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License Information for Reinforcement Learning (EE-568)

> This work is released under a Creative Commons License with the following terms:
> Attribution

> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

> Non-Commercial
> The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the
work for commercial purposes — unless they get the licensor’s permission.
> Share Alike

> The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor's work.

> Full Text of the License
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Recap: Policy optimization
o The objective of reinforcement learning in terms of the policy parameters is given by the following:

max J(m9) = E | > y'r(se,ar)|so ~ 1m0 | = Banu[V ().
t=0

Tabular parametrization Non-tabular parametrization

> Direct parameterization: > Softmax parameterization:

exp(fo(s, a))

7(als) = 0s,a, with 05,4 > 0, Os,a = 1. = .
s,a s,a Za s,a 776(a|3) ZGIGA exp(fe (57 a/))

> Softmax parameterization:
= > Gaussian parameterization:

exp(0s,a)
mg(als) = m~ mg(als) ~ N (},69(8)70'3(8)) .
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Recap: Policy gradient methods

o The exact policy gradient method is a special case of the stochastic policy gradient method.

Stochastic policy gradient method

By stochastic policy gradient method, we mean the following update rule:
014_1 — 0 + atﬁgJ(ﬂ‘gt%

where @9J(7r9t) is a stochastic estimate of the full gradient of the performance objective and is used in
> REINFORCE [18]
> REINFORCE with baseline [18]
> Actor-Critic [11]
>
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Previous lecture

o In the previous lecture, we answered the following two questions.

Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?

Question 2 (Vanishing gradient)

How to avoid vanishing gradients and further improve the convergence?
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Previous lecture

o In the previous lecture, we answered the following two questions.

Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: o Optimization wisdom: GD/SGD can converge to the global optima for “convex-like” functions:
J(m*) = J(m) = O(|[VJI(m)][) or O([G(m)I])

o Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.

Question 2 (Vanishing gradient)

How to avoid vanishing gradients and further improve the convergence?
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Previous lecture

o In the previous lecture, we answered the following two questions.

Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?
Remarks: o Optimization wisdom: GD/SGD can converge to the global optima for “convex-like” functions:
J(m*) = J(m) = O(|[VJI(m)][) or O([G(m)I])

o Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.

Question 2 (Vanishing gradient)

How to avoid vanishing gradients and further improve the convergence?

Remarks: o Optimization wisdom: Use divergence with good curvature information.

o Take-away: Natural policy gradient achieves a faster convergence with better constants.
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This lecture

o In this lecture, we will answer the following questions.

Question 3 (theory)
o Why does NPG achieve a better convergence?

o How can we further improve the algorithm?

o To answer Question 3, we first revisit some optimization background (next few slides).
Question 4 (practice)

o How do we extend the algorithms to function approximation settings?

o How do we extend the algorithms to online settings without computing exact gradient?

o How do we extend the algorithms to off-policy settings?

o To answer Question 4, we will have a look at recent papers (second part of this lecture).
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The algorithmic path towards an understanding

o We will discover NPG and the two closely related algorithms: TRPO and OPPO.
o We will study the implications of advantage estimation and exploration in their convergence.

o We will further discuss the successful PPO algorithm.

Algorithm Convergence rate Unknown transitions | Hard environments
Vanilla PG [16] 0 (%) X x
Tabular NPG [2] o (ﬁ) X
Sample-based NPG | O (117 A/ %‘N + J@) X
OPPO [5] o (%ﬂ:‘)‘w)
Remarks: o Here are the key quantities in the table:

> ¢ = [ming+ 7r(9t(a*(s)|5)r1 >0

*

Am
L

> k= is larger when it is harder to explore and is possibly co.

oo
> estat is the statistical error incurred in estimating the advantage function A™.
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Revisiting gradient descent

o Consider the optimization problem min, cza f(x).

> Gradient descent (GD):
Xt+1 = Xt — NVxf(xt).

> Equivalent regularized form:
. T 1 9
Xt41 :argmm{vxf(xt) (x—xz)+—||x—sz2}.
b s 2’!7
> Equivalent trust region form:

X¢4+1 = argmin fo(xt)—r(x —xt), s.t. ||x —x¢|l2 < ||V f(xt)]-
xX

Question: o Would GD give the same trajectory under invertible linear transformations (x — Ax)?

IHHEL]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 43



Revisiting gradient descent (cont’d)

X2 V2

X1

Figure: GD is not invariant w.r.t. linear transformations.
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Recall Bregman divergences

Bregman divergence

Let w : X — R be continuously differentiable and 1-strongly convex w.r.t. some norm || - || on X. The Bregman
divergence D, associated to w is defined as

Dy(x,y) = w(x) —w(y) — Vo) T (x —y),

for any x,y € X.

Examples: o Euclidean distance: w(x) = 2||x[12, D, (x,y) = 3|Ix — y||3.
o Mahalanobis distance: w(x) = %XTQX (where Q = I), Dy, (x,y) = %(x -NTQ(x-y).
. . d d
o Kullback-Leibler divergence: X = {x € R‘i : Zz’:l z; =1}, wx) = Zi:l z;logz;
d

s
D, (x,y) = KL(x|y) := E ‘ 1£E7; log j
i= i
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Background: Mirror descent

Mirror descent (Nemirovski & Yudin, 1983)
For a given strongly convex function w and initialization xq, the iterates of mirror descent [3] are given by
. 1
X¢t1 = arg min{(Vx f(xt), x — x¢) + — Do, (x,%x¢) }-

xeX e

Examples: o Gradient descent: X C R?, w(x) = %||x|

2, Du(x,%1) = 2% — %13
Xe+1 = x(xt — eV f(xt)).

o Entropic mirror descent [3]: X = Ay, w(x) = Zd

i1 Tilog i, Du(x,x¢) = KL(x[x¢)
Xi4+1 X Xt © exp(—1: Vx f(xt)),
where © is element-wise multiplication and exp(-) is applied element-wise.

o Entropic Mirror Descent attains nearly dimension-free convergence [3] (also see Chapter 4 [4]).

o See Lecture 3 Supplementary Material for more details and examples.
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Background: Fisher information and KL divergence

Fisher Information Matrix
Consider a smooth parametrization of distributions 6 — pg(-), the Fisher information matrix is defined as

Fg = E.rp, [Vo log po(2) Ve log pe(2) ).

Remarks: o It is an invariant metric on the space of the parameters.

o Fisher information matrix is the Hessian of KL divergence.

82
Fyy = 202 KL(pg, ||p6)‘9:90 .
o The second-order Taylor expansion of KL divergence is given by

1
KL(pg, o) = 5(9 —00) " Fyy (0 — 60).
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Background: Natural gradient descent

o Consider the optimization problem minyca f(x) and represent x by pg(-).

> Natural gradient descent (Amari, 1998):
0r11 =0 — n(th)Tng(Gt)-

> Equivalent regularized form:
1
Orp1 = argmin { Vo f(0:) " (0 = 0:) + — (0 — 0:) " Fy, (0 — 01) }.
0 2n
> Equivalent trust region form:

1 1
01 = argmin Vo f(0:) (0 = 00), st. —(0—0:) " Fp, (0= 0r) < 5n2vef(et>Tthvef(et).
4
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Natural Policy Gradient (NPG)

Natural Policy Gradient (Kakade, 2002)[9]
Given the reinforcement learning objective maxy J(mwp) := E [Zzo yir(se, at)|so ~ u,ﬂ'g] =Esp[V™0 ()],

the iterates of NPG are given by
Oi41 = 0t + n(Fo,) Vo J(mg,),

where n > 0 is the step-size of the algorithm.
Key elements: o Fy is the Fisher Information Matrix:

Fy=E [Vg log g (als) Vg log 7rg(a|s)T] .

SNAZG,aNTrg(-b)

o Vg J(mg) is the policy gradient, which can be written as follows

1
Vod(mg) = 1~

- o) [A7 (5,0)Vg log mg(als)].

ES~AZ9,a~7r9(-\
o A™9 (s, a) is the advantage function:

AT0(s,a) = Q"0 (s,a) — V™ (s).
o C1 is the Moore-Penrose inverse of a matrix C.
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Interpretation of NPG
o The update rule of NPG can be viewed as solving the quadratic approximation of the problem:

0141 ~ argmax { J(m), s.t. KL (pg, (7)[pa()) < 6},
0
where pg(7) is the probability measure of the random trajectory 7 = (sg, a0, T1,...,...).

Explanation: o Approximate the objective with the first-order Taylor expansion:

J(mg) ~ J(mg,) + VoJ(ma,) " (0 — 64).
o Approximate the constraint with the second-order Taylor expansion (See Slide 11):

1
KL (po, (1) lpo(r)) = 5 (0~ 00)T Fo, (0~ 60) < 5
o Setd = %nQVQf(Ht)TthVQf(Ot) and see Slide 13

Question: o How can we compute the iterates of natural policy gradient efficiently?
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Computing natural policy gradient
o As opposed to naively computing (Fy)TVgJ(mg) in NPG, we will use a key identity.

Equivalent form of NPG (Appendix C.3 [2])

Let w*(#) be such that
(1 =) (Fo) Vo J (mg) = w*(6).

Then, w*(0) is the solution to the following least squares minimization problem:
w*(0) € argminE__, 7y (wTVg log g (als) — A™ (s a))2 (1)
w S~ avmg(c]s) 9 9

where A7 (s, a) is the advantage function A™0(s,a) = Q™0 (s,a) — V70 (s).

Proof:

=0
w* (9)

(-s) [A™0(s,a)Ve, logmg(als)] = 0

2
VU’ESNXZS sa~vtg (+]s) |:(wTV9 log 7T9(a|5) — AT (s, a)) ]

T T
2w*(0) Es~>\2",a~7r9(»\s) [Vg log mg(a|s)Vg log mg(als) ] _ZESNA:",ENW

Fg (1=7)VeJ(mg)

w*(0) = (1 — ) (Fo) Vo J(mp)
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Computing natural policy gradient

o As opposed to naively computing (F3)tVg.J(mg) in NPG, we will use a key identity.

Equivalent form of NPG (Appendix C.3 [2])
Let w*(0) be such that

(1 = 7)(Fp) Vg J (mg) = w*(6).
Then, w*(0) is the solution to the following least squares minimization problem:

* . = 2
w*(0) € argn}inEs~>\Z€,a~w9(.|s) [(wTV@ log mp(als) — A 0(5,(1)) } , (1)

where A7 (s,a) is the advantage function A™0(s,a) = Q™6 (s,a) — V70 (s).

Remarks: o Note that since the update rule of NPG is 0:11 = 0; + n(Fp)tVyJ(7), we can rewrite NPG as:
_ n x
Ory1 = 01 + ——w*(01).
1—vy

o w*(0:) can be obtained by solving (1) via conjugate gradients, SGD, and other solvers.
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Example 1: Tabular NPG under softmax parameterization

o With softmax parameterization, the NPG becomes the policy mirror descent algorithm (Slide 11)

NPG parameter update

o g q 6
Consider the softmax parameterization mg(als) = 720)(;)( S(’;’)
exp ’
@l s,a

and denote m; = mg,, the NPG parameter
update can be simplified to the following:

n

7147”.
1—7

Oi41 =0 +
Proof available in the Supplementary material.

NPG policy update + softmax parametrization = policy mirror descent

In policy space, the induced update corresponds to the following:

GXP(W/(l - 'Y) . ATt (S, a)) wihare Zt(s) _ Za’ exp(et,s,a’)

met1(als) = m(als) AD) S o0 rea /(A7) AT ()
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Example 2: NPG with linear function approximation

o In this case, we can also express the NPG update rule via a regression problem.

NPG parameter update

-
Consider g (als) = % and denote w1 = mg, . In this case we have that

Vo log(mg(als)) = ¢(s,a) — Za, mg(als’)p(s,a’) and consequently:

2

w | $(s.a) = malals)p(s,a’) | =A™ (s,a)

’

w*(f) € argminE
w

smAR? sanm(-]s)
a

Finally, the induced NPG parameter update becomes: 011 = 0; + %w*(@t)

NPG policy update + softmax parametrization = policy mirror descent

Similarly, we can obtain a mirror descent update rule in the policy space.

exp (s (0T ¢(s,)) > exp(0 .00

, where Z;(s) =

me41(als) = we(als) Z:(s) > exp (9t,s,a' T ﬁw*(Qt)Ttb(s,a’))
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Convergence of tabular NPG with softmax parametrization
o Question: In the case of NPG with softmax parametrization, how fast do we converge to the optimal solution?
NPG policy update

Remember that for the softmax parametrization we have:

exp(n/(1 —v) - A™ (s, a))
Zt (S)

me41(als) = me(als)

Convergence of tabular NPG [2]
In the tabular setting, for any n > (1 — v)2log|A| and T > 0, the tabular NPG satisfies

2
J(n*) = J(rp) < ————.
(") = Jrr) < s
Remarks: o Nearly dimension-free convergence, no dependence on |A|, |S].

o No dependence on distribution mismatch coefficient.
o In the case of known environment, 7 = co recovers Policy Iteration (Supplementary material)

Question: o What is the computational cost of this (nearly) dimension-free method?
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Sample-based NPG

o Questions: What if we do not know the environment? Can we estimate A™ (s, a)?

Sample-based NPG
Initialize policy parameter 6y € R%, step size n > 0, a > 0
fort=0,1,...,7 — 1 do {NPG steps}
Initialize wo, denote 7y = my,
forn=0,1,..., N — 1 do {Gradient Descent steps for the regression problem}
Sample s ~ ALt, a ~ mi(-|s)
Estimate A(s, a) {Unbiased estimator of A™t(s,a)}
Update wy11  wn — a(w ! Vg logmi(als) — A(s,a)) - Vg logmi(als) {Gradient Descent step}
end for
Update 0141 = 6 + ﬁwN {NPG step}

end for
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Extra: How to sample from an occupancy measure and estimate A(s,a)?

A

Sampling routine for A7} An estimation routine for Q(s, a)
Input : a policy . Input: a policy 7.
Sample T' ~ Geom(1l — v) and sp ~ p. Sample (s7,ar) ~ ], Initialize Q=o.
fort=0,1,...,7T — 1 do while True do
Sample a; ~ 7(-|s¢). Sample sp41 ~ P(:|sT,ar).
Sample s¢+1 ~ P(:|s¢, at). Sample a1 ~ 7(:|sT).
end for Set Q=Q+ TT41-
Output : (s7,ar). Set T =T+1.
With probility 1 — + terminate.
end while
Output : Q.

Remarks: o See Algorithm 1 in [2].
o We sample from the occupancy measure by generating (s7,ar) with T' ~ Geometric(1 — 7).
o @ is an unbiased estimate of Q(sr,ar).

o Unbiased estimates of V (s1) and A(s7,ar) can be obtained from Q(s, a).
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Convergence of sample-based NPG with function approximation

o We provide convergence guarantees for sample-based NPG in the linear function approximation case.

Convergence of sampled-based NPG (informal)

exp(0 " ¢(s,a))

L = * h i h imal policy.
et g (als) Za/ exp (0T (s,07)) and 0* be the parameters asociated to the optimal policy

1 2log|A|

E ?%1;1 J(mo+) — J(mg, ):| <O ﬁ T + V/Ké€stat + /€bias | »

where €egtat is how close wy is to a w*(0;) (statistical error) and epias is how good the best policy in the class is
(function approximation error).

Remarks: 0 €pias = 0 under the so called “realizability” assumption for the features i.e.,

vrell, 30 st. Q"(s,a)= 9T¢(s,a) Vs,a € S x A.

s

)

oK = ‘ quantifies how exploratory the initial distribution is and might be unbounded

oo

Question: o Can we obtain an algorithm that converges in hard to explore environments (unbounded x)?
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Markov Decision Processes - Experts (MDP-E) [7]

Markov Decision Processes - Experts (MDP-E)
Initialize policy 7, learning rate n
fort=0,1,...,7 — 1 do

Evaluate Q™ (s, a) for every state action pair.

mi4+1(als) o« mi(als) expnQTt (s, a).

end for
Output : A policy sampled uniformly at random from the sequence 7, ..., 7_1.
Remarks: o Check out the course Online Learning in Games!

o MDP-E is a no-regret algorithm for adversarially changing rewards.

o Therefore, it converges to the optimal policy for a fixed reward.
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Exploration in Policy Gradient methods

o When the transition dynamics of the agent are unknown the agent needs to explore the state space.
o Unless the initial state distribution is exploratory enough to guarantee x small.

o Recall that « is a constant appearing in the bound for sample based NPG.

o Can we incorporate exploration techniques in policy gradient?

e.g., e-greedy [17] and UCB [8] (we studied in the first coding exercise.)

175000  ——— g-greedy
e UCB
125000

100000

75000

50000

Reward collected so far

25000

000 025 0% 075 100 125 150 175 200
: 1e6
Iteration
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Recall: Finite Horizon RL

o The agent interacts with the environment for K rounds with horizon H.

o The objective is to find the policy that maximizes Ex [thl r(sh, ah)].

o The optimal policy is non stationary.

o A non stationary policy is a collection of H policies 71,...,7H.

o 1 is used for the first decision, w2 is used for the second decision and so on ....

o The value functions depend on the stage h, that is

H H
Qh(s,a) =Ex [ Z r(spryaps)|sn = s,ap = al, V;7(s) =Ex [ Z T(sprsans)lsh = S}
hi=h hi=h
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Optimistic variant of the Proximal Policy Optimization (OPPO)

o Key idea: Perform updates with optimistic estimates of the value function.
o OPPO resambles NPG/MDP-E but with an optimistic evaluation step.

OPPO [5] (simplified version)

Initialize policy parameter 8y € R%, step size n > 0, a > 0
fort=0,1,...,7 — 1 do

Policy Evaluation
Estimate bonus and transitions bonusy, (s, a) and Py (s’|s, a)

Compute optimistic value functions Q’;L

Policy Improvement
Update policies at every h, s,a with a NPG/MDP-E step

7r2+1(a|s) o wfl(a|s) exp T]Q%(s, a)

end for
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Estimate transition and bonuses

o Compute the empirical average of the transition dynamics.
o Set the function bonus’ib(s, a) proportional to the square root of the inverse number of visits for s, a.

o Intuition: The more often we visit a state, the more we expect the uncertainty to reduce.

Estimating transitions and bonuses

fort=0,1,...,7 — 1 do
for h=0,1,...,H —1do
Visit the state action pair (s}, a},) and next state s} _ .

Update counts Ny, (s}, a}, s} 1) < Nu(s),,af, s}, 1) + 1, N(sj,,a}) < N(s}.a},) + 1.

. . 5 / _ Np(s,a,s’) /
Estimate transtion Py (s'|s,a) = AN CRAEST for all s,a,s’.
Compute exploration bonuses bonusy, (s, a) ~ /71\7(52’“; .

end for
end for

ICHHEE]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 27/ 43



Estimate optimistic value function

o Having estimated P}, (s’|s,a) and the bonus bonus!, (s, a), we can compute Q! (s,a) as follows.

Backward induction to estimate Q°.

Initialize Q% (s, a) = 0.
forh=H,...,1do

Recurse backward to compute Qfl

Qh(s,a) = }(s, @) + bonusf,(s,0) + > _ Pu(s'ls, a)mny1(a']s) Q41 (5", 0)

s’ a’
Qh(s,a) = clip(Qj,(s,a);0, H — h + 1)
end for

Remarks: o If it holds that ’E (Py(s'|s,a) — Py(s']s, a))V(s’)| < bonusy, (s, a), this construction

s/

ensures that Optimism and Bounded Optimism hold.
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Provable exploration in policy gradient

o Optimism means to overestimate the value of Q™ (s,a) at every state action pairs.

o Formally, it means that Qp (s, a) satisfies
‘/}f(s) = Ea~7r(< |s) [Qfl(sv a)]
Qh(s,0) > rh(s,a) + Y P(s'ls,)Vii(s") (Optimism)
S,

o Notice that Q™ (s, a) would be the fixed point of the second expression.

o At the same time we need an estimate that is not too optimistic.

1 (s,a) + Z P(s'|s,a)Vi(s") + 2bonust (s, a) > Q! (s, a) (Bounded Optimism)

o bonust (s, a) needs to be decreasing with the number of visits for (s, a).

o This ensures that Qt (s,a) = Q7" (s, a)
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Benefit of OPPO
o The regret bound of OPPO: 23:1 V*(s1) = V7Tt(s1) < O(Zh L Z bonush(sh,ah))
o Next, one shows that Zh 1 Z bonush(sh,ah) < O(VT).

Theorem
Let 71,72, ..., T the sequence of non stationary policies generated by OPPO. Then it holds that

T
ZV*(sl) ~V™(s1) <O (VT)

t=1

This holds also when the reward function can change adversarially from episode to episode.

Recall convergence of sampled-based NPG

1 2log |A
E[tnli;}J(mg*)—J(ﬂ'gt)}<O ﬁ‘/ g‘ |+\/@+ Vébias |

where x depends on the initial distribution and the environment.

Remarks: o OPPO is much better because it removes the dependence on &.
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Revisiting baselines

o The baselines can be used as a variance reduction mechanism.

o Actually, one can prove which choice for the baseline guarantees minimum variance.

Theorem
Consider the gradient with baseline Vi J(mg) = 221 (QT0 (st,at) — b(st)) Vogmg(at|st) for a trajectory
T ~ pg. Then, b*(s) = argming.g_,p [Var [%0](7’!’0”8]] satisfies

* _ “Qwe(sva) lOgﬂ'g(CL'S)H
) = T Vg mEs)]
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Is it always good to minimize variance?

o The answer is no. Because, reducing the variance of the baseline can hinder exploration.
o As a result, the minimum variance baseline may lead to a suboptimal policy.

o Here we describe the result in [6].

Theorem

Theorem 1 in [6] There exists a three-arm bandit where using the stochastic natural gradient on a softmax
parameterized policy with the minimum-variance baseline can lead to convergence to a suboptimal policy with
positive probability, and there is a different baseline (with larger variance) which results in convergence to the
optimal policy with probability 1.
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Explore the baseline effect

o Three-arm bandit enviroment example:

(a) by = b5 — (b) by = b; (c) b = bj +1/2 (d) b= V™

o The optimal policy plays the action in right corner.
o That is where the trajectories with baselines b; and V™0 converge to .
o In the other cases, there are some trajectories converging to the top corner.

o These results confirm the issue with the minimum variance baseline.
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Unbounded variance case [12]

o Consider a bandit experiment with stochastic rewards with an action dependent distribution R(a).
o A common unbiased estimator is constructed using importance sampling.

o Using an action & ~ 7 and observe r ~ R(a).

(a)

o If we consider an additional baselines, we get the estimator

?la) = 1(a=a)

7la) = 7;l_;l)bl(a, =a)

o The variance is unbounded no matter how b is chosen.
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Popular Baselines

Trust Region Policy Optimization

John Schulman JOSCHU @EECS.BERKELEY.EDU
Sergey Levine SLEVINE@EECS.BERKELEY.EDU
Philipp Moritz PCMORITZ@EECS.BERKELEY.EDU
Michael Jordan JORDAN@CS.BERKELEY.EDU
Pieter Abbeel PABBEEL @CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

TRPO (ICML, 2015)

Proximal Policy Optimization Algorithms
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com
PPO (arXiv, 2017)

OpenAl implementation: https://github.com/openai/baselines
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Trust Region Policy Optimization (TRPO)
o How to choose the step-size of the stochastic policy gradient method? Trust region.

TRPO (key idea) [14]

TRPO computes the marginal benefit of a new policy with respect to an old policy:

mo(als) ,x
0 = E ™ —— AT 9 9
o1 = AEmAX B 7o e, () [ma(a )
st. E__ o, KL(ro(: | 9)llmo, (- | )] < &.
B

where the constraint measures the distance between two policies.

Remarks: o The surrogate objective can be viewed as linear approximation in 7 of J(mg):
1
J(ﬂ-) = J(ﬂt) + EESNAﬁ,aNﬂ'(MS) [Aﬂ-t (57 a)] (PDL)

o It can be approximated by a natural policy gradient step.

o Line-search can ensure performance improvement and no constraint violation.
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TRPO: A detailed look at the implementation

o Compute a search direction, which (almost) boils down to natural policy gradient.

> The first order approximation of the objective.

mo(a | 5)

. T0\a15) 4mo, (s a)| ~ (Vo (61),0 — 0
AR ang, (1) | g (@ | ) t(s,a)| = (Vo J(Ok) k)

> The second order expansion of the constraints

1
E__yror KL(mo (- | s)llmo, (- | )] = 5(6 — 0x) " F(0r)(0 — Ox)
"
o Execute line seach along the direction F(0;)tVyJ(0%).

> Approximations may result in a solution that does not satisfy the origin trust region.

> Select the largest possible step size n that x4 1 = z¢ + nF(0;,)TV.J(6}) satisfies the original constraints:

20
" \/veJ(ek)Tka)TveJ(ek)
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Equivalence between TRPO and MDP-E [7]

o The previous result proves that TRPO produces a monotonically improving sequence of policies [14, Section 3].

o We can prove a stronger result noticing that TRPO is equivalent to MDP-E [13, Section B.3] and [7].
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Proximal Policy Optimization (PP0O2)
o Intuition: The main problem of TRPO lies in numerically computing the Quadratic Program.
o Solution: Theoretical update equation is optimizing in a local region.

PPO uses no formal constraints and instead clips the distance between policies in the loss function.

PPO (key idea) [15]

MA”% (s,a), clip <7T9(a8); 1—¢1+ 5) AT (s, a)}

max E min
o 5~ tanmg, (-]s) {ﬂgt(as) 7o, (als)

Remarks: o PPO penalizes large deviation from the current policy directly inside the objective

. o . mg
function through clipping the ratio o,

l—¢ ifz<l—c¢
clip(z;1—l+e) =< 1+4e¢ ifz>1+¢
x, otherwise
o Run SGD. No need to deal with the KL divergence or trust region constraints.

o Vastly adopted in practice but little is known about its theoretical properties.
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Numerical Performance [15]

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
1000
2000 2500 8000
800
1500
2000 6000
1000 1500 600
4000
500 1000 400
0 500 2000 200
-500
0 0 0
0 1000000 0 1000000 0 1000000 0 1000000
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120 .
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More Applications

The agent learns to run, jump, crouch and climb.

Robots Locomotion Muti-agent Games
Figure: PPO performs well in many locomotion task and games.

o Some links:
> https://www.youtube.com/watch?v=hx_bgoTF7bs
> https://openai.com/blog/openai-baselines-ppo/
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Summary

Vanilla Policy
Gradient

Theory

Natural Policy
Gradient

TRPO

ACKTR & PPO PraCtICG

Figure from Schulman'’s slide on PPO in 2017.

MGl Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfi.ch Slide 42/ 43 EPFL



Summary

Gradient Dominance
Regularization

Policy Optimization Nonconvex Optimization

Vanilla Policy Gradient [16] Gradient Descent
REINFORCE [18] Stochastic Gradient Descent
Natural Policy Gradient [9]
TRPO [1] Mirror Descent
PPO [15]
Conservative Policy Iteration [10] Frank Wolfe
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Supplementary Material
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Tabular NPG under softmax parametrization.

Proof.

We need to show that w*(6;) = A™*t in the case of softmax parametrization. To do so, we will first compute:

Volog(m(als)) = Vo | 0s.a —log | > exp(8aar) | | = esia = molls).

a’

2
In this case, we can check that A™0 € argminy, E,_ ;o 9 ammg(-ls) {(wTVé) log g (a|s) — A™6 (s, a)) }
wo :

because:
(A’TQTVQ log g (als) — A™@ (s, a)) = (A”S—r(eS a —mo(:|s)) — AT (s,a))
= A"0(s,a) — AT0(s,a) +Z7r9a ))ATO (s,a’)
[Def. of A™0 (s,a)] = Z mo(a’|$))(Q™0 (s,a’) — VT (s))

[Def. of V™ (s)] = V™ (s)) — V™0 (s))
=0
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Proof of tabular NPG convergence

Lemma (Policy Improvement)

For any policy m and mi+1 being obtained with NPG in the softmax parametrization setup, we can express the
performance difference as:

J(m) = J(me) = %Esmg [KL(7(:|s)lme(-[s)) — KL(w(-[s)|me+1(:|s)) + log Ze(s)] -

Proof sketch: o Recall from Performance Difference Lemma:
1
J(ﬂ') - J(Trt) = SESNAZ,aNW(a\S)[AWt (S,G)}-

exp(nATt(s,a)/(1=7))
t(s)

mit1(als) Ze(s) .
mt(als)

, we have

o From the update rule ¢ y1(als) = m¢(als)

1—
ATt (s,0) = —

log

o Combing these two equations, we have the above lemma.
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Proof of Tabular NPG convergence (cont’d)

Proof (NPG): o Setting m = 7* in the previous lemma and telescoping fromt =0,...,T — 1

H \

T— T

1 1
§ —J(m) € B g KL (9)mo(19)] + § o 108 Ze(s)]
o Setting m = 741 in the previous lemma, we have

J(meq1) — J(me) > —E__ 741 [log Zi(s)] > TEéwu [log Z:(s)] > 0, V.

sy

SH

o Combining these two equations and the fact that J(7w) > ﬁ implies that

T-1

1 log | Al 1

Nt = J(m) <

TZ () = Jm) s ==+ a7
t=0

IHHE]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 10



NPG in the 1 = co setup.

In the case of being able to compute A™¢, and setting n = oo, we can see that NPG is equivalent to Policy
Iteration (Lecture 2). Taking the NPG update rule for the softmax parametrization to the limit:

exp(n/(l - ’Y)Aﬂt (57 a)) . Ea/ exp(et,s,a’)

s als) = lim m¢(als) -
t+1( ‘ ) n—00 t( ‘ ) Ea/ exp(et,s,a’ + 77/(1 - ’Y)AWt (S,dl))
= lim Tt (CL‘S) 3 exp(et,s,a + 77/(1 - 'Y)Aﬂ-t (57 a)) . Za’ eXp(et,s,a/)
n—oo th_ys,,,, Za’ exp(at’s’a/ +T]/(1 *’7)147\’7:(37(1/))

b (s /(1= ) A™ (5,0)
m
n—o0 Za’ exp(et,s,a/ + 77/(1 - ’Y)ATH (57 a/))

[ lim softmax(n-x); = 1{z; = maxz}] =1 {a = max ATt (s, a’)} .
a

n— 00

This means under n = oo, we have that NPG gives us a greedy policy, where the action taken is given by:

arg max ATt (s,a) = arg max Q™ (s,a’) — V™t (s) = arg max Q7 (s,d),
a a a

which is precisely the update formula for Policy Iteration.

IHHEL]  Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 9/ 10



Proof for the analytical expression with lowest variance.

Proof.

Start noticing that
Var [VoJ(mg)ls] =B [H%J(we)ug \5:| — || [Tod(xo)ls] ||

=& [|[¥0 70| 1s] = [[Earvma1e) (@7 (5007 0 mo el

= ~ 2
Therefore Vj, Var [VgJ(ﬂ'g)|s] = V,,E |:HV9J(71'3)H \s} . Developing the norm squared and differentianting, we
get

V,E [H%Jm)HQ |s} =2 (b(8)Barrg(.1s) [V 108 ma(als)|”] = Bamry(s) [Q7 (5, 0) IV Iog mo(als)[?])

Therefore, the proof is concluded setting b* to minimize the latter expression. m}
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