Slides 2023

Outline

The 2023 course consists of the following topics
 

Lecture 01

  • Introduction.
  • The role of models and data
  • Maximum-likelihood formulation
  • Sample complexity bound for estimation and prediction

Lecture 02

  • Generalized linear model
  • Logistic regression

Lecture 03

  • Linear algebra reminder
  • Gradients
  • Reading convergence plots

Lecture 04

  • Optimization algorithms
  • Optimality measures.
  • Structures in optimization
  • Gradient de­scent. Gradient descent for smooth functions

Lecture 05

  • Optimality of convergence rates
  • Lower bounds
  • Accelerated gradient descent
  • Concept of total complexity
  • Adaptive methods
  • Tensor methods

Lecture 06

  • Stochastic gradient descent
  • Concise signal models
  • Compressive sensing
  • Sample complexity bounds for estimation and prediction
  • Challenges to optimization algorithms for non-smooth optimization
  • Subgradi­ent method

Lecture 07

  • Introduction to proximal-operators
  • Proximal gradient methods
  • Linear minimization ora­cles
  • Conditional gradient method for constrained optimization

Lecture 08

  • Variance reduction
  • Introduction to deep learning
  • Challenges in deep learning theory and applications

Lecture 09

  • Generalization through uniform convergence bounds
  • Rademacher complexity
  • Double descent curves and over­parameterization
  • Implicit regularization
  • Generalization bounds using stability

Lecture 10

  • Escaping saddle points
  • Adaptive gradient methods

Lecture 11

  • Adversarial machine learning and generative adversarial networks (GANs)
  • Wasserstein GAN
  • Difficulty of of minimax optimization.

Lecture 12

  • Robustness in deep learning
  • Diffusion models

Lecture 13

  • Primal-dual optimization-I: Fundamentals of minimax problems
  • Fenchel conjugates
  • Du­ality
  • Extra gradient method
  • Chambolle-Pock algorithm
  • Stochastic primal-dual methods

Lecture 14

  • Primal-dual optimization-II: Augmented Lagrangian grandient methods
  • Semi-definite programming
  • HCGM and CGAL algorithms

Lecture 15

  • Language models: Basis of language models.
  • Self attention and Transformer
  • GTP family