzarote, Spain, April, 9-11, 2018.

Let’s be honest: An optimal no-regret framework for zero-sum games

E. Asadi Kangarshahi; Y-P. Hsieh; M. F. Sahin; V. Cevher 

2018. 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, July 10-15, 2018.

A Non-Euclidean Gradient Descent Framework for Non-Convex Matrix Factorization

Y-P. Hsieh; Y-C. Kao; R. Karimi Mahabadi; Y. Alp; A. Kyrillidis et al. 

IEEE Transactions on Signal Processing. 2018. Vol. 66, num. 22, p. 5917 – 5926. DOI : 10.1109/TSP.2018.2870353.

Real-time DCT Learning-based Reconstruction of Neural Signals

R. Karimi Mahabadi; C. Aprile; V. Cevher 

2018. 26th European Signal Processing Conference (EUSIPCO 2018), Rome, Italy, September 3-7. 2018. DOI : 10.23919/EUSIPCO.2018.8553402.

Phonetic Subspace Features for Improved Query by Example Spoken Term Detection

D. Ram; A. Asaei; H. Bourlard 

Speech Communication. 2018. Vol. 103, p. 27 – 36. DOI : 10.1016/j.specom.2018.07.001.

Generalization properties of doubly stochastic learning algorithms

J. Lin; L. Rosasco 

JOURNAL OF COMPLEXITY. 2018. Vol. 47, p. 42 – 61. DOI : 10.1016/j.jco.2018.02.004.

Chemical machine learning with kernels: The key impact of loss functions

V. Q. Nguyen; S. De; J. Lin; V. Cevher 

2018

An area and power efficient on-the-fly LBCS transformation for implantable neuronal signal acquisition systems

C. Aprile; J. Wuthrich; L. Baldassarre; Y. Leblebici; V. Cevher 

2018. 15th ACM International Conference on Computing Frontiers, Ischia, ITALY, May 08-10, 2018. p. 228 – 231. DOI : 10.1145/3203217.3203260.

Learning-Based Hardware Design for Data Acquisition Systems

C. Aprile / V. Cevher; Y. Leblebici (Dir.)  

Lausanne, EPFL, 2018. 

Adversarially Robust Optimization with Gaussian Processes

I. Bogunovic; J. Scarlett; S. Jegelka; V. Cevher 

2018. Conference on Neural Information Processing Systems (NIPS), Montreal, 2018.

Adversarially Robust Optimization with Gaussian Processes

I. Bogunovic; J. Scarlett; S. Jegelka; V. Cevher 

2018. 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, CANADA, Dec 02-08, 2018.

Adaptive Learning-Based Compressive Sampling for Low-power Wireless Implants

C. Aprile; K. Ture; L. Baldassarre; M. Shoaran; G. Yilmaz et al. 

2018. 1st International Symposium on Integrated Circuits and Systems (ISICAS), Taormina, Italy, September 02-03, 2018. p. 3929 – 3941. DOI : 10.1109/TCSI.2018.2853983.

Finding Mixed Nash Equilibria of Generative Adversarial Networks

Y-P. Hsieh; C. Liu; V. Cevher 

2018. IEEE International Conference on Machine Learning (ICML)’ 2019, Long Beach, USA, June 9-15, 2019.

Learning with Structured Sparsity: From Discrete to Convex and Back.

M. El Halabi / V. Cevher (Dir.)  

EPFL, 2018. 

An Eight lanes 7Gb/s/pin Source Synchronous Single-Ended RX with Equalization and Far-End Crosstalk Cancellation for Backplane Channels

C. Aprile; A. Cevrero; P. A. Francese; C. Menolfi; M. Braendli et al. 

IEEE Journal of Solid State Circuits. 2018. Vol. 53, num. 3, p. 861 – 872. DOI : 10.1109/JSSC.2017.2783679.

2017

Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data

J. A. Tropp; A. Yurtsever; M. Udell; V. Cevher 

2017. 31st Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, California, USA, December 4-9, 2017.

Streaming Robust Submodular Maximization: A Partitioned Thresholding Approach

S. Mitrovic; I. Bogunovic; A. Norouzi Fard; J. Tarnawski; V. Cevher 

2017. Conference on Neural Information Processing Systems (NIPS), Long Beach,

Practical Sketching Algorithms For Low-Rank Matrix Approximation

J. A. Tropp; A. Yurtsever; M. Udell; V. Cevher 

Siam Journal On Matrix Analysis And Applications. 2017. Vol. 38, num. 4, p. 1454 – 1485. DOI : 10.1137/17M1111590.

How little does non-exact recovery help in group testing?

J. Scarlett; V. Cevher 

2017. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, March 2017. p. 6090 – 6094. DOI : 10.1109/ICASSP.2017.7953326.

Faster Coordinate Descent via Adaptive Importance Sampling

D. Perekrestenko; V. Cevher; M. Jaggi 

2017. 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA, April 20-22, 2017.

General Proximal Gradient Method: A Case for Non-Euclidean Norms

M. El Halabi; Y-P. Hsieh; B. Vu; Q. Nguyen; V. Cevher 

2017. 

DCT Learning-Based Hardware Design for Neural Signal Acquisition Systems

C. Aprile; J. Wüthrich; L. Baldassarre; Y. Leblebici; V. Cevher 

2017. Computing Frontiers Conference 2017, Siena, Italy, May 15-17, 2017. p. 391 – 394. DOI : 10.1145/3075564.3078890.

Robust Submodular Maximization: A Non-Uniform Partitioning Approach

I. Bogunovic; S. Mitrovic; J. Scarlett; V. Cevher 

2017. The 34th International Conference on Machine Learning (ICML), Sydney, 2017.

Lower Bounds on Active Learning for Graphical Model Selection

J. Scarlett; V. Cevher 

2017. The 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), Fort Lauderdale, Florida, USA, April 20-22, 2017.

Limits on Support Recovery With Probabilistic Models: An Information-Theoretic Framework

J. Scarlett; V. Cevher 

IEEE Transactions on Information Theory. 2017. Vol. 63, num. 1, p. 593 – 620. DOI : 10.1109/TIT.2016.2606605.

Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization

J. Scarlett; I. Bogunovic; V. Cevher 

2017. Conference on Learning Theory (COLT)Conference on Learning Theory (COLT), AmsterdamAmsterdam, Netherlands, July 2017July, 7-10, 2017.

Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage

A. Yurtsever; M. Udell; J. A. Tropp; V. Cevher 

2017. 20th International Conference on Artificial Intelligence and Statistics (AISTATS2017), Fort Lauderdale, Florida, USA, April 20-22, 2017.

A Distributed Algorithm for Partitioned Robust Submodular Maximization

I. Bogunovic; S. Mitrovic; J. Scarlett; V. Cevher 

2017. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). DOI : 10.1109/CAMSAP.2017.8313155.

An Adaptive Sublinear-Time Block Sparse Fourier Transform

V. Cevher; M. Kapralov; J. Scarlett; A. Zandieh 

2017. ACM Symposium on Theory of Computing (STOC), Montreal, June 19-23, 2017. p. 702 – 715. DOI : 10.1145/3055399.3055462.

Combinatorial Penalties: Which structures are preserved by convex relaxations?

M. El Halabi; F. Bach; V. Cevher 

2017. 21st International Conference on Artificial Intelligence and Statistics (AISTATS), Lanzarotte, Spain, April 9-11, 2017.

Smooth Primal-Dual Coordinate Descent Algorithms for Nonsmooth Convex Optimization

A. Alacaoglu; Q. Tran-Dinh; O. Fercoq; V. Cevher 

2017. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, December 4-9, 2017.

Smoothing technique for nonsmooth composite minimization with linear operator

Q. V. Nguyen; O. Fercoq; V. Cevher 

2017

Phase Transitions in the Pooled Data Problem

J. Scarlett; V. Cevher 

2017. Conference on Neural Information Processing Systems (NIPS), Long Beach, California, December 2017.

Efficient and Near-Optimal Noisy Group Testing: An Information-Theoretic Framework

J. Scarlett; V. Cevher 

2017

2016

Adaptive-Rate Sparse Signal Reconstruction With Application in Compressive Foreground Subtraction

J. F. C. Mota; N. Deligiannis; A. C. Sankaranarayanan; V. Cevher; M. R. D. Rodrigues 

IEEE Transactions on Signal Processing. 2016. Vol. 64, num. 14, p. 3651 – 3666. DOI : 10.1109/TSP.2016.2544744.

Stochastic Three-Composite Convex Minimization

A. Yurtsever; C. B. Vu; V. Cevher 

2016. 30th Conference on Neural Information Processing Systems (NIPS2016), Barcelona, Spain, December 5-10, 2016. p. 4329 – 4337.

Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation

I. Bogunovic; J. Scarlett; A. Krause; V. Cevher 

2016. Conference on Neural Information Processing Systems (NIPS), Barcelona, December 5-10, 2016.

An Efficient Streaming Algorithm for the Submodular Cover Problem

A. Norouzi Fard; A. Bazzi; M. El Halabi; I. Bogunovic; Y-P. Hsieh et al. 

2016. The Thirtieth Annual Conference on Neural Information Processing Systems (NIPS).

Converse Bounds for Noisy Group Testing with Arbitrary Measurement Matrices

J. Scarlett; V. Cevher 

2016. International Symposium on Information Theory (ISIT), Barcelona, July 10-15, 2016. p. 2868 – 2872. DOI : 10.1109/ISIT.2016.7541823.

Phase Transitions in Group Testing

J. Scarlett; V. Cevher 

2016. ACM-SIAM Symposium on Discrete Algorithms (SODA), Arlington, Virginia, USA, January 10-12, 2016. p. 40 – 53. DOI : 10.1137/1.9781611974331.ch4.

Group-Sparse Model Selection: Hardness and Relaxations

L. Baldassarre; N. Bhan; V. Cevher; A. Kyrillidis 

IEEE Transactions on Information Theory. 2016. Vol. 62, num. 11, p. 6508 – 6534. DOI : 10.1109/TIT.2016.2602222.

Learning-Based Near-Optimal Area-Power Trade-offs in Hardware Design for Neural Signal Acquisition

C. Aprile; L. Baldassarre; V. Gupta; J. Yoo; M. Shoaran et al. 

2016. 26th edition of GLSVLSI, Boston, USA, May 18-20, 2016. p. 433 – 438. DOI : 10.1145/2902961.2903028.

Partial Recovery Bounds for the Sparse Stochastic Block Model

J. Scarlett; V. Cevher 

2016. International Symposium on Information Theory (ISIT), Barcelona, July 10-15, 2016. p. 1904 – 1908. DOI : 10.1109/ISIT.2016.7541630.

Learning-Based Compressive Subsampling

L. Baldassarre; Y-H. Li; J. Scarlett; B. Gözcü; I. Bogunovic et al. 

IEEE Journal on Selected Topics in Signal Processing. 2016. Vol. 10, num. 4, p. 809 – 822. DOI : 10.1109/Jstsp.2016.2548442.

Estimation Error of the Constrained Lasso

N. Zerbib; Y-H. Li; Y-P. Hsieh; V. Cevher 

2016. 54th Annual Allerton Conf. Communication, Control, and Computing, Monticello, IL, September 27-30, 2016. p. 433 – 438. DOI : 10.1109/ALLERTON.2016.7852263.

On the Difficulty of Selecting Ising Models with Approximate Recovery

J. Scarlett; V. Cevher 

IEEE Transactions on Signal and Information Processing over Networks. 2016. Vol. 2, num. 4, p. 625 – 638. DOI : 10.1109/Tsipn.2016.2596439.

Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices

J. Scarlett; V. Cevher 

2016. International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz, Spain, May 9-11, 2016.

Learning Data Triage: Linear Decoding Works for Compressive MRI

Y-H. Li; V. Cevher 

2016. 41st IEEE International Conference on Acoustics, Speech and Signal Processing. p. 4034 – 4038. DOI : 10.1109/ICASSP.2016.7472435.

Fixed Points of Generalized Approximate Message Passing with Arbitrary Matrices

S. Rangan; P. Schniter; E. Riegler; A. Fletcher; V. Cevher 

2016. IEEE International Symposium on Information Theory, (ISIT), Istanbul, Turkey, July 7-12 2013. p. 7464 – 7474. DOI : 10.1109/ISIT.2013.6620309.

Stochastic Spectral Descent for Discrete Graphical Models

D. Carlson; Y-P. Hsieh; E. Collins; L. Carin; V. Cevher 

IEEE Journal of Selected Topics in Signal Processing. 2016. Vol. 10, num. 2, p. 296 – 311. DOI : 10.1109/Jstsp.2015.2505684.

Time-Varying Gaussian Process Bandit Optimization

I. Bogunovic; J. Scarlett; V. Cevher 

2016. International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz, Spain, May 9 – 11, 2016.

Randomized Single-View Algorithms for Low-Rank Matrix Approximation

J. A. Tropp; A. Yurtsever; M. Udell; V. Cevher 

2016

Adaptive-Rate Reconstruction of Time-Varying Signals with Application in Compressive Foreground Extraction

J. F. C. Mota; N. Deligiannis; A. C. Sankaranarayanan; V. Cevher; M. R. D. Rodrigues 

IEEE Transactions on Signal Processing. 2016. Vol. 64, num. 14, p. 3651 – 3666. DOI : 10.1109/TSP.2016.2544744.

Convex block-sparse linear regression with expanders – provably

A. Kyrillidis; B. Bah; R. Hasheminezhad; Q. Tran Dinh; L. Baldassarre et al. 

2016. The 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), Cadiz, Spain, May 7-11, 2016. p. 19 – 27.

Frank-Wolfe Works for Non-Lipschitz Continuous Gradient Objectives: Scalable Poisson Phase Retrieval

G. Odor; Y-H. Li; A. Yurtsever; Y-P. Hsieh; Q. Tran Dinh et al. 

2016. 41st IEEE International Conference on Acoustics, Speech and Signal Processing. p. 6230 – 6234. DOI : 10.1109/ICASSP.2016.7472875.

2015

Consistency of $\ell_1$-Regularized Maximum-Likelihood for Compressive Poisson Regression

Y-H. Li; V. Cevher 

2015. 40th IEEE Int. Conf. Acoustics, Speech and Signal Processing, Brisbane, Australia, April 19-24, 2015. p. 3606 – 3610. DOI : 10.1109/ICASSP.2015.7178643.

A Universal Primal-Dual Convex Optimization Framework

A. Yurtsever; Q. Tran Dinh; V. Cevher 

2015. 29th Annual Conference on Neural Information Processing Systems (NIPS2015), Montreal, Canada, December 7-12, 2015.

What’s the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid

P. Boufounos; V. Cevher; A. C. Gilbert; Y. Li; M. J. Strauss 

Algorithmica. 2015. Vol. 73, num. 2, p. 261 – 288. DOI : 10.1007/s00453-014-9918-0.

Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements

L. Wang; J. Huang; X. Yuan; K. Krishnamurthy; J. Greenberg et al. 

SIAM Journal on Imaging Sciences (SIIMS). 2015. Vol. 8, num. 3, p. 1923 – 1954. DOI : 10.1137/140998779.

Stochastic Spectral Descent for Restricted Boltzmann Machines

D. Carlson; V. Cevher; L. Carin 

2015. The 18th International Conference on Artificial Intelligence and Statistics, San Diego, USA, May 9-12, 2015.

Composite convex minimization involving self-concordant-like cost functions

Q. Tran Dinh; Y-H. Li; V. Cevher 

2015

Active Learning of Self-concordant like Multi-index Functions

I. Bogunovic; V. Cevher; J. Haupt; J. Scarlett 

2015. 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, April 19-24, 2015. p. 2189 – 2193. DOI : 10.1109/ICASSP.2015.7178359.

Scalable Convex Methods for Phase Retrieval

A. Yurtsever; Y-P. Hsieh; V. Cevher 

2015. 6th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, December 13-16, 2015. p. 381 – 384. DOI : 10.1109/CAMSAP.2015.7383816.

Designing Statistical Estimators That Balance Sample Size, Risk, and Computational Cost

J. J. Bruer; J. A. Tropp; V. Cevher; S. Becker 

IEEE Journal of Selected Topics in Signal Processing. 2015. Vol. 9, num. 4, p. 612 – 624. DOI : 10.1109/Jstsp.2015.2400412.

A totally unimodular view of structured sparsity

M. El Halabi; V. Cevher 

2015. The 18th International Conference on Artificial Intelligence and Statistics, San Diego, California, USA, May 9 – 12, 2015.

Limits on Support Recovery with Probabilistic Models: An Information-Theoretic Framework

J. Scarlett; V. Cevher 

2015. International Symposium on Information Theory, Hong Kong, June 2015. p. 2331 – 2335. DOI : 10.1109/ISIT.2015.7282872.

Sparsistency of $\ell_1$-Regularized $M$-Estimators

Y-H. Li; J. Scarlett; P. Ravikumar; V. Cevher 

2015. The 18th International Conference on Artificial Intelligence and Statistics, San Diego, California, USA, May 9-12, 2015.

A Primal-dual Framework For Mixtures Of Regularisers

B. Gözcü; L. Baldassarre; Q. Tran Dinh; C. Aprile; V. Cevher 

2015. 23rd European Signal Processing Conference (EUSIPCO 2015), Nice, France, August 31 – September 4 2015. p. 240 – 244. DOI : 10.1109/EUSIPCO.2015.7362381.

A Geometric View on Constrained M-Estimators

Y-H. Li; Y-P. Hsieh; N. Zerbib; V. Cevher 

2015

Dynamic Sparse State Estimation Using ℓ1-ℓ1 Minimization: Adaptive-rate Measurement Bounds, Algorithms and Applications

J. Mota; N. Deligiannis; A. C. Sankaranarayanan; V. Cevher; M. Rodrigues 

2015. 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2015, Brisbane, Queensland, Australia, April 19-24, 2015. p. 3332 – 3336. DOI : 10.1109/ICASSP.2015.7178588.

Second-Order Asymptotics for the Discrete Memoryless MAC with Degraded Message Sets

J. Scarlett; V. Y. F. Tan 

2015. IEEE International Symposium on Information Theory, Hong Kong, p. 2964 – 2968. DOI : 10.1109/ISIT.2015.7283000.

Composite Self-Concordant Minimization

Q. Tran Dinh; A. Kyrillidis; V. Cevher 

Journal of Machine Learning Research. 2015. Vol. 16, p. 371 – 416.

Splitting the Smoothed Primal-Dual Gap: Optimal Alternating Direction Methods

Q. Tran Dinh; V. Cevher 

2015

A 5.9mW/Gb/s 7Gb/s/pin 8-Lane Single-Ended RX with Crosstalk Cancellation Scheme using a XCTLE and 56-tap XDFE in 32nm SOI CMOS

A. Cevrero; C. Aprile; P. A. Francese; U. Bapst; C. Menolfi et al. 

2015. Symposium on VLSI Circuits, Kyoto, Japan, June 15-19, 2015. p. C228 – C229. DOI : 10.1109/VLSIC.2015.7231267.

Refinements of the Third-Order Term in the Fixed Error Asymptotics of Constant-Composition Codes

J. Scarlett; A. Martinez; A. Guillén i Fàbregas 

2015. IEEE International Symposium on Information Theory, Hong Kong, p. 2954 – 2958. DOI : 10.1109/ISIT.2015.7282998.

Sparse Group Covers and Greedy Tree Approximations

S. Satpathi; L. Baldassarre; V. Cevher 

2015. 2015 IEEE Internation Symposium on Information Theory, Hong Kong, China, June 14-19, 2015. p. 551 – 555. DOI : 10.1109/ISIT.2015.7282515.

Structured Sampling and Recovery of iEEG Signals

L. Baldassarre; C. Aprile; M. Shoaran; Y. Leblebici; V. Cevher 

2015. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico, December 13-16, 2015. p. 269 – 272. DOI : 10.1109/CAMSAP.2015.7383788.

Composite convex minimization involving self-concordant-like cost functions

Q. Tran Dinh; Y-H. Li; V. Cevher 

2015. Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2015), Metz, France, May 11-13, 2015. p. 155 – 168. DOI : 10.1007/978-3-319-18161-5_14.

Introduction to the Issue on Signal Processing for Big Data

G. B. Giannakis; R. Cendrillon; V. Cevher; A. Swami; Z. Tian 

Ieee Journal Of Selected Topics In Signal Processing. 2015. Vol. 9, num. 4, p. 583 – 585. DOI : 10.1109/Jstsp.2015.2418393.

On the Dispersions of the Gel’fand-Pinsker Channel and Dirty Paper Coding

J. Scarlett 

IEEE Transactions on Information Theory. 2015. Vol. 61, num. 9, p. 4569 – 4586. DOI : 10.1109/Tit.2015.2449844.

An optimal first-order primal-dual gap reduction framework for constrained convex optimization

Q. Tran Dinh; V. Cevher 

2015

WASP: Scalable Bayes via barycenters of subset posteriors

S. Srivastava; V. Cevher; Q. Tran Dinh; D. B. Dunson 

2015. The 18th International Conference on Artificial Intelligence and Statistics, San Diego, USA, May 9-12, 2015. p. 912 – 920.

Preconditioned Spectral Descent for Deep Learning

D. Carlson; E. Collins; Y-P. Hsieh; L. Carin; V. Cevher 

2015. 29-th Neural Information Processing Systems (NIPS), 2015.

2014

Approximate Matrix Multiplication with Application to Linear Embeddings

A. Kyrillidis; M. Vlachos; A. Zouzias 

2014. IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, JUN 29-JUL 04, 2014. p. 2182 – 2186. DOI : 10.1109/ISIT.2014.6875220.

Model-based Sketching and Recovery with Expanders

B. Bah; L. Baldassarre; V. Cevher 

2014. ACM-SIAM Symposium on Discrete Algorithms, Portland, Oregon, USA, January 5-7, 2014. p. 1529 – 1543. DOI : 10.1137/1.9781611973402.112.

Bilinear Generalized Approximate Message Passing—Part I: Derivation

J. Parker; P. Schniter; V. Cevher 

IEEE Transactions on Signal Processing. 2014. Vol. 62, num. 22, p. 5839 – 5853. DOI : 10.1109/TSP.2014.2357776.

Path-following gradient-based decomposition algorithms for separable convex optimization

Q. Tran Dinh; I. Necoara; M. Diehl 

Journal of Global Optimization. 2014. Vol. 59, num. 1, p. 59 – 80. DOI : 10.1007/s10898-013-0085-7.

Fixed-Rank Rayleigh Quotient Maximization by an MPSK Sequence

A. Kyrillidis; G. N. Karystinos 

IEEE Transactions on Communications. 2014. Vol. 62, num. 3, p. 961 – 975. DOI : 10.1109/Tcomm.2014.012414.130439.

A variational approach to stable principal component pursuit

A. Aravkin; S. Becker; V. Cevher; P. Olsen 

2014. 30th Conference on Uncertainty in Artificial Intelligence (UAI) 2014, Quebec City, Quebeck, Canada, July 23-27, 2014.

Learning with tensors: a framework based on convex optimization and spectral regularization

M. Signoretto; Q. Tran Dinh; L. De Lathauwer; J. A. K. Suykens 

Machine Learning. 2014. Vol. 94, num. 3, p. 303 – 351. DOI : 10.1007/s10994-013-5366-3.

Rigorous optimization recipes for sparse and low rank inverse problems with applications in data sciences

A. Kyrillidis / V. Cevher (Dir.)  

Lausanne, EPFL, 2014. 

Constrained convex minimization via model-based excessive gap

Q. Tran Dinh; V. Cevher 

2014. Advances in Neural Information Processing Systems (NIPS) 2014, Montreal, Quebec, Canada, December 8-11, 2014.

Time–Data Tradeoffs by Aggressive Smoothing

J. J. Bruer; J. A. Tropp; V. Cevher; S. R. Becker 

2014. Conference of Neural Information Processing Systems (NIPS) Foundation 2014, Montreal, Quebec, Canada, December 8-11, 2014.

Matrix Recipes for Hard Thresholding Methods

A. Kyrillidis; V. Cevher 

Journal Of Mathematical Imaging And Vision. 2014. Vol. 48, num. 2, p. 235 – 265. DOI : 10.1007/s10851-013-0434-7.

Barrier Smoothing for Nonsmooth Convex Minimization

Q. Tran Dinh; Y-H. Li; V. Cevher 

2014. IEEE International Conference on Acoustics, Speech, and Signal Processing, Florence, Italy, May 4-9, 2014. p. 1503 – 1507. DOI : 10.1109/ICASSP.2014.6853848.

Metric Learning with Rank and Sparsity Constraints

B. Bah; V. Cevher; S. Becker; B. Gözcü 

2014. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, May 4-9, 2014. p. 21 – 25. DOI : 10.1109/ICASSP.2014.6853550.

Convex Optimization for Big Data

V. Cevher; S. Becker; M. Schmidt 

IEEE Signal Processing Magazine. 2014. Vol. 31, num. 5, p. 32 – 43. DOI : 10.1109/MSP.2014.2329397.

Structured Sparsity Models for Reverberant Speech Separation

A. Asaei; M. Golbabaee; H. Bourlard; V. Cevher 

IEEE Transactions on Audio, Speech and Language Processing. 2014. Vol. 22, num. 3, p. 620 – 633. DOI : 10.1109/Taslp.2013.2297012.

An inexact proximal path-following algorithm for constrained convex minimization

Q. Tran Dinh; A. Kyrillidis; V. Cevher 

Siam Journal On Optimization. 2014. Vol. 24, num. 4, p. 1718 – 1745. DOI : 10.1137/130944539.

Bilinear Generalized Approximate Message Passing—Part II: Applications

J. Parker; P. Schniter; V. Cevher 

IEEE Transactions on Signal Processing. 2014. Vol. 62, num. 22, p. 5854 – 5867. DOI : 10.1109/TSP.2014.2357773.

A Primal-Dual Algorithmic Framework for Constrained Convex Minimization

Q. Tran Dinh; V. Cevher 

2014

Scalable sparse covariance estimation via self-concordance

A. Kyrillidis; R. Karimi Mahabadi; Q. Tran Dinh; V. Cevher 

2014. Twenty-Eighth AAAI Conference on Artificial Intelligence, Quebec, Canada, July 27-31, 2014. DOI : 10.1609/aaai.v28i1.8960.

MAP Estimation for Bayesian Mixture Models with Submodular Priors

M. El Halabi; L. Baldassarre; V. Cevher 

2014. 2014 IEEE International Workshop on Machine Learning for signal processing, Reims, France, Sept 21-24, 2014. DOI : 10.1109/MLSP.2014.6958846.

Learning non-parametric basis independent models from point queries via low-rank methods

H. Tyagi; V. Cevher 

Applied And Computational Harmonic Analysis. 2014. Vol. 37, num. 3, p. 389 – 412. DOI : 10.1016/j.acha.2014.01.002.

Model-based Sparse Component Analysis for Reverberant Speech Localization

A. Asaei; H. Bourlard; M. Taghizadeh; V. Cevher 

2014. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, May 4-9. p. 1439 – 1443. DOI : 10.1109/ICASSP.2014.6853835.

2013

Fast Proximal Algorithms For Self-Concordant Function Minimization With Application To Sparse Graph Selection

A. Kyrillidis; V. Cevher 

2013. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, BC, Canada, May 26-31, 2013. p. 6585 – 6589. DOI : 10.1109/ICASSP.2013.6638935.

High-Dimensional Gaussian Process Bandits

J. Djolonga; A. Krause; V. Cevher 

2013. Neural Information Processing Systems, Lake Tahoe, Nevada, December 5-8, 2013.

Accelerated And Inexact Forward-Backward Algorithms

S. Villa; S. Salzo; L. Baldassarre; A. Verri 

Siam Journal On Optimization. 2013. Vol. 23, num. 3, p. 1607 – 1633. DOI : 10.1137/110844805.

Energy-aware adaptive bi-Lipschitz embeddings

B. Bah; A. Sadeghian; V. Cevher 

2013. 10th International Conference on Sampling Theory and Applications (SampTA), Bremen, Germany, July 1-5, 2013.

To Convexify or Not? Regression with Clustering Penalties on Graphs

M. El Halabi; L. Baldassarre; V. Cevher 

2013. 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Saint Martin, France, December 15-18. 2013. p. 21 – 24. DOI : 10.1109/CAMSAP.2013.6713997.

Convexity in source separation: Models, geometry, and algorithms

M. McCoy; V. Cevher; Q. Tran Dinh; A. Asaei; L. Baldassarre 

IEEE Signal Processing Magazine. 2013. Vol. 31, num. 3, p. 87 – 95. DOI : 10.1109/MSP.2013.2296605.

A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions

Q. Tran Dinh; A. Kyrillidis; V. Cevher 

2013. 30th International Conference on Machine Learning, Atlanta, GA, USA, June 16-19, 2013. p. 271 – 279.

Time-Optimal Path Following for Robots With Convex-Concave Constraints Using Sequential Convex Programming

F. Debrouwere; W. Van Loock; G. Pipeleers; Q. Tran Dinh; M. Diehl et al. 

Ieee Transactions On Robotics. 2013. Vol. 29, num. 6, p. 1485 – 1495. DOI : 10.1109/Tro.2013.2277565.

Sparse projections onto the simplex

A. Kyrillidis; S. Becker; V. Cevher; C. Koch 

2013. The 30th International Conference on Machine Learning (ICML) 2013, Atlanta, USA, June 16-21, 2013. p. 280 – 288.

Manifold Sparse Beamforming

B. Gözcü; A. Asaei; V. Cevher 

2013. 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Saint Martin, France, December 15-18, 2013. p. 113 – 116. DOI : 10.1109/CAMSAP.2013.6714020.

Fast Proximal algorithms for Self-concordant function minimization with application to sparse graph selection

A. Kyrillidis; V. Cevher 

2013. 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 26-31, 2013. p. 6585 – 6589. DOI : 10.1109/ICASSP.2013.6638935.

Randomized Low-Memory Singular Value Projection

S. Becker; V. Cevher; A. Kyrillidis 

2013. 10th International Conference on Sampling Theory and Applications (Sampta), Bremen, Germany, July 1st – July 5th, 2013.

Tractability of interpretability via selection of group-sparse models

N. Bhan; L. Baldassarre; V. Cevher 

2013. IEEE International Symposium on Information Theory Proceedings (ISIT), 2013, Istanbul, Turkey, July 7-13, 2013. DOI : 10.1109/ISIT.2013.6620384.

2012

Combinatorial Selection and Least Absolute Shrinkage via the CLASH Algorithm

A. Kyrillidis; V. Cevher 

2012. 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), Cambridge, Massachusetts, USA, July 1-6, 2012. p. 2216 – 2220. DOI : 10.1109/ISIT.2012.6283847.

Bearing estimation via spatial sparsity using compressive sensing

A. C. Gurbuz; V. Cevher; J. H. McClellan 

IEEE Transactions on Aerospace and Electronic Systems. 2012. Vol. 48, num. 2, p. 1358 – 1369. DOI : 10.1109/TAES.2012.6178067.

Filtered Variation method for denoising and sparse signal processing

K. Kose; V. Cevher; A. E. Cetin 

2012. International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, Kyoto, Japan, March 25-30, 2012. DOI : 10.1109/ICASSP.2012.6288628.

Active Learning of Multi-Index Function Models

V. Cevher; H. Tyagi 

2012. NIPS (The Neural Information Processing Systems), Lake Tahoe, Reno, Nevada, December 3-8, 2012.

Computational Methods For Structured Sparse Component Analysis of Convolutive Speech Mixtures

A. Asaei; M. Davies; H. Bourlard; V. Cevher 

2012. The 37th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 25-30, 2012. p. 2425 – 2428. DOI : 10.1109/ICASSP.2012.6288405.

Compressible distributions for high-dimensional statistics

R. Gribonval; V. Cevher; M. E. Davies 

IEEE Transactions on Information Theory. 2012. Vol. 58, num. 8, p. 5016 – 5034. DOI : 10.1109/TIT.2012.2197174.

Equivalence of synthesis and atomic formulations of sparse recovery

M. Fatemi; S. Dashmiz; M. H. Shafinia; V. Cevher 

2012. IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor, Michigan, USA, Aug 5-8, 2012. p. 177 – 180. DOI : 10.1109/SSP.2012.6319652.

Learning Ridge Functions With Randomized Sampling In High Dimensions

H. Tyagi; V. Cevher 

2012. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March 25-39, 2012. p. 2025 – 2028. DOI : 10.1109/ICASSP.2012.6288306.

Multi-Way Compressed Sensing for Sparse Low-Rank Tensors

N. D. Sidiropoulos; A. Kyrillidis 

IEEE Signal Processing Letters. 2012. Vol. 19, num. 11, p. 757 – 760. DOI : 10.1109/Lsp.2012.2210872.

Method, apparatus and computer program product for determining the location of a plurality of speech sources

A. Asaei; H. Bourlard; V. Cevher 

US9689959; US2013096922.

2012.

Hard Thresholding with Norm Constraints

A. Kyrillidis; G. Puy; V. Cevher 

2012. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March, 2012. p. 3645 – 3648. DOI : 10.1109/ICASSP.2012.6288706.

Matrix ALPS: Accelerated Low Rank and Sparse Matrix Reconstruction

A. Kyrillidis; V. Cevher 

2012. IEEE Statistical Signal Processing Workshop (SSP), Ann Arbor, Michigan, USA, August, 2012. p. 185 – 188. DOI : 10.1109/SSP.2012.6319655.

Structured Sparse Coding for Microphone Array Location Calibration

A. Asaei; B. Raj; H. Bourlard; V. Cevher 

2012. SAPA-SCALE Conference, Portland, Oregon, USA, September 7-13.

2011

On Accelerated Hard Thresholding Methods for Sparse Approximation

V. Cevher 

2011. Conference on Wavelets and Sparsity XIV, San Diego, California, USA, Aug 21-24, 2011. DOI : 10.1117/12.894386.

Learning Low-Dimensional Signal Models

L. Carin; R. Baraniuk; V. Cevher; D. Dunson; M. Jordan et al. 

IEEE Signal Processing Magazine. 2011. Vol. 28, num. 2, p. 39 – 51. DOI : 10.1109/MSP.2010.939733.

Compressive sensing meets game theory

S. Jafarpour; R. E. Schapire; V. Cevher 

2011. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 22-27, 2011. p. 3660 – 3663. DOI : 10.1109/ICASSP.2011.5947144.

Online performance guarantees for sparse recovery

R. Giryes; V. Cevher 

2011. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, May 22-27, 2011. DOI : 10.1109/ICASSP.2011.5946908.

Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach

J. T. Parker; V. Cevher; P. Schniter 

2011. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, USA, November 6-9, 2011. DOI : 10.1109/ACSSC.2011.6190118.

Rank-Deficient Quadratic-Form Maximization Over M-Phase Alphabet: Polynomial-Complexity Solvability And Algorithmic Developments

A. T. Kyrillidis; G. N. Karystinos 

2011. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech Republic, May 22-27, 2011. p. 3856 – 3859. DOI : 10.1109/ICASSP.2011.5947193.

Recipes on Hard Thresholding Methods

A. Kyrillidis; V. Cevher 

2011. 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Puerto Rico, December, 2011. DOI : 10.1109/CAMSAP.2011.6136024.

A Game Theoretic Approach to Expander-based Compressive Sensing

S. Jafarpour; V. Cevher; R. Schapire 

2011. IEEE International Symposium on Information Theory (ISIT), St. Petersburg , Russia, July 31 – August 5, 2011. p. 464 – 468. DOI : 10.1109/ISIT.2011.6034169.

Greedy Dictionary Selection for Sparse Representation

V. Cevher; A. Krause 

IEEE Journal of Selected Topics in Signal Processing. 2011. Vol. 5, num. 5, p. 979 – 988. DOI : 10.1109/JSTSP.2011.2161862.

An Alps View of Sparse Recovery

V. Cevher 

2011. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech Republic, May 22-27, 2011. p. 5808 – 5811. DOI : 10.1109/ICASSP.2011.5947681.

Model-Based Compressive Sensing for Multi-Party Distant Speech Recognition

A. Asaei; H. Bourlard; V. Cevher 

2011. The 36th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Prague, Czech Republic, May 22-27, 2011. p. 4600 – 4603. DOI : 10.1109/ICASSP.2011.5947379.

Multi-party Speech Recovery Exploiting Structured Sparsity Models

A. Asaei; M. Taghizadeh; H. Bourlard; V. Cevher 

2011. 12th Annual Conference of the International Speech Communication Association, Florence, Italy, August 28-31, 2011. p. 185 – 188. DOI : 10.21437/Interspeech.2011-78.

2010

Distributed bearing estimation via matrix completion

A. Waters; V. Cevher 

2010. 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Dallas, Texas, USA, March 14-19, 2010. DOI : 10.1109/ICASSP.2010.5496281.

Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective

R. Baraniuk; V. Cevher; M. B. Wakin 

Proceedings of the IEEE. 2010. Vol. 98, num. 6, p. 959 – 971. DOI : 10.1109/JPROC.2009.2038076.

Model-based compressive sensing

R. Baraniuk; V. Cevher; M. F. Duarte; C. Hegde 

IEEE Transactions on Information Theory. 2010. Vol. 56, num. 4, p. 1982 – 2001. DOI : 10.1109/TIT.2010.2040894.

Sparse Signal Acquisition and Recovery with Graphical Models

V. Cevher; P. Indyk; L. Carin; R. Baraniuk 

IEEE Signal Processing Magazine. 2010. Vol. 26, num. 6, p. 92 – 103. DOI : 10.1109/MSP.2010.938029.

Submodular dictionary selection for sparse representation

A. Krause; V. Cevher 

2010. International Conference on Machine Learning (ICML), Haifa, Israel, June 2010.

Fast hard thresholding with Nesterov’s gradient method

V. Cevher; S. Jafarpour 

2010. Advances in Neuronal Information Processing Systems (NIPS) Workshops, Whistler, Canada, December 2010.

2009

Learning with Compressible Priors

V. Cevher 

2009. Neural Information Processing Systems (NIPS), Vancouver, B.C., Canada, December 2009.

Recovery of Compressible Signals in Unions of Subspaces

M. F. Duarte; C. Hegde; V. Cevher; R. G. Baraniuk 

2009. Conference on Information Sciences and Systems (CISS), Baltimore, MD, Mar 18-20, 2009.

Near-Optimal Bayesian Localization via Incoherence and Sparsity

V. Cevher; P. Boufounos; R. G. Baraniuk; A. C. Gilbert; M. J. Strauss 

2009. IEEE/ACM Information Processing in Sensor Networks (IPSN), San Francisco, CA, Apr 13-16, 2009. p. 205 – 216.

Recovery of clustered sparse signals from compressive measurements

V. Cevher; P. Indyk; C. Hegde; R. Baraniuk 

2009. International conference on Sampling Theory and Applications(SAMPTA), Marseille, France, 18-22 May, 2009.

Model-Based Compressive Sensing for Signal Ensembles

M. F. Duarte; V. Cevher; R. G. Baraniuk 

2009. 47th Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, September 2009. p. 244 – 250. DOI : 10.1109/ALLERTON.2009.5394807.

Acoustic sensor network design for position estimation

V. Cevher; L. Kaplan 

ACM Transactions on Sensor Networks. 2009. Vol. 5, num. 3, p. 21. DOI : 10.1145/1525856.1525859.

Vehicle speed estimation using acoustic wave patterns

V. Cevher; R. Chellappa; J. H. McClellan 

IEEE Transactions on Signal Processing. 2009. Vol. 57, num. 1, p. 30 – 47. DOI : 10.1109/TSP.2008.2005750.

Compressive sensing recovery of spike trains using a structured sparsity model

C. Hegde; M. F. Duarte; V. Cevher 

2009. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS), Saint-Malo, France, April 06-09, 2009.

2008

Compressive Sensing For Sensor Calibration

V. Cevher; R. Baraniuk 

2008. IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Darmstadt, GERMANY, Jul 21-23, 2008. p. 175 – 178. DOI : 10.1109/SAM.2008.4606849.

Compressed Sensing For Multi-View Tracking And 3-D Voxel Reconstruction

D. Reddy; A. C. Sankaranarayanan; V. Cevher; R. Chellappa 

2008. IEEE International Conference on Image Processing (ICIP), San Diego, CA, Oct 12-15, 2008. p. 221 – 224. DOI : 10.1109/ICIP.2008.4711731.

Pareto frontiers of sensor networks for localization

V. Cevher; L. Kaplan 

2008. IEEE/ACM Information Processing in Sensor Networks (IPSN), St Louis, MO, Apr 22-24, 2008. p. 27 – 38. DOI : 10.1109/IPSN.2008.8.

Factorized variational approximations for acoustic multi source localization

V. Cevher; A. C. Sankaranarayanan; R. Chellappa 

2008. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, NV, Mar 30-Apr 04, 2008. p. 2409 – 2412. DOI : 10.1109/ICASSP.2008.4518133.

Sparse signal recovery using Markov random fields

V. Cevher; M. F. Duarte; C. Hedge; R. Baraniuk 

2008. Neural Information Processing Systems (NIPS), Vancouver, B.C., Canada, December 8-11, 2008.

A compressive beamforming method

A. C. Gurbuz; J. H. McClellan; V. Cevher 

2008. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, NV, Mar 30-Apr 04, 2008. p. 2617 – 2620. DOI : 10.1109/ICASSP.2008.4518185.

Distributed target localization via spatial sparsity

V. Cevher; M. F. Duarte; R. Baraniuk 

2008. European Conference on Signal Processing (EUSIPCO), Lausanne, Switzerland, August 25-29, 2008.

Compressive Sensing for Background Subtraction

V. Cevher; A. Sankaranarayanan; M. F. Duarte; D. Reddy; R. G. Baraniuk et al. 

2008. European Conference on Computer Vision (ECCV), Marseille, FRANCE, Oct 12-18, 2008. p. 155 – 168. DOI : 10.1007/978-3-540-88688-4_12.

Compressive wireless arrays for bearing estimation

V. Cevher; A. C. Gurbuz; J. H. McClellan; R. Chellappa 

2008. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, NV, Mar 30-Apr 04, 2008. p. 2497 – 2500. DOI : 10.1109/ICASSP.2008.4518155.

2007

Joint acoustic-video fingerprinting of vehicles, part I

V. Cevher; R. Chellappa; J. H. McClellan 

2007. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI, Apr 15-20, 2007. p. 745 – 748. DOI : 10.1109/ICASSP.2007.366343.

Low computation and low latency algorithms for distributed sensor network initialization

M. Borkar; V. Cevher; J. H. McClellan 

Signal, Image and Video Processing. 2007. Vol. 1, num. 2, p. 133 – 148. DOI : 10.1007/s11760-007-0014-7.

Joint acoustic-video fingerprinting of vehicles, part II

V. Cevher; F. Guo; A. C. Sankaranarayanan; R. Chellappa 

2007. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI, Apr 15-20, 2007. p. 749 – 752. DOI : 10.1109/ICASSP.2007.366344.

Decentralized State Initialization with Delay Compensation for Multi-modal Sensor Networks

M. Borkar; V. Cevher; J. H. McClellan 

Journal of Vlsi Signal Processing Systems for Signal Image and Video Technology. 2007. Vol. 48, num. 1-2, p. 109 – 125. DOI : 10.1007/s11265-006-0007-8.

Acoustic multi target tracking using direction-of-arrival batches

V. Cevher; R. Velmurugan; J. H. McClellan 

IEEE Transactions on Signal Processing. 2007. Vol. 55, num. 6, p. 2810 – 2825. DOI : 10.1109/TSP.2007.893962.

Implementation of batch-based particle filters for multi-sensor tracking

R. Velmurugan; V. Cevher; J. H. McClellan 

2007. IEEE Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St Thomas, VI, Dec 12-14, 2007. p. 257 – 260. DOI : 10.1109/CAMSAP.2007.4498014.

A Monte-Carlo approach for tracking mobile personnel

M. Borkar; V. Cevher; J. H. McClellan 

2007. IEEE Aerospace Conference, Big Sky, MT, Mar 03-10, 2007. DOI : 10.1109/AERO.2007.353046.

Gaussian approximations for energy-based detection and localization in sensor networks

V. Cevher; R. Chellappa; J. H. McClellan 

2007. IEEE Statistical Signal Processing Workshop (SSP), Madison, WI, Aug 26-29, 2007. p. 655 – 659. DOI : 10.1109/SSP.2007.4301340.

Design considerations for a heterogeneous network of bearings-only sensors using sensor management

L. M. Kaplan; V. Cevher 

2007. IEEE Aerospace Conference, Big Sky, MT, Mar 03-10, 2007. DOI : 10.1109/AERO.2007.353080.

Target tracking using a joint acoustic video system

V. Cevher; A. C. Sankaranarayanan; J. H. McClellan; R. Chellappa 

IEEE Transactions on Multimedia. 2007. Vol. 9, num. 4, p. 715 – 727. DOI : 10.1109/TMM.2007.893340.

Optimal maneuvering of seismic sensors for localization of subsurface targets

M. Alam; V. Cevher; J. H. McClellan; G. D. Larson; W. R. Scott 

IEEE Transactions on Geoscience and Remote Sensing. 2007. Vol. 45, num. 5, p. 1247 – 1257. DOI : 10.1109/TGRS.2007.894551.

Mixed-mode implementation of particle filters

R. Velmurugan; S. Subramanian; V. Cevher; J. H. McClellan; D. V. Anderson 

2007. IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, Canada, Aug 22-24, 2007. p. 617 – 620. DOI : 10.1109/PACRIM.2007.4313312.

A multi target bearing tracking system using random sampling consensus

V. Cevher; F. Shah; R. Velmurugan; J. H. McClellan 

2007. IEEE Aerospace Conference, Big Sky, MT, Mar 03-10, 2007. DOI : 10.1109/AERO.2007.353045.

2006

Acoustic node calibration using moving sources

V. Cevher; J. H. McClellan 

IEEE Transactions on Aerospace and Electronic Systems. 2006. Vol. 42, num. 2, p. 585 – 600. DOI : 10.1109/TAES.2006.1642574.

Convergence analysis for sequential Monte Carlo receivers in communications applications

S. Ozgur; V. Cevher; D. B. Williams; J. H. McClellan 

2006. IEEE DSPWorkshop, Grand Teton National Park, WY, September, 2006. p. 354 – 359. DOI : 10.1109/DSPWS.2006.265405.

Multi target direction-of-arrival tracking using road priors

V. Cevher; R. Velmurugan; J. H. McClellan 

2006. IEEE Aerospace Conference, Big Sky, MT, March, 2006. DOI : 10.1109/AERO.2006.1655924.

Optimal experiments with seismic sensors

M. Alam; V. Cevher; J. H. McClellan 

2006. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, May, 2006. DOI : 10.1109/ICASSP.2006.1661176.

A Monte-Carlo method for initializing distributed tracking algorithms

M. Borkar; V. Cevher; J. H. McClellan 

2006. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, May, 2006. DOI : 10.1109/ICASSP.2006.1661118.

On low-power analog implementations of particle filters for target tracking

R. Velmurugan; S. Subramanian; V. Cevher; D. Abramson; K. M. Odame et al. 

2006. European Conference on Signal Processing (EUSIPCO), Florence, Italy, September, 2006.

A joint radar-acoustic particle filter tracker with acoustic propagation delay compensation

V. Cevher; M. Borkar; J. H. McClellan 

2006. European Conference on Signal Processing (EUSIPCO), Florence, Italy, September, 2006.

A range-only multiple target particle filter tracker

V. Cevher; R. Velmurugan; J. H. McClellan 

2006. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, May, 2006. DOI : 10.1109/ICASSP.2006.1661116.

2005

Proposal strategies for joint state-space tracking with particle filters

J. H. McClellan; V. Cevher 

2005. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA, March 18-23, 2005. p. 1081 – 1084. DOI : 10.1109/ICASSP.2005.1415596.

General direction-of-arrival tracking with acoustic nodes

V. Cevher; J. H. McClellan 

IEEE Transactions on Signal Processing. 2005. Vol. 53, num. 1, p. 1 – 12. DOI : 10.1109/TSP.2004.838947.

Estimating target state distributions in a distributed sensor network using a Monte-Carlo approach

V. Cevher; J. H. McClellan; M. Borkar 

2005. IEEE Workshop on Machine Learning for Signal Processing (MLSP), Mystic, CT, September, 2005. p. 305 – 310. DOI : 10.1109/MLSP.2005.1532919.

An acoustic multiple target tracker

V. Cevher; J. H. McClellan 

2005. IEEE Statistical Signal Processing Conference (SSP), Bordeaux, France, July, 2005. p. 509 – 514. DOI : 10.1109/SSP.2005.1628648.

2004

Fast initialization of particle filters using a modified Metropolis-Hastings algorithm: Mode-hungry approach

J. H. McClellan; V. Cevher 

2004. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, Canada, May, 2004. p. 129 – 132. DOI : 10.1109/ICASSP.2004.1326211.

Vehicle tracking using acoustic and video sensors

A. C. Sankaranayanan; Q. Zheng; R. Chellappa; V. Cevher; J. H. McClellan et al. 

2004. Army Science Conference (ASC), Orlando, FL, November, 2004.

Acoustic node calibration using helicopter sounds and Monte Carlo markov chain methods

J. H. McClellan; V. Cevher 

2004. IEEE DSP Workshop, Taos Ski Valley, NM, August, 2004. p. 347 – 351. DOI : 10.1109/DSPWS.2004.1437973.

2002

Tracking of multiple wideband targets using passive sensor arrays and particle filters

J. H. McClellan; V. Cevher 

2002. IEEE DSP Workshop, Callaway Gardens, GA, October, 2002. p. 72 – 77. DOI : 10.1109/DSPWS.2002.1231079.

Wavelet packet best basis search using generalized Renyi entropy

R. M. Dansereau; W. Kinsner; V. Cevher 

2002. IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Canada, 2002. p. 1005 – 1008. DOI : 10.1109/CCECE.2002.1013081.

2-D sensor position perturbation analysis: Equivalence to AWGN on array outputs

J. H. McClellan; V. Cevher 

2002. IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Washington DC, August, 2002. p. 219 – 223. DOI : 10.1109/SAM.2002.1191032.

2001

Sensor array calibration via tracking with the extended Kalman filter

V. Cevher; J. H. McClellan 

2001. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, Utah, USA, May 2001. p. 2817 – 2820. DOI : 10.1109/ICASSP.2001.940232.