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Recall: Reinforcement learning setup

◦ Reinforcement Learning: Sequential decision making in an unknown environment

◦ Markov decision process: M = (S,A,P, r, µ, γ)

◦ Stationary stochastic policy π : S → ∆(A), at ∼ π(·|st)

◦ State-value function: V π(s) := E
[∑∞

t=0 γ
tr(st, at)|s0 = s, π

]
◦ Performance objective: maxπ(1 − γ)

∑
s∈S µ(s)V π(s)

Challenges: ◦ Infer long-term consequences based on limited, noisy short-term feedback.

◦ Unknown transition dynamics P: knowledge only through sampled experience.

◦ Large state- and action-spaces.

◦ Non-convex performance objective as a function of π.
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Motivation

◦ Approximate dynamic programming (previous lecture)

▶ Attempts to find approximate fixed-point solutions to the (nonlinear) Bellman equation.

▶ Pros:

+ Well-studied setting for tabular MDPs that comes with theoretical convergence guarantees.

▶ See Lecture 2.

+ Deep-learning variants (e.g., DQN [20]) are powerful.

▶ Cons:

– Does not leverage classical machine-learning tools rooted in convex optimization.
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Motivation (cont’d)

◦ The linear programming approach (this lecture)

▶ Introduces the linear programming (LP) approach, i.e., an alternative convex viewpoint.

▶ Overviews recent scalable algorithms with theoretical guarantees rooted in the LP approach.

▶ Highlights how historical key limitations have been eliminated.
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Revisiting Bellman optimality equation

◦ We denote V ⋆(s) = maxπ∈Π V π(s).

◦ V ⋆ satisfies the Bellman optimality equation, which can be written as a feasibility problem:

min
V

0

s.t. V (s) = (T V )(s) := max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V (s′)

]
, ∀ s ∈ S.

▶ T is the so-called Bellman operator

▶ The only feasible assignment is V ⋆

▶ The above equality constraints are nonlinear in V due to the maximization over A

Remarks: ◦ The Bellman optimality operator is a γ-contraction mapping w.r.t. ℓ∞-norm:∥∥T V ′ − T V
∥∥

∞
≤ γ
∥∥V ′ − V

∥∥
∞
.

◦ The Bellman operator is also monotonic (component-wise): V ′ ≤ V ⇒ T V ′ ≤ T V .
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Relaxation of Bellman optimality condition
◦ The Bellman optimality ⇒ V ⋆ is the function with the lowest values V (s) among all V ∈ R|S| satisfying

V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A. (Bellman inequality)

◦ Note that the Bellman inequality constraint is linear in V =⇒ Linear Programming (LP)

Figure: Graphical interpretation of Bellman inequality
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Solving MDPs via LPs: Primal LP formulation

Primal LP
Let µ(s) > 0, s ∈ S be the initial distribution (or any positive weights). Then, the primal LP is given by

min
V

(1 − γ)
∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.
(P)

Remarks: ◦ We will show: The optimal value function V ⋆ is the unique solution to the above LP.

◦ The number of decision variables is |S|, and the number of constraints is |S||A|.

◦ Given V ⋆, we can determine an optimal (deterministic) policy greedily

π⋆(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s)
]
. (1)

◦ The factor (1 − γ) in the objective will ensure that the dual variables are in the simplex.
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Solving MDPs via LPs: Primal LP formulation (cont’d)

Recall: Primal LP
Let µ(s) > 0, s ∈ S be the initial distribution (or any positive weights). The primal LP formulation is given by

min
V

(1 − γ)
∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.
(P)

Lemma (LP Formulation and V ⋆)

V ⋆ is the unique optimal solution to the above LP formulation for any positive weights {µ(s)}.

Remark: ◦ The unique optimizer does not depend on the positive weights {µ(s)}.
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Solving MDPs via LPs: Primal LP formulation (cont’d)

Derivation: ◦ Recall the primal LP:

min
V

(1 − γ)
∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.
(P)

◦ Recall: Bellman optimality opterator [T V ](s) = maxa∈A
(
r(s, a) + γ

∑
s′∈S P(s′|s, a)V (s′)

)
.

◦ V ⋆ is feasible as

V ⋆(s) = [T V ⋆](s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V ⋆(s′), ∀(s, a) ∈ S × A.

◦ For any feasible V , we have V ≥ T V . Component-wise monotonicity (V1 ≥ V2 ⇒ T V1 ≥ T V2)

V ≥ T V ≥ T 2V ≥ · · · ≥ T ∞V = V ⋆,

implies optimality of V ⋆.

◦ Uniqueness follows as T is contractive.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 41



Solving MDPs via LPs: Dual LP formulation

◦ From linear programming, we know that the dual LP of (P) is given by the following.
▶ See supplementary material, Slide 8. We refer to [19] for a comprehensive treatment.

Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1 − γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Remarks: ◦ The number of decision variables is given by |S||A|.

◦ The number of constraints is given by |S| + |S||A|.

◦ The constraints imply the decision variables are probabilities: λ ∈ ∆([|S||A|]).

◦ The solution to the dual LP λ⋆ corresponds to the state-action occupancy of π⋆.
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Occupancy measure

Definition (Occupancy measure)
The occupancy measure for an initial distribution µ and a policy π is defined as follows:

λπµ(s, a) = (1 − γ)
∞∑
t=0

γtP[st = s, at = a | s0 ∼ µ, π],

where P[· | s0 ∼ µ, π] denotes the probability of an event when following policy π starting from s0 ∼ µ.

Interpretation: ◦ λπµ(s, a) is the normalized discounted visitation frequency of the pair (s, a) when π is played:

λπµ(s, a) = (1 − γ)E

[
∞∑
t=0

γt1(st = s, at = a)
∣∣∣ s0 ∼ µ, π

]
◦ We sometimes drop the subscript µ after specifying a fixed initial distribution.
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Visualize an occupancy measure
◦ Let us consider the policies represented by the arrows in the leftmost column.

◦ The corresponding occupancy measures varying the discounted factor are depicted just below.

◦ Notice that increasing γ makes the effect of the initial distribution less and less prominent.
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A closer look at the dual LP
◦ For any policy π and s0 ∼ µ, we defined the occupancy measure λπ(s, a) as

λπ(s, a) := (1 − γ)
∞∑
t=0

γtP[st = s, at = a | s0 ∼ µ, π].

◦ We can write

(1 − γ)Es∼µ[V π(s)] ⇒ primal objective (P)

= (1 − γ)E
[∑∞

t=0
γtr(st, at) | s0 ∼ µ, π

]
= (1 − γ)E

[∑∞

t=0

∑
s∈S,a∈A

γt1(st = s, at = a)r(s, a) | s0 ∼ µ, π

]

= (1 − γ)
∑

s∈S,a∈A

∞∑
t=0

γtP[st = s, at = a | s0 ∼ µ, π] r(s, a)

=
∑
s∈S

∑
a∈A

λπ(s, a)r(s, a) ⇒ dual objective (D)
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A closer look at the dual LP (cont’d)

Recall: Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1 − γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Observations: ◦ The occupancy measure λπ(s, a) satisfies the constraints in the dual LP.

◦ By the Markov property, we have (see the supplementary material, Slide 14 for details)

λπ(s, a) = (1 − γ)µ(s)π(a|s) + γ
∑
s′,a′

π(a|s)P(s|s′, a′)λπ(s′, a′).

◦ Summing over a implies feasibility.
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A closer look at the dual LP (cont’d)

Recall: Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1 − γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Observations: ◦ For any λ feasible to the dual LP, we can define a policy

πλ(a | s) =
λ(s, a)∑
a∈A λ(s, a)

,

where we set πλ(·|s) arbitrarily when
∑

a∈A λ(s, a) = 0. Then, λπλ = λ.

◦ Note that λ is optimal for (D) iff πλ is an optimal policy [30]. (self-study)

◦ Optimality of policies does not depend on µ. (LP sensitivity analysis)
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Finding the optimal policy

◦ Primal LP approach:
▶ Solve primal LP to obtain for the optimal value function V ⋆

▶ Then construct an optimal policy (deterministic) as the greedy policy

π⋆(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)
]
.

◦ Dual LP approach:
▶ Solve the dual LP to obtain an optimal state-action occupancy λ⋆

▶ Then construct the optimal policy (randomized) by

π⋆(a | s) =
λ⋆(s, a)∑
a∈A λ⋆(s, a)

.

◦ For further reading: See [30] (Section 6.9)
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Occupancy measure and value function

Pop quiz: ◦ What is the relation between the occupancy measure and the value function?

Answer: (1 − γ)V π(µ) = ⟨λπµ, r⟩.

Remark: ◦ It holds that

V π(µ) = ⟨µ, V π⟩ = E

[
∞∑
t=0

γtr(st, at) | s0 ∼ µ, π

]
.
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Occupancy measure and value function (cont’d)

Derivation:

V π(µ) = E

[
∞∑
t=0

γtr(st, at) | s0 ∼ µ, π

]

= E

[
∞∑
t=0

γt
∑
s,a

r(s, a)1(st = s, at = a) | s0 ∼ µ, π

]

=
∑
s,a

r(s, a) E

[
∞∑
t=0

γt1(st = s, at = a) | s0 ∼ µ, π

]
(Linearity of expectation)

=
∑
s,a

r(s, a)
∞∑
t=0

γt P[st = s, at = a | s0 ∼ µ, π] (Dominated convergence theorem)

=

∑
s,a

r(s, a)λπµ(s, a)

1 − γ
=

⟨λπµ, r⟩
1 − γ

. □

◦ For more details on the dominated convergence theorem, see Slide 11 in the supplementary material.
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Occupancy measure and value function (cont’d)
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Occupancy measure and value function (cont’d)
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Occupancy measure and value function (cont’d)
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Some more compact notation

◦ With the following definitions, we can compactly write the primal and dual LP in matrix form.

◦ We will use the following matrix notation.

▶ Write the transitions P in matrix form, i.e., P is a (|S||A| × |S|)-matrix and the entry in row
(s, a) ∈ S × A and column s′ ∈ S is given by

P(s,a),s′ ≜ P(s′|s, a).

▶ E is a binary matrix of dimensions |S||A| × |S|, defined by

E(s,a),s′ ≜

{
1 (if s = s′),
0 (else).

▶ Write r, λ ∈ R|S||A| for the (column) vectors with entries r(s, a), λ(s, a) at index (s, a) ∈ S × A,
respectively.

▶ Write µ, V ∈ RS for the vectors with entries µ(s), V (s) at index s ∈ S, respectively.
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Some more compact notation - Visualization

◦ To simplify the notation, recall the matrices defined on slide 20:

▶ E ∈ R|S||A|×|S| such that (EV )(s, a) = V (s) (copying |A| times),

▶ P ∈ R|S||A|×|S| such that (PV )(s, a) =
∑

s′ P(s′|s, a)V (s′) (expectation over s′|s, a).

◦ E is a block matrix, with the |S| × |S| identity matrix vertically stacked |A| times:

E =

I|S|
.
..

I|S|

 .
◦ P is a block matrix, with the (|S| × |S|)-matrices Pai

Pai =

 P(s1|s1, ai) · · · P(s|S||s1, ai)
..
.

..

.
P(s1|s|S|, ai) · · · P(s|S||s|S|, ai)

 ,

vertically stacked for i = 1, . . . , |A|:

P =

 Pa1
...

Pa|A|

 .
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Some more compact notation - Visualization (cont’d)

◦ Their adjoints are given by
▶ ET ∈ R|S|×|S||A| such that (ETλ)(s) =

∑
a
λ(s, a) (sum over all a),

▶ PT ∈ R|S|×|S||A| such that (PTλ)(s′) =
∑

s,a
P(s′|s, a)λ(s, a) (total expectation for s′ w.r.t. λ).

◦ ET is a block matrix, with the |S| × |S| identity matrix horizontally stacked |A| times:

ET =
[
I|S| · · · I|S|

]
.

◦ PT is a block matrix, with the (|S| × |S|)-matrices PTai

PTai =

 P(s1|s1, ai) · · · P(s1|s|S|, ai)
...

...
P(s|S||s1, ai) · · · P(s|S||s|S|, ai)

 ,

horizontally stacked for i = 1, . . . , |A|:

PT =
[
PTa1 · · · PTa|A|

]
.
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Linear Programming - Summary

Primal LP:
min

V ∈R|S|
(1 − γ)⟨µ, V ⟩

s.t. EV ≥ r + γPV .
(P)

◦ Primal LP over value functions

◦ |S| decision variables and |S||A| constraints

◦ ∀ V primal feasible ⇒ V ⋆ ≤ V

◦ Optimal value function V ⋆ is the optimizer

◦ Optimal policy is the associated greedy policy

Dual LP
max

λ∈R|S||A|
⟨λ, r⟩

s.t. E⊺λ = (1 − γ)µ+ γP ⊺λ, λ ≥ 0.
(D)

◦ Dual LP over occupancy measures

◦ |S||A| variables and |S| + |S||A| constraints

◦ ∀ policy π, the induced λπ is dual feasible

◦ ∀ feasible λ ⇒ πλ has occupancy measure λ

◦ Optimal policy is the associated random policy πλ⋆
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Dynamic programming vs linear programming (exact solutions)

Algorithm Component Output

Value Iteration (VI) Bellman Optimality Operator T V ⋆ (control)

Policy Iteration (PI) (Multiple) Bellman Operator T π + Greedy Policy π⋆ (control)

Linear Programming (LP) LP solver (Simplex, Interior Point Method) V ⋆, π⋆ (control)

Dynamic Programming:
◦ Simple iterative updates.
◦ Polynomial complexity in |S| and |A| and

(1 − γ)−1.
◦ Works better for short horizon problems.

Linear Programming:
◦ Rich library of fast LP solvers.
◦ Polynomial complexity in |S| and |A| but not on

(1 − γ)−1.
◦ Works better for long horizon problems.
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The LP approach - Pros and Cons

◦ Why is this useful?

▶ Defining optimality is simple: no value functions, no fixed-point equations, just the numerical objective.

▶ Easily comprehensible with an optimization background.

▶ A disciplined convex optimization template with a rich set of algorithms.

◦ End User License Agreement:

▶ Number of variables is large.

▶ Intractable number of constraints.

▶ Constraints may not be satisfied when working with function approximators.
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Beyond exact solutions - A bit of history of approximate linear programming (ALP)
◦ [Manne 1960] [18]

▶ Formulated the primal LP over value functions and showed equivalence to Bellman equations.

◦ [Borkar 1988] [3] and [Hérnandez-Lerma & Lasserre 1996, 1999] [10, 11]

▶ Studied the LP approach to MDPs with continuous state and action spaces.

▶ The corresponding LPs are infinite-dimensional.

◦ [Schweitzer & Seidman 1982] [34]

▶ Proposed linear function approximators to reduce the number of decision variables

▶ Proposed a relaxation to reduce the number of constraints.

◦ [De Farias & Van Roy 2003, 2004] [6, 7]

▶ Analyzed the reduction [Schweitzer & Seidman 1982] [34].

▶ Inspired some follow-up work in RL [Petrik et al. 2009,2010] [28, 27], [Desai et al. 2012] [8],
[Abbasi-Yadkori et al. 2014] [1], [Lakshminarayanan et al. 2018] [16].

◦ We refer to Slide 36 in the supplementary material for more details.
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Towards the Lagrangian

◦ Instead of working solely with the primal or dual LP formulation, we work with an expression combining them.

◦ Introducing the Lagrangian multipliers vector λ ∈ R|S||A|, we can write the Lagrangian as follows:

Primal LP:
min

V ∈R|S|
(1 − γ)⟨µ, V ⟩

s.t. EV ≥ r + γPV .
(P)

Dual LP
max

λ∈R|S||A|
⟨λ, r⟩

s.t. E⊺λ = (1 − γ)µ+ γP ⊺λ, λ ≥ 0.
(D)

⇕

Saddle point formulation

min
V

max
λ≥0

(1 − γ)⟨µ , V ⟩ + ⟨λ , r + γPV − EV ⟩. (Saddle-point problem)
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Minimax optimization

◦ We recap some minimax optimization background in preparation for the so-called REPS algorithm.

Bilinear min-max template

min
x∈X

max
y∈Y

f(x) + ⟨Ax,y⟩ − h(y),

where X ⊆ Rp and Y ⊆ Rn.
▶ f : X → R is convex.
▶ h : Y → R is convex.

Convex-concave min-max template

min
x∈X

max
y∈Y

Φ(x,y), (2)

where Φ(x,y) is convex in x and concave in y.
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Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
▶ Gradient Descent Ascent (GDA)
▶ Proximal point method (PPM) [33]
▶ Extra-gradient (EG) [15]
▶ Optimistic Gradient Descent Ascent (OGDA) [21]
▶ Reflected-Forward-Backward-Splitting (RFBS) [4]

◦ EG and OGDA are approximations of the PPM
▶ zk+1 = zk − ηV (zk).
▶ zk+1 = zk − ηV (zk+1).
▶ zk+1 = zk − ηV (zk − αV (zk−1))
▶ zk+1 = zk − η[2V (zk) − V (zk−1)]
▶ zk+1 = zk − ηV (2zk − zk−1)
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Proximal point method (PPM)

◦ Consider the following smooth unconstrained optimization problem: minx∈Rp f(x)

Proximal point method for convex minimization.
For a step-size τ > 0, PPM can be written as follows

xk+1 = arg min
x∈Rp

{
f(x) +

1
2τ

∥x − xk∥2
}

:= proxτf (xk) (3)

Observations: ◦ The optimality condition of (3) reveals a simpler PPM recursion for smooth f :

xk+1 = xk − τ∇f(xk+1).

◦ PPM is an implicit, non-practical algorithm since we need the point xk+1 for its update.

◦ Each step of PPM can be as hard as solving the original problem.

◦ Convergence properties are well understood due to Rockafellar [33].
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PPM and minimax optimization

PPM applied to the minimax template: minx∈Rd maxy∈Rn Φ(x, y)
Define z = [x,y]⊤ and V(z) = [∇xΦ(x,y),−∇yΦ(x,y)]⊤. PPM iterations with a step-size τ > 0 is given by

zk+1 = zk − τV(zk+1).

Derivation: ◦ For τ > 0, (xk+1,yk+1) is the unique solution to the saddle point problem,

min
x∈Rd

max
y∈Rn

Φ(x,y) +
1

2τ
∥x − xk∥2 −

1
2τ

∥y − yk∥2 (4)

◦ Writing the optimality condition of the update in (4)

xk+1 = xk − τ∇xΦ(xk+1,yk+1), yk+1 = yk + τ∇yΦ(xk+1,yk+1) (5)

Observation: ◦ PPM is an implicit algorithm.

◦ For the bilinear problem, PPM is implementable!
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Proximal point methods in the Bregman setup

Definition: Bregman distance
Let ω : X → R be a distance generating function where ω is 1−strongly convex w.r.t. some norm ∥ · ∥ on the
underlying space and is continuously differentiable. The Bregman distance induced by ω(·) is given by

Dω(z, z′) = ω(z) − ω(z′) − ∇ω(z′)⊤(z − z′).

◦ The proximal point method in the Bregman setup reads as follows:

xk+1 = arg min
x∈Rp

{
f(x) +

1
τ
Dω(x,xk)

}
Remarks: ◦ Choosing the negative entropy as a generating function ω(x) = ⟨x, log x⟩, we obtain the

KL divergence. Such ω(x) is 1-strongly convex in ∥ · ∥1 norm.

◦ This choice will allow to avoid projection in the simplex constraints and it improves the
dependence on the domain dimension.

◦ Now, we will see PPM in action on the Lagrangian.
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Detour: Primal-dual π-learning given the model

Saddle point formulation

min
V

max
λ∈∆S×A

(1 − γ)⟨µ , V ⟩ + ⟨λ , r + γPV − EV ⟩. (Saddle-point problem)

◦ For known dynamics, it can be solved via primal-dual gradient updates:

▶ Vk+1 = Vk − η
(

(γP − E)⊺λk + (1 − γ)µ
)

.

▶ λk+1 ∝ λk ⊙ eη(r+γPVk−EVk), where ⊙ denotes entry wise multiplication.
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Detour: Primal-dual π-learning given the model

Saddle point formulation

min
V

max
λ∈∆S×A

(1 − γ)⟨µ , V ⟩ + ⟨λ , r + γPV − EV ⟩. (Saddle-point problem)

◦ For known dynamics, it can be solved via primal-dual gradient updates:

▶ Vk+1 = Vk − η
(

(γP − E)⊺λk + (1 − γ)µ
)

.

▶ λk+1 ∝ λk ⊙ eη(r+γPVk−EVk), where ⊙ denotes entry wise multiplication.

◦ The second update is known as mirror descent over the simplex (see 22 for details). It is defined by

λk+1 := arg max
λ∈∆S×A

(
⟨λ, r + γPVk − EVk⟩ −

1
η

KL (λ||λk)
)
,

where KL (p||q) =
∑

i
pi log

(
pi
qi

)
is the Kullback-Leibler divergence.

◦ The mirror descent update can be explicitely written as

λk+1(s, a) =
λk(s, a) exp(η[r + γPVk − EVk](s, a))∑

s′,a′ λk(s′, a′) exp(η[r + γPVk − EVk](s′, a′))
.
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Detour: Primal-dual π-learning given the model

Saddle point formulation

min
V

max
λ∈∆S×A

(1 − γ)⟨µ , V ⟩ + ⟨λ , r + γPV − EV ⟩. (Saddle-point problem)

◦ For known dynamics, it can be solved via primal-dual gradient updates:

▶ Vk+1 = Vk − η
(

(γP − E)⊺λk + (1 − γ)µ
)

.

▶ λk+1 ∝ λk ⊙ eη(r+γPVk−EVk), where ⊙ denotes entry wise multiplication.

◦ Gradients are expectations under the occupancy measure iterates λk and the transition law P

⇒ efficient stochastic implementation [Chen et al. 2018] [5], [Jin & Sidford. 2018] [12].

▶ State-of-the-art sample complexity for solving small MDPs.

▶ O
(

|S||A| log( 1
δ

)
(1−γ)4ε2

)
samples for finding an ε-optimal policy with probability at least 1 − δ.
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REPS: A success story

◦ REPS is widely popular in the robotics community.

◦ It applies proximal point to the Dual LP.

◦ A robot trained with REPS manages to play table tennis.

Figure: Source: Relative Entropy Policy Search [26]
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Towards REPS: Proximal point on the dual LP

◦ Recall: Proximal point is generally an implicit method.

◦ However, for a linear objective PPM can be implemented.

◦ Hence, we can apply proximal point updates on the Lagrangian, which is just a bilinear form.

Recall: Dual LP

λk = argmaxλ∈∆⟨λ, r⟩

s.t. ETλ = γPTλ+ (1 − γ)µ.

Remarks: ◦ The problem in the current form suffers from |S| many constraints.
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The Lagrangian: Towards an unconstrained problem.

◦ The corresponding Lagrangian is:

max
λ∈∆

min
V

⟨λ, r⟩ + ⟨V, γPTλ− ETλ⟩ + (1 − γ)⟨V, µ⟩.

◦ Applying proximal point we obtain the following update:

λk = argmaxλ∈∆ min
V

⟨λ, r⟩ + ⟨V, γPTλ− ETλ⟩ + (1 − γ)⟨V, µ⟩︸                                                                    ︷︷                                                                    ︸
:=f(λ)

−
1
η
DKL(λ, λk−1).
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KKT conditions on the Lagrangian update.

Derivation: ◦ We notice by convexity of the Bregman divergence that the update is convex in λ.

◦ We introduce an auxiliary problem for any V as follows:

λVk = argmaxλ∈∆ ⟨λ, r⟩ + ⟨V, γPTλ− ETλ⟩ + (1 − γ)⟨V, µ⟩ −
1
η
DKL(λ, λk−1).

◦ By optimality conditions, it must hold

r + γPV − EV −
1
η

∇λDKL(λVk , λk−1) = 0.

◦ Thus, λVk can be computed in closed form for any V

λVk (s, a) =
λk−1(s, a)eη(r(s,a)+γ(PV )(s,a)−(EV )(s,a))∑

s′,a′ λk−1(s′, a′)eη(r(s′,a′)+γ(PV )(s′,a′)−(EV )(s′,a′)) .
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The unconstrained problem

◦ We can leverage the KKT conditions to write an unconstrained problem where the only decision variable is V :

min
V

⟨λVk , r⟩ + ⟨V, γPTλVk − ETλVk ⟩ + (1 − γ)⟨V, µ⟩ −
1
η
DKL(λVk , λk−1).

◦ With some calculus, we have the following compact form.

Unconstrained problem (REPS)

Vk = min
V

(1 − γ)⟨µ, V ⟩ +
1
η

log
∑
s,a

λk−1(s, a)eη(r(s,a)+γ(PV )(s,a)−(EV )(s,a)).

Remarks: ◦ The decision variable V has dimension |S|.

◦ The objective is convex and smooth with Lipschitz continuous gradient.
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The REPS algorithm [26]

Algorithm: REPS
Initialize λ0 (for example uniform)

for each iteration k = 1, . . . ,K do
Solve the problem

Vk = min
V

(1 − γ)⟨µ, V ⟩ +
1
η

log
∑
s,a

λk−1(s, a)eη(r(s,a)+γ(PV )(s,a)−(EV )(s,a))

Update the occupancy measure:

λk(s, a) ∝ λk−1(s, a)eη(r(s,a)+γ(PVk)(s,a)−(EVk)(s,a))

end for
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Sample complexity of REPS [25]

Algorithm Oracle Output

REPS Exact gradient O
(

|S|3/2

(1−γ)2ϵ2

)
REPS Stochastic Biased Gradients O

(
|S|3/2

(1−γ)8β2ϵ8

)
Remarks: ◦ The exact gradient case achieves the best-known sample complexity

▶ e.g., comparable to NPG (see Lecture 5)

◦ The sample complexity with stochastic gradients degrades.

◦ For the stochastic gradient case, one needs to assume that λk(s, a) ≥ β > 0.
▶ it solves the exploration problem by assumption.
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Wrap Up

◦ The LP approach allows us to formulate RL as a convex optimization problem.

◦ The primal and dual LP are equivalent formulations of the RL objective.

◦ The saddle point formulation combines the primal and dual viewpoint.

◦ Applying the proximal point algorithm to the dual program yields the celebrated REPS algorithm.

◦ Offline policy evaluation and optimization are needed when we only learn from previously collected data.

▶ see supplementary material at the end!

◦ Next lecture: Policy gradient methods (Part 1)!
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Supplementary

Mathematical background
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Supplementary Material: Linear Programming Basics

Definition (LP)
A linear program in inequality form is an optimization problem of the form

max
x∈Rn

cTx (6)

s.t. Ax ≤ b,

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

Definition (Dual LP)
The dual LP of the LP in (6) is

min
y∈Rm

bTy

s.t. ATy = c, (7)
y ≥ 0.
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Supplementary Material: Linear Programming Basics (cont’d)

◦ We say that an LP has a feasible solution if there is an assignment satisfying its constraints. Formally, for 6
this means that here exists x ∈ Rn such that Ax ≤ b.

◦ We say that an LP is bounded if its objective is uniformly bounded across all feasible solutions. Formally, for 6
this means that sup

{
cTx | Ax ≤ b

}
< ∞.

Theorem (Strong duality)
Suppose that the primal LP in (6) has a feasible solution and is bounded. Then both 6 and 7 attain optimal
solutions x⋆ and y⋆, and they satisfy

cTx⋆ = bTy⋆.

◦ Self-study: Prove that in the LP formulation of MDPs, (D) is indeed the dual program of (P).
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Supplementary Material: Dominated convergence

◦ To understand why we can swap limit and expectation, recall the dominated convergence theorem from real
analysis.

Theorem (Dominated convergence, DCT)
Let (fn)n∈N be a sequence of real-valued measurable functions on some measure space (Ω,Σ, ν). Suppose fn
converges pointwise to f (limn→∞ fn(ω) = f(ω) for all ω ∈ Ω). Suppose further that (fn)n is dominated by
some integrable function g (|fn(ω)| ≤ g(ω) and

∫
Ω |gn|dν < ∞). Then∫

Ω
fdν = lim

n→∞

∫
Ω
fndν.
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Supplementary Material: Dominated convergence (cont’d)
◦ On Slide 19, we used the DCT with
▶ (Ω,Σ, ν) the probability space over the trajectories τ = (s0, a0, s1, a1, s2, . . . ) under policy π
▶ fn(τ) =

∑n

t=0 γ
t
1st = s, at = a, which converge to f(τ) =

∑∞
t=0 γ

t
1st = s, at = a pointwise

▶ g(τ) =
∑∞

t=0 γ
t1 = 1

1−γ .
Applying the DCT, we confirm

E

[
∞∑
t=0

γt1st = s, at = a | s0 ∼ µ, π

]
=
∫

Ω
fdν

= lim
n→∞

∫
Ω
fndν

= lim
n→∞

E

[
n∑
t=0

γt1st = s, at = a | s0 ∼ µ, π

]

=
∞∑
t=0

γt P[st = s, at = a | s0 ∼ µ, π],

where the last step holds by linearity of expectation.
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Supplementary

LP and optimization
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Supplementary Material: Bellman Equation for State-action Visitation Distribution

Recall the definition
λπ(s, a) :=

∑∞

t=0
γtP[st = s, at = a |π, s0 ∼ µ].

Bellman Equation for λπ

λπ(s, a) = µ(s)π(a|s) + γ
∑
s′,a′

π(a|s)P(s|s′, a′)λπ(s′, a′).

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 14/ 52



Supplementary Material: Bellman Equation for State-action Visitation Distribution

Proof.

λ
π(s, a)

=P[s0 = s, a0 = a] +
∑∞

t=1
γ
t
P[st = s, at = a|π, s0 ∼ µ]

=µ(s)π(a|s) +
∞∑
t=1

γ
t
∑
s′,a′

P
[
st = s, at = a|st−1 = s

′
, at−1 = a

′
, π, s0 ∼ µ

]
P
[
st−1 = s

′
, at−1 = a

′|π, s0 ∼ µ
]

=µ(s)π(a|s) + γ

∞∑
t=1

π(a|s)P(s|s′
, a

′)
∞∑
t=1

γ
t−1
P
[
st−1 = s

′
, at−1 = a

′|π, s0 ∼ µ
]

=µ(s)π(a|s) + γ

∑
s′,a′

π(a|s)P(s|s′
, a

′)λπ(s′
, a

′)

where the third equality is due to Markov property. □
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PPM guarantees for minimax optimization

Theorem (Convergence of PPM [33])
Suppose (xk,yk) be the iterates generated by PPM (i.e., (5)), then for the averaged iterates, it holds that∣∣∣∣∣Φ

(
1
K

K∑
k=1

xk,
1
K

K∑
k=1

yk
)

− Φ(x⋆,y⋆)

∣∣∣∣∣ ≤
∥x0 − x⋆∥2 + ∥y0 − y⋆∥2

τK
.

Theorem (Linear convergence [33])
Suppose (xk,yk) be the iterates generated by (5), Φ(·, ·) is µx−strongly convex in x and µy−strongly concave
in y. Let µ = max{µx, µy}. Then, for any τ > 0, (xk,yk) satisfies the following

rk+1 ≤
1

1 + µτ
rk,

where rk = ∥xk − x⋆∥2 + ∥yk − y⋆∥2.

Remark: ◦ Still need an implementable and convergent algorithm beyond the stylized bilinear case.

◦ Note what happens when τ → ∞.
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Extra-gradient algorithm (EG) [14]

EG method for saddle point problems
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

x̃k := xk − τ∇xΦ(xk,yk),
ỹk := yk + τ∇yΦ(xk,yk).
xk+1 := xk − τ∇xΦ(x̃k, ỹk).
yk+1 := yk + τ∇yΦ(x̃k, ỹk).

◦ Idea: Predict the gradient at the next point

zk+1 = zk − τV( zk − τV(zk)︸             ︷︷             ︸
prediction of zk+1

)
(EG)

Remark: ◦ 1-extra-gradient computation per iteration
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Extra-gradient algorithm: Convergence

Theorem (General case [9])
Let 0 < τ ≤ 1

L
. It holds that

▶ Iterates (xk,yk) remains bounded in a convex compact set.
▶ Primal-dual gap reduces: Gap

(
1
K

∑K

k=1 xk, 1
K

∑K

k=1 yk
)

≤ O
(

1
K

)
.

Theorem (Linear convergence [21])
Suppose (xk,yk) be the iterates generated by Extra-gradient algorithm, Φ(·, ·) is µx−strongly convex in x and
µy−strongly concave in y. Let µ = max{µx, µy}. Then, for τ = 1

4L , (xk,yk) satisfies,

rk+1 ≤
(

1 −
1
cκ

)k
r0,

where rk = ∥xk − x⋆∥2 + ∥yk − y⋆∥2, κ = L
µ

is the condition number of the problem, and c is a constant
which is independent of the problem parameters.
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Optimistic gradient descent ascent algorithm (OGDA) [31]

OGDA for saddle point problems
1. Choose x0,y0,x1,y1 and τ .
2. For k = 1, · · · , perform:

xk+1 := xk−2τ∇xΦ(xk,yk)+τ∇xΦ(xk−1,yk−1).
yk+1 := yk+2τ∇yΦ(xk,yk)−τ∇yΦ(xk−1,yk−1).

previous gradient

zk+1

zk

current gradient

◦ Main difference from the GDA: Add a “momentum” or “reflection” term to the updates

zk+1 = zk − τ

[
V(zk) + (V(zk) − V(zk−1))︸                        ︷︷                        ︸

momentum

]
. (OGDA)

◦ Known as Popov’s method [29], it is also a special case of the Forward-Reflected-Backward method [17].

◦ It has ties to the Reflected-Forward-Backward Splitting (RFBS) method [4]:

zk+1 = zk − τV(2zk − zk−1). (RFBS)

Remark: ◦ Advanced material at the end: OGDA is an approximation of PPM for bilinear problems.
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OGDA: Convergence

Theorem (General case [9])
Let 0 < τ ≤ 1

2L , x1 = x0,y1 = y0. It holds that
▶ Iterates (xk,yk) remains bounded in a convex compact set.
▶ Primal-dual gap reduces: Gap

(
1
K

∑K

k=1 xk, 1
K

∑K

k=1 yk
)

≤ O
(

1
K

)
.

Theorem (Linear convergence [21])
Suppose (xk,yk) be the iterates generated by OGDA, Φ(·, ·) is µx−strongly convex in x and µy−strongly
concave in y. Let µ = max{µx, µy}. Then, for τ = 1

4L , (xk,yk) satisfies,

rk+1 ≤
(

1 −
1
cκ

)k
r0,

where rk = ∥xk − x⋆∥2 + ∥yk − y⋆∥2, κ = L
µ

is the condition number of the problem, and c is a constant
which is independent of the problem parameters.
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⋆Bregman divergences

Table: Bregman functions ψ(x) & corresponding Bregman divergences/distances dψ(x,y)a.

Name (or Loss) Domainb ψ(x) dψ(x, y)

Squared loss R x
2 (x − y)2

Itakura-Saito divergence R++ − log x
x

y
− log

(
x

y

)
− 1

Squared Euclidean distance Rp ∥x∥2
2 ∥x − y∥2

2
Squared Mahalanobis distance Rp ⟨x,Ax⟩ ⟨(x − y),A(x − y)⟩c

Entropy distance p-simplexd
∑
i

xi log xi

∑
i

xi log

(
xi

yi

)
Generalized I-divergence R

p
+

∑
i

xi log xi

∑
i

(
log

(
xi

yi

)
−
(
xi − yi

))
von Neumann divergence S

p×p
+ X log X − X tr (X (log X − log Y) − X + Y)e

logdet divergence S
p×p
+ − log det X tr

(
XY−1

)
− log det

(
XY−1

)
− p

a x, y ∈ R, x,y ∈ Rp and X,Y ∈ Rp×p.
b R+ and R++ denote non-negative and positive real numbers respectively.
c A ∈ Sp×p

+ , the set of symmetric positive semidefinite matrix.
d p-simplexB {x ∈ Rp :

∑p

i=1 xi = 1, xi ≥ 0, i = 1, . . . , p}
e tr(A) is the trace of A.
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⋆Mirror descent [2]

What happens if we use a Bregman distance dψ in gradient descent?
Let ψ : Rp → R be a µ-strongly convex and continuously differentiable function and let the associated Bregman
distance be dψ(x,y) = ψ(x) − ψ(y) − ⟨x − y,∇ψ(y)⟩.
Assume that the inverse mapping ψ⋆ of ψ is easily computable (i.e., its convex conjugate).
▶ Majorize: Find αk such that

f(x) ≤ f(xk) + ⟨∇f(xk),x − xk⟩ +
1
αk

dψ(x,xk) := Qkψ(x,xk)

▶ Minimize

xk+1 = arg min
x

Qkψ(x,xk) ⇒ ∇f(xk) +
1
αk

(
∇ψ(xk+1) − ∇ψ(xk)

)
= 0

∇ψ(xk+1) = ∇ψ(xk) − αk∇f(xk)

xk+1 = ∇ψ⋆(∇ψ(xk) − αk∇f(xk)) (∇ψ(·))−1 = ∇ψ⋆(·)[32].

▶ Mirror descent is a generalization of gradient descent for functions that are Lipschitz-gradient in norms
other than the Euclidean.

▶ MD allows to deal with some constraints via a proper choice of ψ.
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⋆What to keep in mind about mirror descent?

• Approximates the optimum by lower bounding the function via hyperplanes at xt

x

f(x)

x?

• The smaller the gradients, the better the approximation!
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⋆Mirror descent example

How can we minimize a convex function over the unit simplex?

min
x∈∆

f(x),

where
▶ ∆ := {x ∈ Rp :

∑p

j=1 xj = 1,x ≥ 0} is the unit simplex;
▶ f is convex Lf -Lipschitz continuous with respect to some norm ∥ · ∥. (not necessarily L-Lipschitz gradient)

Entropy function
▶ Define the entropy function

ψe(x) =
p∑
j=1

xj lnxj if x ∈ ∆, +∞ otherwise.

▶ ψe is 1-strongly convex over int∆ with respect to ∥ · ∥1.
▶ ψ⋆e (z) = ln

∑p

j=1 e
zj and ∥∇ψe(x)∥ → ∞ as x → x̃ ∈ ∆.

▶ Let x0 = p−11, then dψ(x,x0) ≤ lnp for all x ∈ ∆.
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⋆Entropic descent algorithm [2]

Entropic descent algorithm (EDA)
Let x0 = p−11 and generate the following sequence

xk+1
j =

xkj e
−tkf ′

j(xk)∑p

j=1 x
k
j e

−tkf ′
j

(xk)
, tk =

√
2lnp
Lf

1
√
k
,

where f ′(x) = (f1(x)′, . . . , fp(x)′)T ∈ ∂f(x), which is the subdifferential of f at x.
▶ This is an example of non-smooth and constrained optimization;
▶ The updates are multiplicative.
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⋆Convergence of mirror descent

Problem

min
x∈X

f(x) (8)

where
▶ X is a closed convex subset of Rp;
▶ f is convex Lf -Lipschitz continuous with respect to some norm ∥ · ∥.

Theorem ([2])
Let {xk} be the sequence generated by mirror descent with x0 ∈ intX .
If the step-sizes are chosen as

αk =

√
2µdψ(x⋆,x0)

Lf

1
√
k

the following convergence rate holds

min
0≤s≤k

f(xs) − f⋆ ≤ Lf

√
2dψ(x⋆,x0)

µ

1
√
k

▶ This convergence rate is optimal for solving (8) with a first-order method.
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Supplementary material

Offline policy evaluation
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A primal LP for policy evaluation.

◦ Recall that Qπ(s, a) is a fixed point for the expectation Bellman operator T π .

Qπ(s, a) = (T πQπ)(s, a) = r(s, a) + γ
∑
s′,a′

P(s′|s, a)π(a′|s′)Qπ(s′, a′)

Derivation: ◦ It follows that Qπ belongs to the set given by{
Q ∈ R|S||A| : Qπ(s, a) ≥ r(s, a) + γ

∑
s′,a′

P(s′|s, a)π(a′|s′)Qπ(s′, a′)

}
◦ Therefore, we can write the following program for Qπ :

Qπ = argminQ⟨c,Q⟩

s.t.Q(s, a) ≥ r(s, a) + γ
∑
s′,a′

P(s′|s, a)π(a′|s′)Q(s′, a′) ∀s, a ∈ S × A

◦ The variable c is a vector of dimension |S||A| defined as c(s, a) = (1 − γ)π(a|s)µ(s).
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The corresponding dual LP.

◦ With standard techniques we can derive the following dual formulation over the occupancy measure.

λπ = argmaxλ≥0⟨r, λ⟩

s.t.λ(s, a) = γ
∑
s′,a′

P(s|s′, a′)π(a|s)λ(s′, a′) + c(s, a) ∀s, a ∈ S × A

Remark: ◦ The only feasible point is λπ [22].

◦ We can change the objective without affecting the maximizer.

◦ However, we change the objective value.

◦ Several recent works proposed to add an f -divergence to the objective. [22, 24, 23]

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 29/ 52



A modified Dual LP

Dual LP with f -divergences

λπ = argmaxλ≥0⟨r, λ⟩ −
1
η
Df (λ, λπ̃)

s.t.λ(s, a) = γ
∑
s′,a′

P(s|s′, a′)π(a|s)λ(s′, a′) + c(s, a) ∀s, a ∈ S × A

Remarks: ◦ Notice that the constraints are different from the one used in the LP formulation for REPS.

◦ We use more general f -divergences Df instead than KL divergence.

◦ The center point is λπ̃ as opposed to λk−1.
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Conjugation of functions

◦ Idea: Represent a convex function in max-form:

Definition
Let Q be a Euclidean space and Q∗ be its dual space. Given a
proper, closed and convex function f : Q → R ∪ {+∞}, the
function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx − f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

f(x)

y

T
x

x

0

(0,�f⇤(y))

x̂

y

T
x̂

f(x̂)

Friday, July 11, 14

Figure: The conjugate function f∗(y) is the
maximum gap between the linear function
xTy (red line) and f(x).

Observations: ◦ y : slope of the hyperplane
◦ −f∗(y) : intercept of the hyperplane
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Conjugation of functions

Definition
Given a proper, closed and convex function f : Q → R ∪ {+∞}, the function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx − f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

Properties
◦ f∗ is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.

◦ The conjugate of the conjugate of a convex function f is the same function f ; i.e., f∗∗ = f for f ∈ F(Q).

◦ The conjugate of the conjugate of a non-convex function f is its lower convex envelope when Q is compact:

▶ f∗∗(x) = sup{g(x) : g is convex and g ≤ f , ∀x ∈ Q }.

◦ For closed convex f , µ-strong convexity w.r.t. ∥ · ∥ is equivalent to 1
µ

smoothness of f∗ w.r.t. ∥ · ∥∗.

▶ Recall dual norm: ∥y∥∗ = supx{⟨x,y⟩ : ∥x∥ ≤ 1}.

▶ See for example Theorem 3 in [13].
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Conjugation of functions

Definition
Given a proper, closed and convex function f : Q → R ∪ {+∞}, the function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx − f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

Properties
◦ f∗ is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.

◦ The conjugate of the conjugate of a convex function f is the same function f ; i.e., f∗∗ = f for f ∈ F(Q).

◦ The conjugate of the conjugate of a non-convex function f is its lower convex envelope when Q is compact:

▶ f∗∗(x) = sup{g(x) : g is convex and g ≤ f , ∀x ∈ Q }.

◦ For closed convex f , µ-strong convexity w.r.t. ∥ · ∥ is equivalent to 1
µ

smoothness of f∗ w.r.t. ∥ · ∥∗.

▶ Recall dual norm: ∥y∥∗ = supx{⟨x,y⟩ : ∥x∥ ≤ 1}.

▶ See for example Theorem 3 in [13].
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Fenchel duality of f-divergence

◦ Using Fenchel conjugation, we can rewrite an f -divergence as follows:

Df (λ, λπ̃) =
∑
s,a

λπ̃(s, a)f
(
λ(s, a)

λπ̃(s, a)

)
= max

u

∑
s,a

λ(s, a)u(s, a) − λπ̃(s, a)f⋆ (u(s, a))

where we used the dual function u : S × A → R.
Remark: ◦ When seeing Df (λ, λπ̃) as a function of λ, we have that its Fenchel conjugate is given by the

following expression (Df (·, λπ̃))∗ = ⟨λπ̃ , f∗(·)⟩
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Some additional operators towards the Lagrangian

◦ For compacteness we will consider the Bellman evaluation operator Lπ : RS×A → RS×A

◦ The action on Q(s, a) is

(LπQ)(s, a) = Q(s, a) − γ
∑
s′,a′

P(s′|s, a)π(a′|s′)Q(s′, a′)

◦ The adjoint operator L∗
π : RS×A → RS×A

◦ The action on λ(s, a) is

(L∗
πλ)(s, a) = λ(s, a) − γ

∑
s′,a′

P(s|s′, a′)π(a|s)λ(s′, a′)
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The Lagrangian

Derivation: ◦ Thanks to the Bellman evaluation operator we have that

λπ = argmaxλ≥0 min
Q

⟨r, λ⟩ −
1
η
Df (λ, λπ̃) − ⟨Q,L∗

πλ⟩ + ⟨Q, c⟩

◦ Rearranging the terms:

λπ = argmaxλ≥0 min
Q

⟨r − LπQ,λ⟩ −
1
η
Df (λ, λπ̃) + ⟨Q, c⟩

◦ Exchanging max and min by strong duality:

Qπ = argminQ max
λ≥0

⟨r − LπQ,λ⟩ −
1
η
Df (λ, λπ̃) + ⟨Q, c⟩

◦ Recognizing the Fenchel dual:

Qπ = argminQ⟨λπ̃ , f∗(η(r − LπQ))⟩ + ⟨Q, c⟩

◦ We derived the formulation used in AlgaeDICE for policy evaluation.
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LP with function approximation

a.k.a. Approximate Linear Programming (ALP)
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Scaling up primal-dual π-learning

Large-scale MDPs ⇒ Large-scale optimization

◦ Parameterize λ and V via linear functions

▶ λν = Ψν, for some feature matrix Ψ ∈ R|S|A||×n

▶ Vθ = Φθ, for some feature matrix Φ ∈ R|S|×m

Assumption: The columns of Ψ are probability distributions.

Relaxed saddle point formulation

min
θ

max
ν∈∆[n]

(1 − γ)⟨µ , Φθ⟩ + ⟨ν , Ψ⊺(r + γPΦθ − EΦθ)⟩
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Scaling up primal-dual π-learning(cont’d)

Relaxed saddle point formulation

min
θ

max
ν∈∆[n]

(1 − γ)⟨µ , Φθ⟩ + ⟨ν , Ψ⊺(r + γPΦθ − EΦθ)⟩

◦ Primal-dual updates:

▶ θk+1 = θk − η
(

(γPΦ − EΦ)⊺Ψνk + Φ⊺µ
)

,

▶ νk+1 ∝ νk ⊙ eηΨ⊺(r+γPΦθk−EΦθk).

◦ Implementable with only sample access to the columns of Ψ and the transition law P [Chen et al. 2018] [5].

▶ O
(
nm log( 1

δ
)

(1−γ)4ε2

)
samples for finding an ε+ εapprox-optimal policy with probability at least 1 − δ.

▶ εapprox captures the expressivity of the approximation architecture.
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Prior works in ALP - Linear function approximation

Large-scale MDPs ⇒ Large-scale optimization

◦ Reduce the number of decision variables by projecting onto a lower-dimensional subspace.

▶ Let ϕ1, . . . , ϕk : S → R be k basis functions (or features).

▶ Φ :=
[
ϕ1 . . . ϕk

]
∈ R|S|×k is the corresponding feature matrix.

▶ The (ALP) is obtained by adding the linear constraint V = Φθ =
∑k

i=1 θiϕi to the original primal LP (P).

Approximate linear program [Schweitzer & Seidman 1982] [34]

min
θ∈Rk

(1 − γ)
∑
s∈S

µ(s)(Φθ)(s)

s.t. (Φθ)(s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)(Φθ)(s′), ∀ s ∈ S, a ∈ A.
(ALP)
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Prior works in ALP - Linear function approximation (cont’d)

Assumptions: ◦ The set {ϕ1, . . . , ϕk} is linearly independent.

◦ 1 ∈ span
(

{ϕ1, . . . , ϕk}
)

:= {Φθ | θ ∈ Rk}. This ensures that (ALP) is feasible [6] .

◦ The values
∑

s′∈S P(s′|s, a)ϕi(s′) and µ⊺ϕi, i = 1, . . . , k, can be accessed in O(1) time.

Quality of the approximate solution (Th.2 in [De Farias & Van Roy 2003] [6])

∥V ⋆ − V
⋆

ALP∥1,µ ≤
2

1 − γ
min
θ

∥V ⋆ − Φθ∥∞.︸                        ︷︷                        ︸
εapprox: approximation error

Notation: ◦ θ⋆ALP is optimal to (ALP) and V ⋆ALP = Φθ⋆ALP is the approximate value function.

◦ ∥V ∥1,µ :=
∑

s∈S µ(s)|V (s)| is the µ-weighted ℓ1-norm, where µ > 0.

◦ Φθ⋆ is the ∥ · ∥∞-norm projection of V ⋆ to the subspace V = Φθ.

◦ εapprox := minθ ∥V ⋆ − Φθ∥∞ = ∥V ⋆ − Φθ⋆∥∞ is called the approximation error.
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Prior works in ALP - Linear function approximation (cont’d)

Quality of the approximate solution

∥V ⋆ − V
⋆

ALP∥1,µ ≤
2

1 − γ
εapprox.

Remarks:

◦ εapprox = minθ ∥V ⋆ − Φθ∥∞ captures the
approximation power of the feature map.

◦ If V ⋆ ∈ span
(
ϕ1, . . . , ϕk

)
, then V ⋆ = Φθ⋆ALP.

◦ In general, ∥V ⋆ − V ⋆ALP∥1,µ = O(εapprox).

◦ Focus on finding a good basis, leaving the search
of the “right” weights to an LP solver.

Figure: Graphical interpretation of ALP [6]
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Prior works in ALP - Constraint sampling
◦ Reduce the number of constraints by constraint sampling.

▶ (x, a) is treated as an uncertainty parameter.

▶ S × A is the uncertainty space.

▶ P is a probability distribution on S × A.

▶ {(si, ai)}Ni=1 i.i.d. samples on (S × A, P).

▶ N ⊂ Rk is a bounding set.

▶ The relaxed LP (RLP) is obtained from (ALP) by restricting θ ∈ N with N sampled constraints.

Relaxed linear program [De Farias & Van Roy 2001] [7]

min
θ∈N

(1 − γ)
∑
s∈S

µ(s)(Φθ)(s)

s.t. (Φθ)(si) ≥ r(si, ai) + γ
∑
s′∈S

P(s′|si, ai)(Φθ)(s′), ∀ i = 1, . . . , N.
(RLP)

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 42/ 52



Prior works in ALP - Constraint sampling (cont’d)

Assumptions: ◦ The set N ⊂ Rk is compact, i.e., bounded and closed.

◦ The optimal solution θ⋆ALP to (ALP) is in N .

◦ The sampling probability distribution is P ∝ λπ
⋆ , i.e., the state-action visitation

distribution induced by an optimal policy π⋆.

How many samples give a good solution (Th.3.1 in [De Farias & Van Roy 2004] [7])
Let ε, δ ∈ (0, 1). If N ≥ Õ

( 4k log( 1
δ

)
(1−γ)ε

supθ∈N ∥V ⋆−Φθ∥∞
µ⊺V ⋆

)
, then with probability at least 1 − δ, we have

∥V ⋆ − V
⋆

RLP∥1,µ ≤ ∥V ⋆ − V
⋆

ALP∥1,µ + ε∥V ⋆∥1,µ,

where the probability is taken over the random sampling of constraints.

Notation: ◦ θ⋆RLP is optimal to (RLP) and V ⋆RLP = Φθ⋆RLP is the approximate value function.

◦ ε ∈ (0, 1) is the desired approximation accuracy.

◦ δ ∈ (0, 1) is the desired confidence level.
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Prior works in ALP - Constraint sampling (cont’d)

Remarks: ◦ (RLP) is a relaxation of (ALP).

◦ The constraint θ ∈ N ensures that the optimal value of (RLP) is bounded.

◦ The relaxed linear program (RLP) is random.

◦ θ⋆RLP and V ⋆RLP = Φθ⋆RLP are random variables.

◦ A lower bound on the number of samples needed to achieve an ε-accurate solution with
probability at least 1 − δ, is called the sample complexity of the problem.

◦ The sample complexity bound depends on the choice of the bounding set N .

◦ The sample complexity bound requires access to samples from the optimal state-action
visitation distribution (which is not known a priori).
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Common theme of all prior ALP works

◦ Reduce the number of decision variables by projecting on a low-dimensional subspace.

◦ Reduce the number of constraints (e.g., by constraint sampling).

◦ Solve the resulted LP with generic solver.

◦ Analyze the quality of the approximate solution.

◦ Either scale badly with the size of the state-action spaces or

◦ Require access to samples from a distribution that depends on the optimal policy.

◦ Require knowledge of dynamics or access to a simulator.

◦ Focus mainly on the approximation of the optimal value function but not so much on extracting a nearly
optimal policy.
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Off-policy reinforcement learning (aka batch reinforcement learning)

◦ Learn to control from a previously collected dataset.

◦ Important for safety-critical applications, where deploying a suboptimal policy during learning is impossible.

▶ Think about drug testing.

Remarks: ◦ This setting is distinct from IRL, where the data is given by an “expert” policy.

◦ In this setting, we do have access to a reward signal from previous experience.

◦ We assume that the data covers the state-action space sufficiently well.
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Off-policy reinforcement learning: The formalism

◦ In off-policy RL, we focus on the usual objective, which is:

J(π) = Es∼µ

[
∞∑
t=0

γtr(st, at) | s0 = s, π

]
.

◦ However, we assume access only to samples from a fixed policy π̃.

Remarks: ◦ The policy π̃ represents the policy previously used to collect the experience dataset.

◦ In drug testing, π̃ may represent the policy used by the human doctors (not necessarily optimal).
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A useful subproblem: Offline policy evaluation

◦ We saw that often we find an optimal policy via learning the state-action value function:

Qπ(s, a) = E

[
∞∑
t=0

γtr(st, at) | s0 = s, a0 = a, π

]
.

◦ However, we assume access only to samples from a fixed policy π̃.

◦ Estimating Qπ(s, a) using samples from π̃ is known as offline policy evaluation.

◦ Next, we derive a convex programming approach to compute Qπ(s, a).

Self-study: ◦ Compare to the derivation of the Primal LP to compute V ⋆.
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An offline policy evaluation (OPE) approach

OPE via f -divergences
Let g be the convex conjugate of an f -divergence. [22] proposes to use the following formulation via Qπ :

Qπ = argminQEλπ̃g(r − LπQ) + (1 − γ)⟨Q, c⟩, (OPE)

where c(s, a) = π(a|s)µ(s) is the joint state-action distribution.

Remarks: ◦ Recall the operator Lπ :

(LπQ)(s, a) = Q(s, a) − γ
∑
s′,a′

P(s′|s, a)π(a′|s′)Q(s′, a′).

◦ The problem (OPE) is convex and smooth in Q because g is convex.

◦ The problem (OPE) is unconstrained and g acts like a loss function.

◦ A biased objective estimate can be obtained by sampling from c and λπ̃ .

◦ The name offline comes from not needing samples from λπ .
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From policy evaluation to policy optimization

AlgaeDICE [24]
Maximizing (OPE) objective over π gives us a policy optimization objective, dubbed as AlgaeDICE:

π⋆ ∈ argmaxπ min
Q

(1 − γ)⟨c,Q⟩ + Eλπ̃g (r − LπQ).

Remarks: ◦ We only need to sample from the initial distribution µ, the policy π, and the offline policy π̃.

◦ We only interact with the environment via π̃.
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An alternative offline policy evaluation from the Lagrangian perspective [35]

◦ The approach in [35] PRO-RL exploits the Lagrangian of (LP) formulation.

◦ It has the same underpinnings of REPS adapted for the offline RL.

PRO-RL [35]
Let h be a strongly convex function. The PRO-RL approach uses the following formulation:

max
λ∈∆

min
V

⟨λ, r + γPV − V ⟩ + (1 − γ)⟨µ, V ⟩ −
1
η
E(s,a)∼λπ̃

(
h
( λ(s, a)
λπ̃(s, a)

))
.

Remarks: ◦ The inner product with λ are equivalent to expectations with samples drawn from λ:

⟨λ, r + γPV − V ⟩ = E(s,a)∼λ [r(s, a) + γPV (s, a) − V (s)] .

◦ [35] proposes to optimize an empirical objective obtained from samples.

◦ AlgaeDICE is a Q-based offline RL approach, whereas PRO-RL is value-based.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 51/ 52



Guarantees for PRO-RL

Algorithm Main assumptions Samples for ϵ-optimal policy

PRO-RL λ⋆(s,a)
λπ̃(s,a) ≤ B < ∞, h(·) is Mh-strongly convex O

(
B|S|

(1−γ)4ϵ6Mf

)

Remarks: ◦ The assumption λ⋆(s,a)
λπ̃(s,a) < ∞ has the interpretation that the occupancy measure λπ̃ has

support larger than the support of the optimal occupancy measure λ⋆.

◦ The sample complexity gurantees worsen as B increases.

◦ That means that the more “different” λπ̃ and λ⋆ are, the more samples are required.
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