
Reinforcement Learning

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 2: Dynamic Programming
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-568 (Spring 2024)

License Information for Reinforcement Learning (EE-568)

▷ This work is released under a Creative Commons License with the following terms:
▷ Attribution

▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

▷ Non-Commercial
▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the

work for commercial purposes – unless they get the licensor’s permission.
▷ Share Alike

▶ The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor’s work.

▷ Full Text of the License

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 2/ 64

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

A refresher on Markov chains – I

Definition (Markov Chain)
A (time-homogeneous) Markov chain is a stochastic process {X0, X1, . . .}, taking values on a countable
number of states, satisfying the so-called Markov property, i.e.,

P[Xt+1 = j|Xt = i, Xt−1, . . . , X0] = P[Xt+1 = j|Xt = i] = Pij .

Markov Process
Markov process is a triple ⟨S, P, µ⟩, where
▶ S is the set of all possible states
▶ The matrix P with entries [P]ss′ = P(s′|s) is the

transition matrix over S
▶ µ is the initial state distribution: s0 ∼ µ ∈ ∆(S)

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 3/ 64

A refresher on Markov chains – II

Definition (Stationary distribution)
If a Markov chain is irreducible and aperiodic with finite states (i.e., ergodic), then there exists a unique
stationary distribution d⋆ and {Xt} converges to it, i.e., limt→∞[P t]ij = d⋆

j , ∀i, j. We can represent this via
d⋆ = d⋆P where [P]ij = Pij and d⋆ is a row vector. Hence, d⋆ is the left principal eigenvector of P .

Remarks: ◦ Irreducibility:
▶ A Markov chain is irreducible if it is possible to reach any state from any state.
▶ Ensures the chain forms a single communicating graphical model.
◦ Aperiodicity:
▶ A Markov chain is aperiodic if every state has a period of 1.
▶ Prevents the chain from getting stuck in cycles, allowing thorough mixing.
◦ Practical Implications:
▶ Convergence: Irreducible and aperiodic chains converge to a unique stationary distribution.
▶ Ergodicity: Enables estimation of long-term averages by simulation.
▶ Mixing Time: Affects the efficiency of simulations and probabilistic modeling.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 4/ 64

Markov Decision Processes (MDPs)

Markov Decision Process
An MDP is a tuple (S,A, P, r, µ, γ), where
▶ S is the set of all possible states.
▶ A is the set of all possible actions.
▶ For each action a, the matrix P a

with entries [P a]ss′ = P(s′|s, a)
is the transition matrix
(S ×A → ∆(S)).

▶ r : S ×A → R is the reward
function. We assume r ∈ [0, 1].

▶ µ is the initial state distribution:
s0 ∼ µ ∈ ∆(S).

▶ γ is the discount factor:
γ ∈ (0, 1).

s0

r0

a0

s1

r1

a1

s2

r2

a2

Figure: An MDP graphical model

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 64

Example: Gridworld

◦ State S: the agent’s position

◦ Action A: moving north/south/east/west

◦ Reward r:
▶ -1 if moving outside the world
▶ +10 if moving to A
▶ +5 if moving to B
▶ 0 otherwise

◦ Transition model P:

▶ move to the adjacent grid according to the direction
▶ stay unchanged if moving toward the wall
▶ transit to A’ if moving into A, transit to B’ if moving into B

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 6/ 64

MDPs: policies

What is our goal?
Find a behaviour or rule to make decisions that maximize the expected return.

◦ In general, a policy selects an action based on the history ht := (s0:t, a0:t−1) := (s0, a0, . . . , st−1, at−1, st)
▶ A stationary Markov policy is a mapping π : S → A or π : S → ∆(A),

▶ ∆ is the appropriate probability simplex.

Deterministic Policy
▶ Stationary policy π : S → A, at = π(st)
▶ Markov policy πt : S → A, at = πt(st)
▶ History-dependent policy πt : Ht → A

▶ Ht is the set of histories up to time t.
▶ at = πt(ht)

Randomized Policy:
▶ Stationary policy π : S → ∆(A), at∼π(·|st)
▶ Markov policy πt : S → ∆(A), at∼πt(·|st)
▶ History-dependent policy πt : Ht → ∆(A)

▶ Ht is the set of histories up to time t.
▶ at∼πt(·|ht)

Remarks: ◦ The infinite horizon objective can be maximized by a stationary deterministic policy.

◦ The finite horizon objective needs instead a (nonstationary) deterministic Markov policy.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 64

From MDPs to performance criteria

Reminder: ◦ We have described the role of MDPs while establishing a performance criterion.
▶ Finite Horizon: Cumulative reward and average reward.
▶ Infinite Horizon: Discounted reward and average reward.
◦ In this course, we mainly focus on discounted infinite-horizon MDPs:

J(π) = E

[
∞∑

t=0

γtr(st, at)
∣∣∣s0 ∼ µ, π

]
.

◦ We use γ ∈ (0, 1) to trade off past and present rewards.

Observations: ◦ If γ = 1, the total reward may be infinite, e.g., when the Markov process is cyclic.

◦ With γ ∈ (0, 1), assuming bounded rewards, i.e., r <∞, the total return will always be finite.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 64

Value functions

Definition (State-Value Function)

V π(s) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, π

]

Definition (Quality Function / State-Action Value Function)

Qπ(s, a) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, a0 = a, π

]

Observations: ◦ V π(s) represents the total expected return starting at state s under policy π.

◦ Qπ(s, a) represents the total expected return when choosing action a in state s under policy π.

◦ For convenience, we may drop the π in RHS when it is clear from the context.
Remark: ◦ In the literature, state-value function and value function are used interchangeably.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 64

Value functions

Definition (State-Value Function)

V π(s) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, π

]

Definition (Quality Function / State-Action Value Function)

Qπ(s, a) := E

[
∞∑

t=0

γtr(st, at) | s0 = s, a0 = a, π

]

Observations: ◦ V π(s) represents the total expected return starting at state s under policy π.

◦ Qπ(s, a) represents the total expected return when choosing action a in state s under policy π.

◦ For convenience, we may drop the π in RHS when it is clear from the context.
Remark: ◦ In the literature, state-value function and value function are used interchangeably.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 64

Value functions (cont’d)

Pop quiz: ◦ What is the relation between V π and Qπ?

Answer: ◦ For any policy π : S → ∆(A), it holds that

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 64

Value functions (cont’d)

Pop quiz: ◦ What is the relation between V π and Qπ?

Answer: ◦ For any policy π : S → ∆(A), it holds that

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 64

Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s0 = s′, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) V π(s′)□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 64

Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s0 = s′, a0 = a, π

]

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) V π(s′)□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 64

Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s0 = s′, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) V π(s′)□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 64

Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s0 = s′, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) V π(s′)□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 64

Proof of equation (1)

Derivation:

Qπ(s, a) = E
[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + E

[∑∞

t=1
γtr(st, at) | s0 = s, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s, s0 = s′, a0 = a, π

]
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) E
[∑∞

t=1
γt−1r(st, at) | s0 = s′, π

]
(Markov assumption)

= r(s, a) + γ
∑
s′∈S

P(s′|s, a) E

[
∞∑

t=0

γtr(st, at) | s0 = s′, π

] (
i.e., V π(s′)

)
= r(s, a) + γ

∑
s′∈S

P(s′|s, a) V π(s′)□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 64

Optimal value functions

◦ Let Π be the set of all (possibly non-stationary and randomized) policies.

Definition (Optimal Value Function)

V ⋆(s) := max
π∈Π

V π(s)

Definition (Optimal Action-Value Function)

Q⋆(s, a) := max
π∈Π

Qπ(s, a)

Pop quiz: ◦ What is the relation between V ⋆ and Q⋆?

Answer:
Q⋆(s, a) = r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′) (3)

V ⋆(s) = max
a∈A

Q⋆(s, a) (4)

◦ Self-exercise: prove equation (4).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 64

Optimal value functions

◦ Let Π be the set of all (possibly non-stationary and randomized) policies.

Definition (Optimal Value Function)

V ⋆(s) := max
π∈Π

V π(s)

Definition (Optimal Action-Value Function)

Q⋆(s, a) := max
π∈Π

Qπ(s, a)

Pop quiz: ◦ What is the relation between V ⋆ and Q⋆?

Answer:
Q⋆(s, a) = r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′) (3)

V ⋆(s) = max
a∈A

Q⋆(s, a) (4)

◦ Self-exercise: prove equation (4).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 64

Solving MDPs: find the optimal policy

Goal
Roughly speaking, the ultimate goal in RL can be summed up to finding an optimal policy π⋆ ∈ Π such that

V π⋆
(s) = V ⋆(s) := max

π∈Π
V π(s), ∀s ∈ S.

Remark: ◦ The optimal policy may not be unique, while V ⋆ is unique.

Key Questions
▶ Q1: Does the optimal policy π⋆ exist?

▶ Q2: How to evaluate my current policy π, i.e., how to compute V π(s)? –policy evaluation

▶ Q3: If π⋆ exists, how to improve my current policy π, i.e., how to find π⋆? –policy improvement

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 13/ 64

Bellman optimality conditions

◦ The optimal value function V ⋆ is the unique fixed point of the following equation:

V ⋆(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)

]
.

Remarks: ◦ This requirement is also known as the Bellman optimality equation.

◦ We will show that there exists a deterministic optimal policy.

◦ Fixed-point perspective motivates value iteration (VI) and policy iteration (PI) methodologies.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 14/ 64

Existence of an optimal policy

Theorem (Existence of an optimal policy [1] [14])
For an infinite horizon MDP M = (S,A, P, t, µ, γ), there exists a stationary and deterministic policy π such
that for any s ∈ S and a ∈ A, we have

V π(s) = V ⋆(s), Qπ(s, a) = Q⋆(s, a).

Remarks: ◦ Finding π⋆ can be done by first computing V ⋆ or Q⋆.

◦ Note that we can directly get a (deterministic and stationary) optimal policy from Q⋆:

π⋆(s) = arg max
a∈A

Q⋆(s, a).

◦ Note: Proof of the theorem can be found the supplementary slides #8.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 64

Bellman consistency equation

Theorem (Bellman Consistency Equation)

V π(s) = Ea∼π(·|s)

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V π(s′)

]
(BCE)

Matrix Form
We can concisely represent the Bellman consistency equation in the following matrix form: V π = Rπ + γP πV π .

◦ We can derive from equations (1) and (2):

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

◦ We can write, with |S| being the cardinality of S:

V π ∈ R|S| : V π
s = V π(s);

Rπ ∈ R|S|, Rπ
s :=

∑
a∈A

π(a|s)r(s, a);

P π ∈ R|S|×|S| : P π
s,s′ :=

∑
a∈A

π(a|s)P(s′ | s, a).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 64

Bellman consistency equation

Theorem (Bellman Consistency Equation)

V π(s) = Ea∼π(·|s)

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V π(s′)

]
(BCE)

Remarks: ◦ BCE is also known as Bellman expectation equation.

◦ BCE states the value of a state under a given policy π, which is

▶ the expected return starting from that state, taking an action according to the policy,

▶ ... and thereafter following the policy....

Matrix Form
We can concisely represent the Bellman consistency equation in the following matrix form: V π = Rπ + γP πV π .

◦ We can derive from equations (1) and (2):

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

◦ We can write, with |S| being the cardinality of S:

V π ∈ R|S| : V π
s = V π(s);

Rπ ∈ R|S|, Rπ
s :=

∑
a∈A

π(a|s)r(s, a);

P π ∈ R|S|×|S| : P π
s,s′ :=

∑
a∈A

π(a|s)P(s′ | s, a).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 64

Bellman consistency equation

Theorem (Bellman Consistency Equation)

V π(s) = Ea∼π(·|s)

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V π(s′)

]
(BCE)

Matrix Form
We can concisely represent the Bellman consistency equation in the following matrix form: V π = Rπ + γP πV π .

◦ We can derive from equations (1) and (2):

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a)V π(s′) (1)

V π(s) =
∑
a∈A

π(a | s) Qπ(s, a) (2)

◦ We can write, with |S| being the cardinality of S:

V π ∈ R|S| : V π
s = V π(s);

Rπ ∈ R|S|, Rπ
s :=

∑
a∈A

π(a|s)r(s, a);

P π ∈ R|S|×|S| : P π
s,s′ :=

∑
a∈A

π(a|s)P(s′ | s, a).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 64

Closed-form solution for policy evaluation

Closed-Form Solution of V π

Given the matrix form of BCE, we have the following closed-form solution: V π = (I − γP π)−1Rπ .

Remarks: ◦ This is one of exact solution methods for policy evaluation.

◦ Note that the matrix I − γP π is always invertible for γ ∈ (0, 1).

◦ The solution of Bellman equation is always unique.

◦ Computation cost: O(|S|3 + |S|2|A|), which can be expensive for large state spaces.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 17/ 64

Bellman expectation operator and fixed-point perspective

Definition (Bellman expectation operator)
The Bellman expectation operator T π : R|S| → R|S| is defined by the following expression

T πV := Rπ + γP πV. (5)

Remarks: ◦ BCE implies that V π is the fixed point of T π : T πV π = V π .

◦ T π is a linear operator and is a γ-contraction mapping.

◦ The solution of BCE is always unique.

◦ For the following iteration invariant Vt+1 = T πVt, t = 0, 1, . . ., it holds that

lim
t→∞

(T π)tV0 = V π .

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 18/ 64

Bellman optimality conditions

Theorem (Bellman optimality equation)
The optimal value and action-value functions satisfy the following equations:

V ⋆(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)

]
,

Q⋆(s, a) = r(s, a) + γ

[∑
s′∈S

P(s′|s, a)
(

max
a′∈A

Q⋆(s′, a′)
)]

.

Remarks: ◦ These requirements are also known as Bellman optimality conditions.

◦ Obtained by combining equations (3) and (4).

◦ Fixed-point perspective motivates value iteration (VI) and policy iteration (PI) methodologies.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 19/ 64

Bellman optimality operator

Definition (Bellman optimality operator)
We define the following operator T , which will be useful when discussing value-iteration in the sequel:

(T V)(s) := max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V (s′)

]
. (Bellman operator)

Remarks: ◦ The optimal value function V ⋆ is the fixed point of T , i.e.,

T V ⋆ = V ⋆.

◦ The Bellman optimality operator is a γ-contraction mapping w.r.t. ℓ∞-norm:∥∥T V ′ − T V
∥∥

∞
≤ γ
∥∥V ′ − V

∥∥
∞

.

◦ The Bellman operator is also monotonic (component-wise): V ′ ≤ V ⇒ T V ′ ≤ T V .

◦ We can define a similar Bellman operator on the Q-function and show similar properties.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 20/ 64

Pause and reflect

◦ Before we move on, take a minute to reflect on these important notations:

▷ π, π⋆, V π(s), V ⋆(s), Qπ(s, a), Q⋆(s, a), T π , T

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 21/ 64

Solving MDPs

◦ What we talked about:

▶ Optimal state-value function (V ⋆(s)) and optimal action-value Function (Q⋆(s, a)).
▶ Bellman consistency equation (V π = Rπ + γP πV π).
▶ Bellman expectation operator and fixed-point perspective (T πV := Rπ + γP πV).
▶ Bellman optimality equations and Bellman optimality operator.

◦ How do we use this to do “planning,” i.e., finding an optimal policy via MDPs (our goal)?

Algorithm Component Output

Value Iteration (VI) Bellman Optimality Operator T VT such that ∥VT − V ⋆∥ ≤ ϵ

Policy Iteration (PI). Bellman Operator T π + Greedy Policy V ⋆ and π⋆

Observation: ◦ These solutions require, and we assume throughout, that the transitions dynamics are known.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 22/ 64

Value iteration (VI)

Algorithm: Value Iteration (VI) for solving MDPs
Start with an arbitrary guess V0 (e.g., V0(s) = 0 for any s)
for each iteration t do

Apply the Bellman operator T to the current value estimate Vt:

Vt+1 = T Vt.

end for

Remarks: ◦ Finding V ⋆ or π⋆ is equivalent to finding a fixed point of T .

◦ Value iteration can be therefore viewed as a fixed-point iteration.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 23/ 64

Discussion on value iteration

◦ After obtaining V ⋆ via VI, we can obtain an optimal policy from the greedy policy:

π⋆(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)

]
.

◦ Alternatively, we can run Q-value iteration and compute π⋆ via

π⋆(s) = arg max
a∈A

Q⋆(s, a).

Remarks: ◦ Q-value iteration uses the following update derived from equations (1) and (2):

Qt+1(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a) max
a′∈A

Qt(s′, a′), (1)

◦ The Q-value iteration does not require knowledge of P to extract the policy π⋆.

◦ This observation is the starting point to develop “model-free” algorithms in the sequel.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 24/ 64

Discussion on value iteration

◦ After obtaining V ⋆ via VI, we can obtain an optimal policy from the greedy policy:

π⋆(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)

]
.

◦ Alternatively, we can run Q-value iteration and compute π⋆ via

π⋆(s) = arg max
a∈A

Q⋆(s, a).

Remarks: ◦ Q-value iteration uses the following update derived from equations (1) and (2):

Qt+1(s, a) = r(s, a) + γ
∑
s′∈S

P(s′|s, a) max
a′∈A

Qt(s′, a′), (1)

◦ The Q-value iteration does not require knowledge of P to extract the policy π⋆.

◦ This observation is the starting point to develop “model-free” algorithms in the sequel.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 24/ 64

Convergence of value iteration

Theorem (Linear Convergence of Value Iteration)
The value iteration algorithm attains a linear convergence rate, i.e.,

∥Vt − V ⋆∥∞ ≤ γt∥V0 − V ⋆∥∞.

Proof.

∥Vt − V ⋆∥∞ = ∥T Vt−1 − T V ⋆∥∞ ≤ γ∥Vt−1 − V ⋆∥∞ ≤ · · · ≤ γt∥V0 − V ⋆∥∞.

□

Remarks: ◦ The complexity of applying T is O
(
|S|2|A|

)
.

◦ The number of iterations to reach ϵ accuracy is O
(

log ϵ−1
)

due to linear convergence.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 25/ 64

Convergence of value iteration

Theorem (Linear Convergence of Value Iteration)
The value iteration algorithm attains a linear convergence rate, i.e.,

∥Vt − V ⋆∥∞ ≤ γt∥V0 − V ⋆∥∞.

Proof.

∥Vt − V ⋆∥∞ = ∥T Vt−1 − T V ⋆∥∞ ≤ γ∥Vt−1 − V ⋆∥∞ ≤ · · · ≤ γt∥V0 − V ⋆∥∞.

□

Remarks: ◦ The complexity of applying T is O
(
|S|2|A|

)
.

◦ The number of iterations to reach ϵ accuracy is O
(

log ϵ−1
)

due to linear convergence.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 25/ 64

Directly update the policy

◦ Value iteration first finds V ⋆, then computes the optimal policy π⋆ by the greedy policy.

◦ We can also directly search for the optimal policy π⋆.

Some intuition: ◦ Starting with an initial guess π, we can iteratively perform the following motions:

1. Evaluate policy: compute the value function V π of the current policy
⇒ Policy evaluation

2. Improve policy: update the guess by the greedy policy w.r.t. V π

⇒ Policy improvement

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 26/ 64

Directly update the policy

◦ Value iteration first finds V ⋆, then computes the optimal policy π⋆ by the greedy policy.

◦ We can also directly search for the optimal policy π⋆.

Some intuition: ◦ Starting with an initial guess π, we can iteratively perform the following motions:

1. Evaluate policy: compute the value function V π of the current policy
⇒ Policy evaluation

2. Improve policy: update the guess by the greedy policy w.r.t. V π

⇒ Policy improvement

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 26/ 64

Policy improvement theorem

Theorem (Policy Improvement)
If a (deterministic) policy π′ satisfies the following

Qπ(s, π′(s)) ≥ V π(s) ∀ s ∈ S, (6)

then we have V π′ (s) ≥ V π(s) for any s ∈ S.

Remarks: ◦ The same result holds for a stochastic policy π′ if Ea∼π′(·|s)Qπ(s, a) ≥ V π(s) ∀ s ∈ S.

◦ Improving the current policy by one step everywhere, we can improve the whole policy.

◦ It suggests a natural way of improving the current policy via

πt+1(s)← arg max
a∈A

Qπt (s, a).

◦ Indeed, V πt+1 (s) ≥ V πt (s), ∀ s ∈ S, and the inequality is strict if πt is suboptimal.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 27/ 64

Policy iteration

Algorithm: Policy Iteration (PI) for solving MDPs
Start with an arbitrary policy guess π0

for each iteration t do
(Step 1: Policy evaluation) Compute V πt :

(Option 1) Iteratively apply policy value iteration, Vt ← T πt Vt, until convergence

(Option 2) Use the closed-form solution: V πt = (I − γP πt)−1Rπt

(Step 2: Policy improvement) Update the current policy πt by the greedy policy

πt+1(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V πt (s′)

]
. (7)

end for

Remarks: ◦ Recall that we assume that there exists a deterministic optimal policy.

◦ Greedy policy achieves the optimal deterministic policy.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 28/ 64

Comparison

Algorithm Value Update Policy Update

Value Iteration (VI) Vt+1 = T Vt. None

Policy Iteration (PI) Vt+1 = E
[
r(s, a) + γ

∑
s′∈S P(s′|s, a)V (s′)|πt

]
Greedy Policy

Algorithm Per iteration cost Number of iterations Output

Value Iteration (VI) O
(
|S|2|A|

)
T = O

(log(ϵ(1−γ))
log γ

)
VT such that ∥VT − V ⋆∥ ≤ ϵ

Policy Iteration (PI) O
(
|S|3 + |S|2|A|

)
T = O

(|S|(|A|−1)
1−γ

)
V ⋆ and π⋆

Observations: ◦ VI and PI are broadly dynamic programming approaches.

◦ PI converges in finite number of iterations [16] whereas VI does not [15].

◦ These solution mythologies are broadly known as model-based RL.

◦ Modified policy iteration [17] performs limited value-function updates for speed-ups.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 29/ 64

Convergence of policy iteration (PI)

Theorem (Linear Convergence of Policy Iteration)
Policy iteration outputs the optimal policy after O

(|S||A|
1−γ

)
iterations.

Proof.
◦ For simplicity, we provide just the proof sketch.

◦ The first step is to prove that PI identifies a suboptimal action at a certain state every O
(

1
1−γ

)
.

◦ The proof is concluded noticing that there exists at most |S| (|A| − 1) suboptimal actions. □

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 30/ 64

Summary I

◦ Basic concepts of Markov decision process (MDP)
▶ Policy, value functions, optimal value functions
▶ Bellman equations and Bellman operators
▶ Fixed point viewpoints
▶ Existence and construction of optimal policy

◦ Exact solution methods for policy evaluation

◦ Exact solution methods for solving MDPs
▶ Value iteration: iteratively apply Bellman operator
▶ Policy iteration: alternatively execute policy evaluation and policy improvement

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 31/ 64

Summary I

◦ Basic concepts of Markov decision process (MDP)
▶ Policy, value functions, optimal value functions
▶ Bellman equations and Bellman operators
▶ Fixed point viewpoints
▶ Existence and construction of optimal policy

◦ Exact solution methods for policy evaluation

◦ Exact solution methods for solving MDPs
▶ Value iteration: iteratively apply Bellman operator
▶ Policy iteration: alternatively execute policy evaluation and policy improvement

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 31/ 64

Summary I

◦ Basic concepts of Markov decision process (MDP)
▶ Policy, value functions, optimal value functions
▶ Bellman equations and Bellman operators
▶ Fixed point viewpoints
▶ Existence and construction of optimal policy

◦ Exact solution methods for policy evaluation

◦ Exact solution methods for solving MDPs
▶ Value iteration: iteratively apply Bellman operator
▶ Policy iteration: alternatively execute policy evaluation and policy improvement

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 31/ 64

From planning to reinforcement learning

Fundamental Challenge 1
The dynamic programming approaches (VI and PI) as well as the
linear programming approach all require the full knowledge of the
transition model P and the reward.

⇒Need sampling approaches

Fundamental Challenge 2
The computation and memory cost can be very expensive for large
scale MDP problems.

⇒Need new representations

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 32/ 64

From planning to reinforcement learning

Fundamental Challenge 1
The dynamic programming approaches (VI and PI) as well as the
linear programming approach all require the full knowledge of the
transition model P and the reward.

⇒Need sampling approaches

Fundamental Challenge 2
The computation and memory cost can be very expensive for large
scale MDP problems.

⇒Need new representations

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 32/ 64

From planning to reinforcement learning

Fundamental Challenge 1
The dynamic programming approaches (VI and PI) as well as the
linear programming approach all require the full knowledge of the
transition model P and the reward.

⇒Need sampling approaches

Fundamental Challenge 2
The computation and memory cost can be very expensive for large
scale MDP problems.

⇒Need new representations

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 32/ 64

Overview of reinforcement learning approaches

◦ Value-based RL
▶ Learn the optimal value functions V ⋆, Q⋆

◦ Policy-based RL
▶ Learn the optimal policy π⋆

◦ Model-based RL
▶ Learn the model P, r and then do planning

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 33/ 64

Model-based vs model-free methods

Figure: [8]

◦ Make full use of “experiences”

◦ Can reason about model uncertainty

◦ Sample efficient for easy dynamics

◦ Direct and simple

◦ Not affected by poor model estimation

◦ Not sample efficient

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 34/ 64

Online vs offline reinforcement learning

Figure: [4]

Online RL

◦ Collect data by interacting with environment

◦ Exploitation-exploration tradeoff

Offline/Batch RL

◦ Use previously collected data

◦ Data is static, no online data collection

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 35/ 64

On-policy vs. Off-policy reinforcement learning

Figure: [12]

On-policy RL

◦ Learn based on data from current policy

◦ Always online

Off-policy RL

◦ Learn based on data from other policies

◦ Can be online or offline

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 36/ 64

Representation learning

Figure: http://selfdrivingcars.space/?p=68

Large or continuous state and action spaces

=⇒

Function approximation

V (s) ≈ Vθ(s)
Q(s, a) ≈ Qθ(s, a)
π(a|s) ≈ πθ(a|s)

P(s′|s, a) ≈ Pθ(s′|s, a)

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 37/ 64

http://selfdrivingcars.space/?p=68

Value function representations

Linear function approximations
▶ The value function can be represented linearly

using some known basis functions ϕ as follows:

Vθ(s) = [ϕ1(s), . . . , ϕd(s)]

θ1
θ2
...

θd

▶ Reproducing kernel Hilbert space (RKHS) [18]

▶ Neural tangent kernel [7]

Nonlinear Function Approximation
▶ Fully connected neural networks [11]

▶ Convolutional neural networks [10]

▶ Residual networks [5]

▶ Recurrent networks [6]

▶ Self-attention [25]

▶ Generative adversarial networks [3]

Remarks: ◦ In continuous d dimensional state space linear function approx (LFA) is better then discretizing.

◦ Discretizing we would end up with a number of states which is exponential in d.

◦ Using features we will have algorithms that find an almost optimal policy in poly(d)-time.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 38/ 64

The advantage of LFAs

◦ The improvement is possible because each state is treated independently in the tabular setting.

◦ Instead, with LFA we can exploit similarities between states.

Figure: Reward function in a continuous grid world example

Example: ◦ Reward in the figure changes smoothly between neighboring states.

◦ After discretization, the states are independent.

◦ In contrast, LFA allows to exploit similarities.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 39/ 64

Towards non-linear function approximations

Figure: The ant environment in MuJoCo.

◦ In some important applications, like robotics, LFA is not expressive enough.

◦ For instance, in MuJoCo [23], we usually use a 3 layers neural network to parameterize the value function.

◦ The input is a vector containing position and velocity of the “ant” joints.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 40/ 64

Our first goal: Model-free prediction

Goal:
Estimate V π(s) or Qπ(s, a) from trajectories τ = {s0, a0, r0, s0, . . .} collected with a given π : S → ∆(A):

V π(s) := E

[
∞∑

t=0

γtr(st, at)|s0 = s, π

]
, (V π)

where the expectation is taken with respect to the randomness of the environment and the randomness of the
actions due to π. We assume that the transition dynamics is not available.

Observations: ◦ Similar to the policy evaluation phase in Policy Iteration.

◦ But without knowledge of the dynamics!

◦ We will explain and analyze two methods:

▶ Temporal Differences (TD).

▶ Monte Carlo (MC).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 41/ 64

Monte Carlo: the optimization problem

◦ Let us consider a state distribution ρ ∈ ∆S .

◦ In MC, this is typically the initial state distribution.

Monte-Carlo optimization problem
We will use the following optimization problem to explain the main ideas in Monte-Carlo approaches:

min
V
L(V) (MC)

where L(V) = 1
2 ∥V

π − V ∥2
ρ is a ρ-weighted norm loss.

Observations: ◦ The gradient is simply ∇L(V) = diag(ρ)(V − V π).

◦ The role of the distribution ρ will be made clearer in the next slides.

◦ We will apply stochastic gradient descent method to solve this problem.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 42/ 64

Solving the problem via stochastic gradient descent (SGD)
◦ Ingredients of SGD algorithm:

▶ an unbiased, bounded estimate gt of the gradient of the loss function, i.e., Egt = ∇L(V);

▶ a step-size (i.e., learning rate) ηt;

▶ a simple iteration invariant: Vt+1 = Vt − ηtgt.

◦ Let us define a (random) vector Gπ ∈ R|S| with entries Gπ(s0) =
∑∞

t=0 γtr(st, at) with s0 ∼ ρ, given π.

▶ Gπ is unbiased estimator of V π . Indeed, by the definition of (V π), we have E[Gπ(s0)] = V π(s0).

▶ Recall the randomness of the expectation in (V π).

▶ Let es ∈ {0, 1}|S| be the vector such that the sth entry equals 1, and is zero, elsewhere.

▶ For any V , gt = (V (s0)− E[Gπ(s0)])es0 is an unbiased gradient estimator:

Es0∼ρ[(V (s0)− E[Gπ(s0)])es0] = Es0∼ρ[(V (s0)− V π(s0))es0] = diag(ρ)(V − V π) = ∇L(V).

▶ Note that gt has bounded second moment, E[∥gt∥2] ≤ 1
(1−γ)2 :

E[∥(Gπ(s0)− V π(so))es0∥
2] = (Gπ(s0)− V π(s0))2 ≤

1
(1− γ)2 .

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 43/ 64

Solving the problem via stochastic gradient descent (SGD)
◦ Ingredients of SGD algorithm:

▶ an unbiased, bounded estimate gt of the gradient of the loss function, i.e., Egt = ∇L(V);

▶ a step-size (i.e., learning rate) ηt;

▶ a simple iteration invariant: Vt+1 = Vt − ηtgt.

◦ Let us define a (random) vector Gπ ∈ R|S| with entries Gπ(s0) =
∑∞

t=0 γtr(st, at) with s0 ∼ ρ, given π.

▶ Gπ is unbiased estimator of V π . Indeed, by the definition of (V π), we have E[Gπ(s0)] = V π(s0).

▶ Recall the randomness of the expectation in (V π).

▶ Let es ∈ {0, 1}|S| be the vector such that the sth entry equals 1, and is zero, elsewhere.

▶ For any V , gt = (V (s0)− E[Gπ(s0)])es0 is an unbiased gradient estimator:

Es0∼ρ[(V (s0)− E[Gπ(s0)])es0] = Es0∼ρ[(V (s0)− V π(s0))es0] = diag(ρ)(V − V π) = ∇L(V).

▶ Note that gt has bounded second moment, E[∥gt∥2] ≤ 1
(1−γ)2 :

E[∥(Gπ(s0)− V π(so))es0∥
2] = (Gπ(s0)− V π(s0))2 ≤

1
(1− γ)2 .

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 43/ 64

Solving the problem via stochastic gradient descent (SGD)
◦ Let us define a (random) vector Gπ ∈ R|S| with entries Gπ(s0) =

∑∞
t=0 γtr(st, at) with s0 ∼ ρ, given π.

▶ Gπ is unbiased estimator of V π . Indeed, by the definition of (V π), we have E[Gπ(s0)] = V π(s0).

▶ Recall the randomness of the expectation in (V π).

▶ Let es ∈ {0, 1}|S| be the vector such that the sth entry equals 1, and is zero, elsewhere.

▶ For any V , gt = (V (s0)− E[Gπ(s0)])es0 is an unbiased gradient estimator. Indeed,
Es0∼ρ[(V (s0)− E[Gπ(s0)])es0] = Es0∼ρ[(V (s0)− V π(s0))es0] = diag(ρ)(V − V π) = ∇L(V).

▶ Note that gt has bounded second moment, E[∥gt∥2] ≤ 1
(1−γ)2 .

E[∥gt∥2] = E[∥(Gπ(s0)− V π(s0))es0∥
2] = (Gπ(s0)− V π(s0))2 ≤

1
(1− γ)2 .

Stochastic gradient descent applied to (MC)
We can use SGD updates as follows. Sample an initial state s0 ∼ ρ and sample a trajectory {s0, a0, r0, s0, . . .},
then

Vt+1(s0) = Vt(s0)− ηt(Vt(s0)−Gπ(s0)),

where the step-size ηt has to be chosen appropriately.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 44/ 64

SGD analysis via strong convexity

◦ Recall that gt has bounded second moment, E[∥gt∥2] ≤ 1
(1−γ)2 .

◦ Moreover, the loss function L(V) is (mins ρ(s))-strongly convex (recall the Hessian ∇2L(V) = diag(ρ)).

▶ Below, we will assume that (mins ρ(s)) > 0.

Bound via SGD
Plugging into the SGD bound for strongly convex smooth functions (see Math of Data) with
▶ L = 1, σ2 = 1

(1−γ)2 , strong convexity = mins ρ(s), and ηt = 1
µt

,

we can obtain the following guarantee for SGD:

1
T

T∑
t=1

E[∥V π − Vt∥2
ρ] ≤

2 |S| log T

T mins ρ(s)(1− γ)2 . (8)

By Jensen’s inequality, the above guarantee holds true for the average iterate V̄T = 1
T

∑T

t=1 Vt as well.

Question⋆: ◦ What happens (mins ρ(s)) = 0? Which setting is better? This is a nuanced question!

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 45/ 64

Monte Carlo: The algorithm
Idea: ◦ Estimate V π(s) by the average of returns following all visits to s.

The Monte Carlo Algorithm [13, 22]
for t = 1, . . . , T do

Collect an episode τ = {s0, a0, r0, s1, . . . , sT, aT, rT} generated following π

for each state sh do
Compute return Gπ(st) = rt + γrt+1 + · · ·
Update Vt+1(sh)← Vt(sh) + ηt(Gπ(sh)− Vt(sh))

end for
end for

Observations: ◦ This is not the SGD method with the step-size ηt (why?)

Due to the second loop!

◦ Notice that in this implementation the updates Gπ are correlated in the second loop.

◦ The value estimates do not build on the other states even if they may be correlated.

◦ Learning can be slow when the episodes are long.

◦ The terminology of episode and trajectories are equivalent in the literature.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 46/ 64

Monte Carlo: The algorithm
Idea: ◦ Estimate V π(s) by the average of returns following all visits to s.

The Monte Carlo Algorithm [13, 22]
for t = 1, . . . , T do

Collect an episode τ = {s0, a0, r0, s1, . . . , sT, aT, rT} generated following π

for each state sh do
Compute return Gπ(st) = rt + γrt+1 + · · ·
Update Vt+1(sh)← Vt(sh) + ηt(Gπ(sh)− Vt(sh))

end for
end for

Observations: ◦ This is not the SGD method with the step-size ηt (why?) Due to the second loop!

◦ Notice that in this implementation the updates Gπ are correlated in the second loop.

◦ The value estimates do not build on the other states even if they may be correlated.

◦ Learning can be slow when the episodes are long.

◦ The terminology of episode and trajectories are equivalent in the literature.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 46/ 64

Monte Carlo with linear function approximation (LFA)
◦ We can parameterize the value function, i.e., Vθ = Φθ with θ ∈ Rd, Φ ∈ R|S|×d.

Monte Carlo optimization problem with LFA
For the case of linear function approximation, we look at the following optimization problem

min
θ
L(θ) (MC LFA)

with L(θ) = 1
2 ∥V

π − Φθ∥2
ρ.

Observations: ◦ The gradient of the loss in (MC LFA) is ∇L(θ) = ΦT diag(ρ)(Φθ − V π).

◦ Similar to the SGD approach in (MC), we can have an unbiased estimator of the gradient.

SGD with linear function approximation
Let s ∼ ρ and let ϕ(s) denote the sth row of Φ. Then, the SGD updates are as follows

θt+1 = θt − ηtϕ(s)((Φθt)(s)−Gπ(s)),

where ϕ(s)((Φθt)(s)−Gπ(s)) is an unbiased gradient estimate (why?) and ηt has to be chosen appropriately.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 47/ 64

Monte Carlo analysis
◦ We can analyze MC with LFA via SGD.

◦ The loss function is smooth in the following sense.

Smoothness
If f is smooth then it holds that ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥.

◦ By using the SGD convergence on Lipschitz smooth functions, we obtain the following guarantee.

SGD convergence bound with LFA
Let θ⋆ be the minimizer of the loss function in (MC LFA) and let us assume realizability, i.e. Vθ⋆ = V π . Let
us, run Monte Carlo for T iterations with step size η =

√
d(1−γ)√

t
, then it holds that

1
T

T∑
t=1

E[∥Vθt (s)− V π(s)∥2
ρ] ≤

2
√

d log T

(1− γ)
√

T

By Jensen’s inequality, the above guarantee holds true for the average iterate V̄T = 1
T

∑T

t=1 Vθt as well.

Derivation: ◦ It follows from the descent lemma.

◦ The complete proof is in the appendix.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 48/ 64

Monte Carlo cannot handle infinite horizon problems

◦ Unfortunately, we can make an update only after reaching the end of an episode.

▶ Recall the definition Gπ(s0) :=
∑∞

t=0 γtr(st, at).

▶ All of our unbiased gradient estimators used this quantity.

◦ If the problem has an infinite horizon, we cannot compute G!

◦ We need to artificially introduce a finite horizon truncating the trajectories.

◦ The truncation introduces some bias making the above analysis invalid.

◦ These problems can be overcome by the temporal difference method that we look at next.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 49/ 64

Temporal difference (TD) learning

◦ Recall LFA: We parameterize the value function, i.e., Vθ(s) = ϕ(s)T θ.

◦ Recall the Bellman operator: (T πV)(s) =
∑

a
π(a|s)

(
r(s, a) + γ

∑
s′ P(s′|s, a)V (s′)

)
.

◦ Recall that V π is a fixed point of T π : i.e., V π = T πV π .

Optimization program for TD learning
The TD learning solves the following convex program

min
θ∈Rd

L(θ) (TD)

where the objective L(θ) = 1
2 ∥Vθ − T πVθ∥2

ρ measures the violation of the fixed-point condition.

◦ In TD, we will consider ρ as the limit distribution below (in contrast to MC, where it is the initial distribution):

ρ(s) = lim
t→∞

Pπ [st = s].

◦ We can write the gradient of the loss function (TD) as

∇θL(θ) = ΦT (I − T π)T diag(ρ)(I − T π)Φθ. (TD-Gradient)

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 50/ 64

Can we find an unbiased estimator, i.e. E[gt] = ∇θL(θ) ?

◦ Challenge: We do not know the transition dynamics P in the model-free setting.

▶ but we can sample from it!

◦ The TD-Gradient can be numerically computed via the following expression:

∇θL(θ) =
∑
s∈S

ρ(s)

(
Vθ(s)−

∑
a∈A

π(a|s)(r(s, a) + γEs′∼P(·|s,a)[Vθ(s′)])

)
·
(
∇θVθ(s)− γEs′∼P(·|s,a)[∇θVθ(s′)]

)
◦ So to approximate it, we can sample S ∼ ρ, A ∼ π(·|S) and S′ ∼ P(·|S, A), and propose the estimator

gt =
(

Vθ(S)− r(S, A)− γVθ(S′)
)
·
(
∇θVθ(S)− γ∇θVθ(S′)

)
◦ But this is clearly biased because the expectation does not distribute over products:

ES′∼P(·|S,A)[Vθ(S′)∇θVθ(S′)] , ES′∼P(·|S,A)[Vθ(S′)]ES′∼P(·|S,A)[∇θVθ(S′)].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 51/ 64

Avoiding the bias: the temporal difference (TD) method

◦ We will judiciously ignore the second term depending on θ, i.e.,(
Vθ(S)− r(S, A)− γVθ(S′)

)
·
(
∇θVθ(S)−�����XXXXXγ∇θVθ(S′)

)
and we define

gt =
(

Vθ(S)− r(S, A)− γVθ(S′)
)
· (∇θVθ(S))

◦ This suggestion for gt is an unbiased estimator for the following partial computation of TD-Gradient

F (θ) =
∑
s∈S

ρ(s)

(
Vθ(s)−

∑
a∈A

π(a|s)(r(s, a) + γEs′∼P(·|s,a)[Vθ(s′)])

)
· ∇θVθ(s)

◦ Is F (θ) a good update direction?

▶ Yes, it holds that ⟨F (θ), θ⋆ − θ⟩ ≥ (1− γ) ∥Vθ − Vθ⋆∥2
ρ, i.e., it is a descent direction (cf., proof in [2]).

▶ This means that the expected direction of the update forms an acute angle with the vector pointing to θ⋆.

▶ In addition, F (θ) satisfies ∥F (θ)∥2 ≤ 2 ∥Vθ − Vθ⋆∥ρ (cf., proof in Lemma 4 of [2]).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 52/ 64

Analysis of TD

Finite time bound for TD
Running TD with a step-size ηt = 1−γ

4
√

t
, we obtain

1
T

T∑
t=1

E[∥Vθt − Vθ⋆∥2
ρ] ≤

9d log T

2(1− γ)2
√

T
,

where θ⋆ is the minimizer of the loss function in (TD).

Remarks: ◦ It is slightly worst than MC while being much easier to implement!

◦ The proof is in the appendix and simplifies the derivations in [2].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 53/ 64

Temporal difference learning
Idea: ◦ Incrementally estimate V π(s) by the intermediate return plus estimated return at next state.

◦ In the linear case, gt =
(

V (st)− rt − γV (st+1)
)
∇θVθt (st) and the TD update is

θ ← θ − ηtgt

TD Learning / TD(0)
for t = 1, . . . , T do

for each step of an episode τ = {s0, a0, r0, s1, . . . , sT, aT, rT} following π do

Compute update direction gt =
(

V (st)− rt − γV (st+1)
)
∇θVθt (st)

Update θt+1 ← θt − ηtgt

end for
end for

Observations: ◦ Note that above implementation (and practitioners) do not sample from ρ!

▶ [2] proves that you only suffer a small additive bias in the convergence guarantee.

◦ Similar to MC: learn directly from episodes of experiences without the MDP knowledge.

◦ Unlike MC: learn from incomplete episodes, and applicable to non-terminating environment.

◦ In the supplementary material we cover the generalization of TD which uses eligibility traces.
Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 54/ 64

Convergence in the misspecified setting: Monte Carlo
◦ In the misspecified case, we have that minθ ∥Φθ − V π∥ρ = ϵapprox > 0.

◦ If ϵapprox = 0 MC and TD converge to the same point.

◦ Otherwise, MC and TD converges to different points.

A property of the MC solution
For MC, the optimality condition ∇θL(θ⋆

MC) = 0 implies that

ΦT diag(ρ)Φθ⋆
MC = ΦT diag(ρ)V π ,

which implies that θ⋆
MC is the projection of V π in the feature span.

Derivation: ◦ From the stationarity of the solution, we have

∇θL(θ⋆
MC) = 0

=⇒ ΦT diag(ρ)(Vθ⋆
MC
− V π) = 0

=⇒ ΦT diag(ρ)(Φθ⋆
MC − V π) = 0

Therefore, rearranging the terms gives ΦT diag(ρ)Φθ⋆
MC = ΦT diag(ρ)V π .

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 55/ 64

Convergence in the misspecified setting: TD

◦ For TD, we have that the stationary point θ⋆
TD satisfies F (θ⋆

TD) = 0, i.e.,

θ⋆
TD = (ΦT diag(ρ)Φ)−1ΦT diag(ρ)T πΦθ⋆

TD.

▶ the derivation can be found in the next slide.

◦ Hence, θ⋆
TD is not directly related to V π but it is the fixed point of a projected Bellman equation.

◦ [24] has shown that ∥∥Vθ⋆
TD
− V π

∥∥
ρ
≤

1√
1− γ2

∥Φθ⋆
MC − V π∥ρ

Remarks: ◦ 1√
1−γ2

is an inflation factor that TD pays w.r.t. the minimum possible approximation error.

◦ The minimum possible approximation error is achieved by the MC method.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 56/ 64

⋆Stationarity condition in TD

◦ In the previous slides, we used the fact

θ⋆
TD = (ΦT diag(ρ)Φ)−1ΦT diag(ρ)T πΦθ⋆

TD.

Derivation: ◦ The stationarity condition F (θ⋆
TD) = 0 can be written in vector form, i.e.

ΦT diag(ρ)(I − T π)Φθ⋆
TD = 0.

◦ Then, we just need the following steps:

ΦT diag(ρ)(Φθ⋆
TD − T

πΦθ⋆
TD) = 0

=⇒ ΦT diag(ρ)Φθ⋆
TD = ΦT diag(ρ)T πΦθ⋆

TD

=⇒ θ⋆
TD = (ΦT diag(ρ)Φ)−1ΦT diag(ρ)T πΦθ⋆

TD

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 57/ 64

State-Action-Reward-State-Action (SARSA) for Q-value estimation

◦ In VI or PI, we often require the evaluation of Q-function to compute the greedy policy or optimal policy.

◦ How do we estimate Qπ?

SARSA optimization problem
The algorithm SARSA solves the following program:

min
Q
L(Q) :=

1
2
∥Q− T πQ∥2

ρ ,

where T π is in this case the Bellman operator for Q value functions, that is,

(T πQ)(s, a) = r(s, a) + γ
∑
s′,a′

P(s′|s, a)π(a′|s′)Q(s′, a′).

Remarks: ◦ This is essentially the analog of the fixed point the TD loss but for the Q-function.

◦ We again use ρ as the stationary distribution (in contrast to initial distribution).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 58/ 64

SARSA: the algorithm

◦ If we solve the SARSA program with SGD we obtain the following algorithm.

◦ SARSA should be understood as the TD method applied to the action-value function.

SARSA [19]
for t = 1, . . . , T do

for each step of an episode τ = {s0, a0, r0, s1, . . . , sT, aT, rT} following π do
Update Q(st, at)← Q(st, at) + αt(rt + γQ(st+1, at+1)−Q(st, at))

end for
end for

◦ With the same steps presented for the case of TD(0), one can prove convergence of SARSA.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 59/ 64

Using model-free prediction for control
◦ We can look at MC and TD as approximate policy evaluation routines and use them in policy iteration.

Algorithm: Policy Iteration (PI) for solving MDPs
Start with an arbitrary policy guess π0

for each iteration t do
(Step 1: Policy evaluation) Compute V πt :

(Option 1) Iteratively apply policy value iteration, Vt ← T πt Vt, until convergence. (Exact)

(Option 2) Use the closed-form solution: V πt = (I − γP πt)−1Rπt . (Exact)

(Option 3) Approximate V πt with Monte Carlo. (Inexact)

(Option 4) Approximate V πt with Temporal Differences. (Inexact)

(Step 2: Policy improvement) Update the current policy πt by the greedy policy

πt+1(s) = arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V πt (s′)

]
. (9)

end for

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 60/ 64

Using model-free prediction for control

◦ The advantage of Options 3 and 4 is that they do not require knowledge of P.

◦ The disadvantage is that the value functions computed in these ways are inexact.

How the errors propagate in the PI analysis?
This question is answered by [17] that gives the bound

∑
s∈S

ρ(s)(V ⋆(s)− V πk
(s)) ≤ O

 1
(1− γ)2 max

1≤j≤k

∥∥Vθj
− V πj

∥∥
ρ︸ ︷︷ ︸

evaluation error

+O(γk).

Remarks: ◦ The evaluation error can be controlled with the results derived before for MC or DP.

◦ The PI with these inexact options is also known as Least Square Policy Iteration [9].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 61/ 64

Control while learning: Q-Learning

◦ We can use the same idea to estimate directly the optimal action-value function.

Q-Learning [26]
for t = 1, . . . , T do

for each step of an episode τ = {s0, a0, r0, s1, . . . , sT, aT, rT} following π do
Update Q(st, at)← Q(st, at) + αt(rt + γ maxb∈A Q(st+1, b)−Q(st, at))

end for
end for

◦ In Q-Learning, learning and control phases are not clearly separated.

◦ Running the notebooks, you will see that the choice of the policy π makes a big difference in practice.

◦ Actually also in theory but proving it is a bit too advanced for now.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 62/ 64

Summary: Model-free prediction

Methods DP MC TD(0)

Model knowledge Need No need No need

Uses Bellman equation? Yes No Yes

When to perform updates After next step After whole episode After next step

Bias - Unbiased Biased

Variance - Big Small

Reference: [21]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 63/ 64

Wrap Up

◦ PI and VI are dynamic programming methods applicable when the transition matrix is known.

◦ Monte Carlo methods are used to estimate value function when the transition matrix is unknown.

◦ Monte Carlo methods are an instance of stochastic approximation.

◦ TD is an application of dynamic programming when the transition matrix is unknown.

◦ The following week is about Linear Programming for RL!

◦ Next week is Jupiter Notebook #1.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 64/ 64

References I
[1] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun.

Reinforcement learning: Theory and algorithms.
CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.
22

[2] Jalaj Bhandari, Daniel Russo, and Raghav Singal.
A finite time analysis of temporal difference learning with linear function approximation.
In Conference On Learning Theory, pages 1691–1692. PMLR, 2018.
70, 71, 72

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative Adversarial Networks.
ArXiv e-prints, June 2014.
54

[4] Caglar Gulcehre, Sergio Gómez Colmenarejo, Jakub Sygnowski, Thomas Paine, Konrad Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu,
Nando de Freitas, et al.
Addressing extrapolation error in deep offline reinforcement learning.
2020.
51

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition.
pages 770–778, 2016.
54

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 1/ 29

References II

[6] Sepp Hochreiter and Jürgen Schmidhuber.
Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.
54

[7] Arthur Jacot, Franck Gabriel, and Clément Hongler.
Neural tangent kernel: Convergence and generalization in neural networks.
In Advances in neural information processing systems, pages 8571–8580, 2018.
54

[8] Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray.
Algorithms for Decision Making.
MIT press, 2022.
50, 97, 98, 99

[9] Michail G Lagoudakis and Ronald Parr.
Least-squares policy iteration.
The Journal of Machine Learning Research, 4:1107–1149, 2003.
79

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.
54

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 2/ 29

References III

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning.
Nature, 521(7553):436–444, 2015.
54

[12] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu.
Offline reinforcement learning: Tutorial, review, and perspectives on open problems.
arXiv preprint arXiv:2005.01643, 2020.
52

[13] Donald Michie and Roger A Chambers.
Boxes: An experiment in adaptive control.
Machine intelligence, 2(2):137–152, 1968.
63, 64

[14] Martin L Puterman.
Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.
22

[15] Satinder Singh Richard and Richard C. Yee.
An upper bound on the loss from approximate optimal-value functions.
In Machine Learning, pages 227–233, 1994.
41

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 3/ 29

References IV

[16] Bruno Scherrer.
Improved and generalized upper bounds on the complexity of policy iteration.
Mathematics of Operations Research, 41(3):758–774, 2016.
41

[17] Bruno Scherrer, Victor Gabillon, Mohammad Ghavamzadeh, and Matthieu Geist.
Approximate modified policy iteration.
arXiv preprint arXiv:1205.3054, 2012.
41, 79

[18] Bernhard Schölkopf and Alexander J. Smola.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge, MA, USA, 2001.
54

[19] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári.
Convergence results for single-step on-policy reinforcement-learning algorithms.
Machine learning, 38(3):287–308, 2000.
77

[20] Richard S. Sutton and A. G. Barto.
Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.
104, 109

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 4/ 29

References V

[21] Richard S Sutton and Andrew G Barto.
Reinforcement learning: An introduction.
MIT press, 2018.
81, 107, 110

[22] Richard S Sutton, Andrew G Barto, et al.
Introduction to reinforcement learning, volume 135.
MIT press Cambridge, 1998.
63, 64

[23] Emanuel Todorov, Tom Erez, and Yuval Tassa.
Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5026–5033, 2012.
56

[24] John Tsitsiklis and Benjamin Van Roy.
Analysis of temporal-diffference learning with function approximation.
Advances in neural information processing systems, 9, 1996.
74

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need.
2017.
54

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 29

References VI

[26] Christopher JCH Watkins and Peter Dayan.
Q-learning.
Machine learning, 8(3-4):279–292, 1992.
80

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 6/ 29

Supplementary material

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 29

Existence of an optimal policy (proof)

Proof Sketch
Assume a start from (s0, a0, r0, s1) = (s, a, r, s′), then

1. Define “offset” policy π̃(at = a |ht) := π(at+1 = a | (s0, a0) = (s, a), ht), Markov property implies

E

[
∞∑

t=1

γ
t
r(st, at) | (s0, a0, r0, s1) = (s, a, r, s

′), π

]
= γV

π̃(s
′).

2. With all (s0, a0, r0) = (s, a, r), the set {π̃ |Π} will just be Π itself.
3. Show that the optimal value from s1 onward is independent of (s0, a0, r0) = (s, a, r),

max
π∈Π

E

[
∞∑

t=1

γ
t
r(st, at) | (s0, a0, r0, s1) = (s, a, r, s

′), π

]
= γ max

π∈Π
V

π̃(s
′) = γ max

π∈Π
V

π(s
′) = γV

⋆(s
′).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 29

Existence of an optimal policy (proof)

Proof Sketch (cont.)

4. Let π(s) = arg max
a∈A

max
π′∈Π

Qπ′ (s, a), show this deterministic and randomized policy is optimal

V
⋆(s0) = max

π′∈Π
E

[
∞∑

t=0

γ
t
r(st, at) | s0 = s, π

]
= max

π′∈Π
E

[
r(s0, a0) +

∞∑
t=1

γ
t
r(st, at) | π

]

= max
π′∈Π

E

[
r(s0, a0) + E

[
∞∑

t=1

γ
t
r(st, at) | (s0, a0, r0, s1), π

]]
≤ max

π′∈Π
E
[

r(s0, a0) + V
⋆(s1)

]
⇐= Step 3 above

= E
[

r(s0, a0) + V
⋆(s1) | π

]
⇐= Definition of π above

(10)

5. V ⋆(s0) ≤ E [r(s0, a0) + V ⋆(s1) | π] ≤ E
[

r(s0, a0) + γr(s1, a1) + γ2V ⋆(s1) | π
]

≤ · · · ≤ V π(s0), so
Vπ = V⋆, i.e., the proposed π is optimal.

□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 29

Contraction of bellman optimality operator (proof)

Proof.
For any V′, V ∈ R|S| and s ∈ S, we have∣∣(TV′

)
(s)− (TV)(s)

∣∣
=
∣∣∣max

a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V′(s′)
]
− max

a′∈A

[
r(s, a′) + γ

∑
s′∈S

P(s′|s, a′)V(s′)
]∣∣∣

≤ max
a∈A

∣∣∣(r(s, a) + γ
∑

s′∈S
P(s′|s, a)V′(s′)

)
−
(

r(s, a) + γ
∑

s′∈S
P(s′|s, a)V(s′)

)∣∣∣
≤ max

a∈A
γ
∑

s′∈S
P(s′|s, a)

∣∣V′(s′)−V(s′)
∣∣

≤
∥∥V′ −V

∥∥
∞

max
a∈A

γ
∑

s′∈S
P(s′|s, a) = γ

∥∥V′ −V
∥∥

∞
,

which concludes the proof. □

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 29

Policy improvement theorem (proof)

Theorem (Policy Improvement)
If a (deterministic) policy π′ satisfies that,

Qπ(s, π′(s)) ≥ V π(s) ∀ s ∈ S, (11)

then V π′ (s) ≥ V π(s) for any s ∈ S.

Proof.
Follow the property, for any s ∈ S, (denote s′ ∼ P(·|s, π′(s)) as s′ ∼ π′)

V π(s) ≤ Qπ(s, π′(s)) = Eπ′
[
r(s0, π′(s0)) + γV π(s1)| s0 = s

]
≤ Eπ′

[
r0 + γQπ(s1, π′(s1)) | s0 = s

]
≤ Eπ′ [r0 + γr1 + γV π(s1) | s0 = s]
≤ · · ·

≤ Eπ′
[
r0 + γr1 + γ2r2 + · · · | s0 = s

]
= V π′

(s).

(12)

□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 29

POMDPs

Partial observable Markov decision processes (POMDPs)
▶ S is the set of all possible states
▶ A is the set of all possible actions
▶ P(s′|s, a): S ×A → S is the transition model
▶ Ω is the set of observations: o ∈ Ω.
▶ O is a set of conditional observation probabilities: O(o|s′, a).
▶ r(s, a): S ×A → R is the reward function
▶ µ is the initial state distribution: s0 ∼ µ ∈ ∆(S)
▶ γ is the discount factor: γ ∈ [0, 1]

MDP vs POMDP: ◦ POMDPs are flexible: We do not have to have perfect information about the states.

◦ POMDPs are closer to the real world.
Example: see a baby crying but do not know the true state (hungry, sleepy, etc).

◦ MDPs assume perfect knowledge of the states.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 29

POMDPs
◦ When we do not observe the actual states, we construct the so-called belief states vector.

Definition (Belief states)
A belief state vector bt is a distribution over states at time t that estimates the state distribution given the
observation and the action history ht = {o0, a0, . . . , at−1, ot}, i.e., P(st = s|ht):

bt(s) := P(st = s|ht).

Remarks: ◦ Via the Bayes rule, the belief states must satisfy:

P(st = s|ht) =
O(ot|st, at−1, ht−1)P(st|at−1, ht−1)

P(ot|at−1, ht−1)

=
O(ot|st, at−1, ht−1)

∑
st−1

P(st|st−1, at−1)P(st−1|ht−1)∑
st

O(ot|st, at−1, ht−1)
∑

st−1
P(st|st−1, at−1)P(st−1|ht−1)

.

◦ As a result, we have a recursion for the conditional probability P(st = s|ht).

◦ We will represent this recursion via a “belief operator.”

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 13/ 29

The belief operator

◦ We can concisely represent the recursion on bt(s) using the belief operator U : ∆(S)× Ω×A → ∆(S):

bt+1(s′) = U(bt; a, o)(s′) =
O(o|s′, a)

∑
s∈S

P(s′|s, a)bt(s)∑
s′ O(o|s′, a)

∑
s∈S

P(s′|s, a)bt(s)
.

Remarks: ◦ The expected (non-stationary) reward now also depends on our current belief state:

rt(a) =
∑
s∈S

r(a, s)bt(s).

◦ We will focus more on MDPs and how to solve them optimally.

◦ Tools for MDPs translate readily to POMDPs once we have an estimate of bt(s).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 14/ 29

Numerical example: Hex World

◦ Traverse a tile map to reach a goal state

◦ Each cell in the tile map represents a state; action is a move in any of the 6 directions

◦ Taking any action in certain cells gives a specified reward and transports to a terminal state

Figure: Top row shows the base problem setup and colors hexes with terminal rewards. Bottom row shows an optimal policy for
each problem and colors the expected value. Arrows indicate the action to take in each state. [8]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 15/ 29

Numerical example: Value iteration

◦ Initialized with the east-moving policy

Figure: Value iteration for Hex World. [8]
Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 29

Numerical example: Policy iteration

◦ Initialized with the east-moving policy

◦ An optimal policy is obtained (the algorithm converges) in four iterations

Figure: Policy iteration for Hex World. [8]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 17/ 29

Proof for the Monte Carlo case.
Proof.

∥θt+1 − θ⋆∥2 = ∥θt − θ⋆∥2 − η(θt − θ⋆)T ϕ(s)(Vθt (s)−G(s)) + η2 ∥ϕ(s)(Vθt (s)−G(s))∥2

= ∥θt − θ⋆∥2 − η(Vθt (s)− Vθ⋆ (s)) · (Vθt (s)−G(s)) + η2 ∥ϕ(s)(Vθt (s)−G(s))∥2

Then, taking expectation and using that ∥ϕ(s)(Vθt (s)−G(s))∥2 ≤ 1
(1−γ)2 ,

E[∥θt+1 − θ⋆∥2] ≤ E[∥θt − θ⋆∥2]− ηE[(Vθt (s)− Vθ⋆ (s)) · (Vθt (s)− E[G(s)|s])] +
η2

(1− γ)2

≤ E[∥θt − θ⋆∥2]− ηEs∼ρE[(Vθt (s)− V π(s))2] +
η2

(1− γ)2

≤ E[∥θt − θ⋆∥2]− ηE[∥Vθt (s)− V π(s)∥2
ρ] +

η2

(1− γ)2

Then, rearranging and dividing by η.

E[∥Vθt (s)− V π(s)∥2
ρ] ≤

E[∥θt − θ⋆∥2]− E[∥θt+1 − θ⋆∥2]
η

+
η

(1− γ)2

□
Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 18/ 29

Proof for the Monte Carlo case (continued).

Proof.
Summing over t ∈ [T], we obtain

T∑
t=1

E[∥Vθt (s)− V π(s)∥2
ρ] ≤

E[∥θ1 − θ⋆∥2]
η

+
η

(1− γ)2 T

≤
d

η
+

η

(1− γ)2 T

Therefore, choosing η =
√

d(1−γ)√
T

and dividing by T .

1
T

T∑
t=1

E[∥Vθt (s)− V π(s)∥2
ρ] ≤

2
√

d

(1− γ)
√

T

□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 19/ 29

Proof of Finite Time Bound for TD

Proof.
◦ For the analysis we restart from the same step we did for the case without variance but we take expectation.
◦ Recall that gt equals F (θ) plus zero mean noise, i.e. E[gt] = F (θ).

◦ And it holds E ∥gt − F (θ)∥ ≤ σ.

E[∥θt+1 − θ⋆∥2] = E[∥θt − θ⋆∥2]− 2E[ηgT
t (θt − θ⋆)] + η2E[∥gt∥2]

≤ E[∥θt − θ⋆∥2]− 2η(1− γ)E[∥Vθt − Vθ⋆∥2
ρ] + 4η2E[∥Vθt − Vθ⋆∥2

ρ] + η2E[∥gt − F (θt)∥2]

≤ E[∥θt − θ⋆∥2]− 2η(1− γ)E[∥Vθt − Vθ⋆∥2
ρ] + 4η2E[∥Vθt − Vθ⋆∥2

ρ] + η2σ2

≤ (1−
(1− γ)2λ2

min
4

)E[∥θt − θ⋆∥2] +
λ2

min
4

≤
(

1−
(1− γ)2λ2

min
4

)t

E[∥θ1 − θ⋆∥2] +
λ2

min
4

∞∑
ℓ=0

(
1−

(1− γ)2λ2
min

4

)ℓ

≤
(

1−
(1− γ)2λ2

min
4

)t

E[∥θ1 − θ⋆∥2] +
1

(1− γ)2

□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 20/ 29

Proof of λmin independent Finite Time bound.

Proof.
◦ Restarting from

E[∥θt+1 − θ⋆∥2] ≤ E[∥θt − θ⋆∥2]− 2η(1− γ)E[∥Vθt − Vθ⋆∥2
ρ] + 4η2E[∥Vθt − Vθ⋆∥2

ρ] + η2σ2

◦ We set η ≤ 1−γ
4 and we can rearrange the term as follows

E[∥Vθt − Vθ⋆∥2
ρ] ≤

1
η(1− γ)

(
E[∥θt − θ⋆∥2]− E[∥θt+1 − θ⋆∥2]

)
+ η

σ2

1− γ

◦ Finally averaging over t = 1, . . . , T , we obtain 1
T

∑T

t=1 E[∥Vθt − Vθ⋆∥2
ρ] ≤ 1

η(1−γ)E[∥θ1 − θ⋆∥2] + η σ2

1−γ
◦

Setting η = 1−γ

4
√

T
, we obtain

1
T

T∑
t=1

E[∥Vθt − Vθ⋆∥2
ρ] ≤

4
√

T
E[∥θ1 − θ⋆∥2] +

1
2(1− γ)2

√
T
≤

9d

2(1− γ)2
√

T

□

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 21/ 29

Numerical example: Random walk

A E B D C
0 0 0 0 0 1

Start

0 1 2 3 4 5 6
state

0.0

0.2

0.4

0.6

0.8

1.0

0 episodes
1 episodes
10 episodes
100 episodes
true values

0 20 40 60 80 100
episodes

0.00

0.05

0.10

0.15

0.20

0.25

TD, alpha=0.15
TD, alpha=0.1
TD, alpha=0.05
MC, alpha=0.01
MC, alpha=0.02
MC, alpha=0.03
MC, alpha=0.04

Figure: Left: values learned after various number of updates in a single run of TD(0). Right: the root mean-squared (RMS)
error between the value functions learned and the true values. [20]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 22/ 29

Bias-variance trade-off

◦ MC return is unbiased, but has higher variance since it relies on many random steps

◦ TD target is biased, but has lower variance since it only relies on the next step

◦ The MC error can be written as a sum of TD errors:

Gt − V (st) = rt+1 + γGt+1 − V (st) + γV (st+1)− γV (st+1)
= δt + γ(Gt+1 − V (st+1))

= δt + γδt+1 + γ2(Gt+2 − V (st+2))
= · · ·

=
∞∑

k=t

γk−tδk

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 23/ 29

Multiple-step TD learning

Definition (n-step return)
Let T be the termination time step in a given episode, γ ∈ [0, 1].

G
(1)
t = rt+1 + γV (st+1) TD(0)

G
(2)
t = rt+1 + γrt+2 + γ2V (st+2) (two-step return)

G
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV (st+n) (n-step return)

G
(∞)
t = rt+1 + γrt+2 + · · ·+ γT −t−1rT MC

Note that G
(n)
t = G

(∞)
t if t + n ≥ T .

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 24/ 29

Multiple-step TD learning

Figure: [21]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 25/ 29

Multiple-step TD learning

Multi-step TD learning:

V (st)← V (st) + αt

(
G

(n)
t − V (st)︸ ︷︷ ︸

n-step TD error

)

Observations: ◦ Unifies and combines TD(0) and MC: n = 1 recovers TD(0) and n =∞ recovers MC.

◦ Trades-off bias and variance.

◦ However, we need to observe rt+1, · · · , rt+n.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 26/ 29

Numerical example: Longer random walk

A E B D C
0 0 0 0 0 1

Start

0.0 0.2 0.4 0.6 0.8 1.0
alpha

0.1

0.2

0.3

0.4

0.5

0.6

RM
S
er
ro
r

n = 1
n = 2
n = 4
n = 8
n = 16
n = 32
n = 64
n = 128
n = 256
n = 512

Figure: Performance of n-step TD methods as a function of α, for various values of n, on a 19-state random walk task. [20]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 27/ 29

Further extension: TD(λ) with eligibility trace

λ-return (weighted average of all n-step returns)

Gλ
t = (1− λ)

∞∑
n=1

λn−1G
(n)
t

TD(λ)

V (st) ← V (st) + α
[
Gλ

t − V (st)
]

Figure: [21]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 28/ 29

Further extension: TD(λ) with eligibility trace

TD(λ)

V (st) ← V (st) + α
[
Gλ

t − V (st)
]

Observations: ◦ λ = 0 reduces to TD(0); λ = 1 reduces to MC.

◦ Can be efficiently implemented:

V (s) ← V (s) + αδtet(s)
et(s) = γλet−1(s) + 1{st = s}

◦ The term et(s) =
∑t

k=0 γt−k1{st = s} is called the eligibility trace.

◦ Converge faster than TD(0) when λ is appropriately chosen.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 29/ 29

	Markov Decision Processes (MDPs)
	Bellman Equations and Bellman Optimality
	Value Iteration
	Policy Iteration
	Summary
	Overview of reinforcement learning
	Model-free prediction
	Monte Carlo method
	Temporal difference learning

	Appendix
	Extension: Multiple-step TD, TD(), SARSA

