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Games

◦ The mathematical discussion of games can be traced back to 16th century by Gerolamo Cardano.

◦ From 17th-19th century, many different games are analyzed, such as the card game le Her and chess game.

◦ John von Neumann published the paper On the Theory of Games of Strategy in 1928.

◦ John Nash formalized Nash equilibrium in broad classes of games.

Figure: John von Neumann Figure: John Nash
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Normal form games

◦ What is normal form game?

◦ Equilibria

◦ Dynamics for games

▶ Iterated best response

▶ Fictitious play

▶ Gradient ascent
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Normal form games

◦ There is a set of players/agents: I

◦ Joint action: a = (ai)i, where ai ∈ Ai is the action of agent i ∈ I

◦ Reward/Payoff: ri(a) is the reward received by agent i with a joint action a

◦ The game that can be represented as above is called normal form game

◦ Other types of games:
▶ Extensive form games [12]
▶ Markov games [23]
▶ Continuous action games [17]
▶ Cournot oligopolies [4]
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Strategies

◦ Strategy/Policy: πi ∈ ∆(Ai): πi(ai) is the probability that agent i selects action ai

▶ pure strategy (deterministic policy): only play one action

▶ mixed strategy (stochastic policy): a distribution over the set of actions

◦ Strategy profile: one strategy of each player π = (πi)i

◦ Each player wants to maximize its payoff

◦ The expected payoff of player i when a strategy profile π is used

ri(π) =
∑

a

ri(a)
∏
j∈I

πj (aj) .︸                                         ︷︷                                         ︸
expected payoff

Remark: We will see why mixed strategies can be necessary to consider.

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 58



A special case: Two-player games

◦ The game with two players

◦ The payoffs of two player normal form games can be represent with matrix forms

◦ Prisoners dilemma [19]: each agent can choose to cooperate or defect

Bob
cooperate defect

Alex cooperate 1/1 −1/2
defect 2/−1 0/0

◦ Example: if Alex plays defect and Bob plays cooperate they receive 2 and -1 respectively.
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A special case: Two-player zero-sum games

◦ The sum of two players’ payoffs is zero, i.e., r1(a1, a2) = −r2(a1, a2)

◦ The payoff of a two-player zero-sum normal form game can be represented with a matrix A

◦ A(i, j) is the payoff of player 1 (loss of player 2) when choosing i-th action and player 2 chooses its j-th action

◦ The expected payoff of player 1 / loss of player 2:

r1(π1, π2) = (π1)⊤Aπ2

◦ Player 1 wants to maximize (π1)⊤Aπ2 and player 2 wants to minimize it
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Response models

◦ What will a player do if other players’ strategies are fixed at π−i ≜ (π1, . . . , πi−1, πi+1, . . . , πn)?

◦ A best response of agent i to the policies of the other agents π−i is a policy πi such that

ri (πi, π−i) ≥ ri

(
π̃i, π−i

)
, ∀π̃i

◦ A softmax response of agent i to the policies of the other agents π−i is a policy πi such that

πi (ai) ∝ exp (βri (ai, π−i))

where β > 0 is a temperature parameter.

Remarks: ◦ When β →∞, the softmax response becomes the deterministic best response.

◦ A best response can be either deterministic or mixed.
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Normal form games

◦ What is normal form game?

◦ Equilibria

▶ Dominant Strategy Equilibrium

▶ Nash Equilibrium

◦ Dynamics for games

▶ Iterated best response

▶ Fictitious play

▶ Gradient ascent
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Dominant strategy equilibrium

◦ A dominant strategy πi for player i is a strategy that is a best response against all π−i

ri (πi, π−i) ≥ ri

(
π̃i, π−i

)
, ∀π̃i, π−i

◦ In a dominant strategy equilibrium, every player adopts a dominant strategy.

◦ Dominant strategy and dominant strategy equilibrium may not exist.

◦ (defect, defect) is a dominant strategy equilibrium in prisoner dilemma game

Bob
cooperate defect

Alex cooperate 1/1 −1/2
defect 2/−1 0/0

◦ Bob can always improve his payoff by defecting (irrespectable of Alex’s strategy)
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Nash equilibrium

◦ In a Nash equilibrium (NE) π⋆, no player can improve its expected payoff by changing its policy

◦ Or we can say, π⋆
i is the best response for each agent i if other agents stick to π⋆

−i.

◦ In NE, we can write for each agent i

ri(π⋆) ≥ ri(πi, π⋆
−i), ∀πi.

◦ All dominant strategy equilibria are Nash equilibria (the reverse does not hold).
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Nash equilibrium - good news

◦ Rock-paper-scissor game

Bob
rock paper scissor

Alex
rock 0/0 −1/1 1/−1
paper 1/−1 0/0 −1/1
scissor −1/1 1/−1 0/0

◦ No dominant strategy equilibrium. No pure NE.

◦ Each player playing a mixed strategy ( 1
3 , 1

3 , 1
3 ) is a NE.

Theorem (Existence of Nash equilibrium [18])
In a normal form game with finite players and actions, there exists a Nash equilibrium in mixed strategies.
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Computing Nash equilibrium

◦ Consider a game with different payoff matrices

r1(π1, π2) = (π1)⊤Aπ2 (player 1)
r2(π1, π2) = (π1)⊤Bπ2 (player 2)

◦ Bad news: Computing mixed NE in normal form games is intractable in general [3, 6].

◦ Good news: However, NE of zero-sum games (A = −B⊤) can be efficiently computed as we will see.
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Nash equilibria in two-player zero-sum games

◦ We can find a Nash equilibrium by solving a minimax formulation

◦ Consider the following bilinear minimax optimization problems

max
π1∈∆d1

min
π2∈∆d2

(π1)⊤Aπ2 (player 1)

min
π2∈∆d2

max
π1∈∆d1

(π1)⊤Aπ2 (player 2)

◦ NE corresponds to (π⋆
1 , π⋆

2) such that

(π1)⊤Aπ⋆
2 ≤ (π⋆

1)⊤Aπ⋆
2 ≤ (π⋆

1)⊤Aπ2, ∀π1, π2

◦ It is also called a saddle point for the function f(π1, π2) = (π1)⊤Aπ2.
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Connection with minimax optimization

◦ More generally (x⋆, y⋆) is called a saddle point for f if

f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆) (1)

Theorem (Minimax theorem)
Let X ∈ Rd1 and Y ∈ Rd2 be compact convex sets. If f : X × Y → R is a continous function such that f(·, y)
is convex for any y and f(x, ·) is concave for any x then

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y). (minimax equality)

Proposition: ◦ (x⋆, y⋆) is a saddle point for f if and only if the minimax equality holds and

x⋆ ∈ arg min
x∈X

max
y∈Y

f(x, y), y⋆ ∈ arg max
y∈Y

min
x∈X

f(x, y).
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Normal form games

◦ What is normal form game?

◦ Equilibria

▶ Dominant Strategy Equilibrium

▶ Nash Equilibrium

▶ Correlated Equilibrium

◦ Dynamics for games

▶ Iterated best response

▶ Fictitious play

▶ Gradient ascent
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Iterated best response

◦ Each player iteratively find the best response to other player’s strategies

Iterated best response (IBR)
for t = 1, ... do

Each player i updates its strategy πt+1
i such that

ri

(
πt+1

i , πt
−i

)
≥ ri

(
πi, πt

−i

)
, ∀πi

end for

Remark: ◦ Players can update simultaneously or sequentially.
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Non-convergence of iterated best response - bad news

◦ Starting from (T,L), two players update simultaneously.

◦ After 2 iterations, it arrives NE (B,R).
Player Y

L R

Player X
T 1/2 3/1
B 2/1 4/3

◦ Starting from (A, B), two players update simultaneously.

◦ (A,B) → (B,A) → (A,B)→...

◦ It avoids NEs (A,A) and (B,B).

Player Y

A B

Player X
A 1/1 0/0
B 0/0 1/1
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Convergence of IBR in potential games - good news

◦ The potential function for a game is a function Φ : A → R such that

ri (ai, a−i)− ri

(
ãi, a−i

)
= Φ (ai, a−i)− Φ

(
ãi, a−i

)
, ∀ai, ãi ∈ Ai, a−i ∈ A−i.

◦ A game with a potential function is called potential game [16].

Player Y
cooperate defect

Player X
cooperate 1/1 −1/2

defect 2/−1 0/0

Table: Prisoner’s dilemma

Player Y
cooperate defect

Player X
cooperate Φ = 0 Φ = 1

defect Φ = 1 Φ = 2

Table: Potential function

Proposition
If a potential game is finite, it has at least one pure Nash equilibrium. If players use iterated best response
sequentially (or one at a time), the dynamic will terminate at a NE after finite step.
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Fictitious play

◦ Feedback:
▶ In fictitious play each agent i counts opponent’s actions Nt(j, aj) for j , i.
▶ The initial counts N0(j, aj) can be based on agents’ initial guess.

◦ Behavioural assumption:
▶ Each agent i assumes its opponents are using a stationary mixed strategy.
▶ This fixed mixed strategy results in the empirical distribution of their actions

π̃t
j(aj) =

Nt(j, aj)∑
āj ∈Aj

Nt(j, āj)
.

◦ Each agent i maximizes their reward assuming other agents are playing π̃
t
−i.

at+1
i = arg max

ai

ri(ai, π̃
t
−i).
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Non-convergence of fictitious play - bad news

◦ Fictitious play is not guaranteed to converge.

◦ Consider the following game (also known as the Shapley game [22]):

Player Y
Left Center Right

Player X
Top 0/0 1/0 0/1
Middle 0/1 0/0 1/0
Bottom 1/0 0/1 0/0

Table: Sharpley’s dilemma

◦ The policy cycles: (T, C)→ (T, R)→ (M, R)→ (M, L)→ (B, L)→ (B, C)→ (T, C)→ . . .

◦ After one play stays on a wining position long enough, the other player will change its action.

◦ Empirical distributions do not converge.
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Convergence of fictitious play in some games - good news

◦ Fictitious play converges for two-player zero-sum games

Theorem ([20])
For two-player zero-sum games the empirical distribution of fictitious play converges to a NE, i.e.
(π̃t

1, π̃t
2)→ (π⋆

1 , π⋆
2) where (π⋆

1 , π⋆
2) is a NE.

Karlin’s conjecture [7]
The convergence rate of fictitious play for zero-sum games is O(1/

√
T ).

Remark: ◦ Still an open problem
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Gradient ascent

◦ Feedback:
▶ Assume agent i has access to all other mixed strategies πj for j , i.

◦ Take the gradient of value function at πt: ∂ri(π)
∂πi(ai)

∣∣
π=πt

.

◦ Apply gradient ascent to each agent with a step-size αi

πt+1
i (ai) = πt

i (ai) + αt
i

∂ri (π)
∂πi (ai)

∣∣∣
π=πt

.

◦ Project πt+1
i to ensure a valid probability distribution.

◦ Note that

∂ri (π)
∂πi (ai)

∣∣∣
π=πt

=
∂

∂πi(ai)

(∑
a

ri(a)
∏

j

πj (aj)

)∣∣∣∣∣
π=πt

=
∑
a−i

ri (ai, a−i)
∏
j,i

πt
j (aj) .
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Gradient ascent in two-player zero-sum games

◦ The bilinear minimax optimization
min

π2∈∆d2
max

π1∈∆d1
(π1)⊤Aπ2

◦ Gradient ascent (also called gradient descent ascent or GDA in this case)

πt+1
1 = P∆d1

(
πt

1 + αt
1Aπt

2
)

,

πt+1
2 = P∆d2

(
πt

2 − αt
2A⊤πt

1
)

.

◦ Gradient descent ascent with constant stepsizes (i.e. αt
1 = α1 and αt

2 = α2) does not always converge

...for bilinear minimax optimization [11].
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Gradient ascent in two-player zero-sum games - non-convergence

◦ The function f(x, y) = xy has saddle point (0, 0).

◦ GDA update xt+1 = xt − αyt, yt+1 = yt + αxt

◦ Since x2
t+1 + y2

t+1 = (1 + α2)(x2
t + y2

t ), it does not converge to the saddle point.

◦ GDA with constant stepsize may not converge even if f(x, y) is convex-concave!
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Extra-gradient - a simple fix to GDA
◦ Minimax optimization:

min
x∈X

max
y∈Y

f(x, y).

◦ Extra-gradient (EG) update:

xt+ 1
2

= PX

(
xt − α∇xf(xt, yt)

)
, yt+ 1

2
= PY

(
yt + α∇yf(xt, yt)

)
xt+1 = PX

(
xt − α∇xf(xt+ 1

2
, yt+ 1

2
)
)

, yt+1 = PY

(
yt + α∇yf(xt+ 1

2
, yt+ 1

2
)
)
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Convergence of extra-gradient

◦ Assumption 1: f(x, y) is convex-concave,

◦ Assumption 2: f(x, y) is L-smooth,

◦ Assumption 3: D2
X = 1

2 maxx,x′ ∥x− x′∥2 and D2
Y = 1

2 maxy,y′ ∥y − y′∥2 are finite.

Theorem
If the assumptions above holds, then EG with stepsize α = 1

2L
satisfies

f (x̄T , y)− f (x, ȳT ) ≤
2L(D2

X + D2
Y )

T
.

for any x ∈ X and y ∈ Y where x̄T = 1
T

∑T

t=1 xt and x̄T = 1
T

∑T

t=1 yt.

Remarks: ◦ The time average (x̄T , ȳT ) produced by EG converges to a saddle point.

◦ For strongly-convex strongly-concave see Mathematics of Data lecture 14 2022 (EE-556) [2]
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Beyond normal form games / convex-concave

◦ So far focused on normal form games (contained in convex-concave)

General zero-sum games
Consider

min
x∈X

max
y∈Y

f(x, y) (2)

where f(·, y) is nonconvex and f(x, ·) is nonconcave.

Remarks: ◦ If f(x, y) = x⊤Ay and X = ∆ and Y = ∆ this reduces to a normal form game.

◦ x,y can be the parameters of deep neural networks (e.g., generative adversarial networks)
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Beyond normal form games / convex-concave

◦ A Nash equilibrium (NE) is a pair (x⋆, y⋆) ∈ X × Y for which,

f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆) ∀x ∈ X , y ∈ Y (3)

◦ A local Nash equilibrium (LNE) is a pair (x⋆, y⋆) ∈ X × Y for which,

f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆) for all (x, y) in a neighborhood U of (x⋆, y⋆) in X × Y (4)

◦ A first order stationary point (FOSP) is a pair (x⋆, y⋆) ∈ X × Y for which,

∇xf(x⋆, y⋆)⊤(x− x⋆) ≥ 0 ∀x ∈ X

∇yf(x⋆, y⋆)⊤(y − y⋆) ≤ 0 ∀y ∈ Y
(5)

Remarks: ◦ NE ⇒ LNE ⇒ FOSP

◦ In case f is not convex-concave Nash equilibrium may not exist
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Nonconvex-nonconcave - bad news
◦ Computing FOSP is PPAD-complete (similar to NP-completeness) [8]

◦ Large family of methods (including extra-gradient) may not converge to FOSP [14]

◦ Example [14]

f(x, y) = y(x− 0.5) + ϕ(y)− ϕ(x) where ϕ(u) =
1
4

u2 −
1
2

u4 +
1
6

u6 (6)

Figure: Neither last iterate (red) or time average (blue) of extra-gradient does converge to a FOSP.
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Summary

◦ Normal form games:
▶ What is normal form game?
▶ Equilibrium
▶ Algorithms for games

Table: Does the algorithm converge?

Setting (solution concept) Best response Fictitious play GDA Extra-gradient
Potential games (NE) Yes Yes Yes Yes
Normal form games (NE) No No No No
Zero-sum games (NE) No Yes1 Yes2 Yes
general zero-sum games (FOSP) No No No No

Remarks: ◦ All require full access on the payoff vector (oracle based)

◦ Weaker feedback model (loss based):
▶ only access to randomly sampled pure strategy of opponents (e.g. Exp3 [13])

1Rates for fictitious play is still open.
2The time average of GDA converges for an appropriate stepsize selection. However, fixed stepsize does not.
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Markov games

◦ What is Markov game?

◦ Value functions and Nash equilibrium

◦ Algorithms for Markov games

▶ Nonlinear programming

▶ Fictitious play

▶ Policy gradient

▶ Nash Q-learning

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 34/ 58



Markov games

◦ A Markov game (MG) can be viewed as a MDP involving multiple agents with their own rewards

◦ Introduced by L.S.Shapley [23] as stochastic games, referred to with a tuple (S, A, P, r, γ)

◦ A Markov game is an extension of normal form game with multiple stages and a shared state s ∈ S

◦ Joint action: a = (ai)i, where ai ∈ Ai is the action of agent i ∈ I

◦ Transition function: P (s′ | s, a) is the likelihood of transitioning from a state s to s′ under an action a

◦ Reward function: ri(s, a) is the reward received by agent i at state s with a joint action a

◦ Discount factor: γ

◦ Stationary policy: πi(ai | s) is the probability that agent i selects action ai at state s
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An example

◦ Consider the interaction between drivers in the traffic as a Markov game.

© eyetronic, Adobe Stock

▶ agents: commuters/drivers in the traffic
▶ states: locations of all cars
▶ action: which road to drive for each car
▶ reward: negative of time spent on the road
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Normal form games and Markov games

action state transition reward policy multi-stage
Normal form game ai ∈ Ai no no ri(a) πi(a) no

Markov game ai ∈ Ai s ∈ S P (s′ | s, a) ri(s, a) πi(ai | s) yes

◦ We have seen a stateless normal form game: rock-paper-scissors.

◦ We focus on infinite horizon Markov games.

◦ Compared to a normal form game, agents in MG consider not only the current reward of the action...
...but also its effect in the long run!

◦ Compared to an MDP, MG has multiple agents and the reward also depends on other agents’ action.
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Markov games

◦ What is Markov game?

◦ Value functions and Nash equilibrium

◦ Algorithms for Markov games

▶ Nonlinear programming

▶ Fictitious play

▶ Policy gradient

▶ Nash Q-learning
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Value function

◦ Value function: the expected γ discounted sum of rewards for a player i starting from state s,
when all players play their part of the joint policy (πi)i∈I :

V π
i (s) = E

[
+∞∑
t=0

γtri

(
st, at

)
| s0 = s, at ∼ π

(
· | st

)
, st+1 ∼ P

(
· | st, at

)]
.

◦ Action-value function:

Qπ
i (s, a) = E

[
+∞∑
t=0

γtri

(
st, at

)
| s0 = s, a0 = a, at ∼ π

(
· | st

)
, st+1 ∼ P

(
· | st, at

)]
.

Remarks: ◦ Relation between Qπ
i (s, a) and V π

i (s)

Qπ
i (s, a) = ri(s, a) + γ

∑
s′∈S

P
(

s′ | s, a
)

V π
i

(
s′
)

.

◦ Each agent wants to maximize its value.
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Response model – best response

◦ The expected reward to agent i from state s when following joint policy π is

ri(s, π(·|s)) =
∑

a

ri(s, a)
∏
j∈I

πj (aj | s) .

◦ The probability of transitioning from state s to s′ when following π is

P
(

s′ | s, π(·|s)
)

=
∑

a

P
(

s′ | s, a
)∏

j∈I

πj (aj | s) .

◦ Best response policy for agent i is a policy πi that maximizes expected utility given the fixed policies π−i.

◦ This best response can be computed by solving the MDP with

P′
(

s′ | s, ai

)
= P

(
s′ | s, ai, π−i(s)

)
r′ (s, ai) = ri (s, ai, π−i(s)) .
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Nash equilibrium

◦ In a Nash equilibrium (NE) π⋆, no player can improve its value by changing its policy...

...if the other players stick to their policy.

◦ We can also say that π⋆
i is the best policy for agent i if other agents stick to π⋆

−i.

◦ In NE, we can write for each agent i

V π⋆

i (s) ≥ V
πi,π⋆

−i

i (s), ∀πi,∀s ∈ S.

◦ ϵ-Nash equilibrium:
V π

i (s) + ϵ ≥ max
πi

V π
i (s), ∀i, ∀s ∈ S.
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Existence of Nash equilibrium

Theorem (Existence of Nash equilibrium [10])
All finite Markov games with a discounted infinite horizon have a Nash equilibrium.

Exercise: ◦ Show this with the theorem of the existence of Nash equilibrium in the normal form games.

Hint: ◦ Construct a new game between each player-state pair in the original Markov game, i.e. (i, s),
as an agent in the new game. By defining the actions and rewards appropriately show that this
construction is a normal form game representation of the original and thus can use [18].
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Markov games

◦ What is Markov game?

◦ Value functions and Nash equilibrium

◦ Algorithms for Markov games

▶ Nonlinear programming

▶ Fictitious play

▶ Policy gradient

▶ Nash Q-learning
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Fictitious play in Markov games

◦ Feedback (required): Each agent i counts opponent’s actions at state s: Nt(j, aj , s) for j , i, s ∈ S.

◦ Behavioural assumption: Each agent i assumes its opponents use the empirical distribution as the same
stationary mixed strategy

π̃t
j(aj | s) =

Nt(j, aj , s)∑
āj ∈Aj

Nt(j, āj , s)
.

◦ Each agent i considers the following MDP:

Pt
(

s′ | s, ai

)
= P

(
s′ | s, ai, π̃t

−i(s)
)

rt (s, ai) = ri

(
s, ai, π̃t

−i(s)
)

,

and computes
Qt

i(s, ai, π̃
t
−i(·|s)).

◦ Each agent i updates their policy as follows

πt+1
i (s) = arg max

ai

Qt
i(s, ai, π̃

t
−i(·|s)) ∀s ∈ S.
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Policy gradient methods

◦ Also referred to as gradient ascent.

◦ Take the gradient of value function at πt: ∂V π
i (s)

∂πi(ai|s)

∣∣∣
π=πt

.

◦ Apply gradient ascent to each agent

πt+1
i (ai | s) = πt

i (ai | s) + αt
i

∂V π
i (s)

∂πi (ai | s)

∣∣∣∣
π=πt

.

◦ Project πt+1
i to a valid probability distribution.
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Two-player zero-sum Markov games

◦ What is two-player zero-sum Markov games?

◦ Bellman operators in two-player zero-sum Markov games

◦ Algorithms for two-player zero-sum games

▶ Value iteration

▶ Policy iteration and its variants
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Two-player zero-sum Markov games

◦ Two-player zero-sum Markov games are Markov games with two agents.

◦ Sum of two agents’ rewards is 0, i.e. r1(s, a1, a2) = −r2(s, a1, a2) = r(s, a1, a2) for any s ∈ S.

◦ Value function:

V π1,π2 (s) = E

[
+∞∑
t=0

γtr
(

st, at
1, at

2
)
| s0 = s, at

1 ∼ π1 (· | st) , at
2 ∼ π2 (· | st) , st+1 ∼ P

(
· | st, at

1, at
2
)]

.

◦ Agent 1 wants to maximize the value function and agent 2 wants to minimize it.

◦ There exists a unique value for all Nash equilibria [21]

V ⋆(s) = min
π1

max
π2

V π1,π2 (s) = max
π2

min
π1

V π1,π2 (s).
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Applications of two-player zero-sum Markov games

◦ Includes many sequential games. When one wins, the other loses.

◦ Poker.

◦ Tennis.

◦ Go
▶ agents: players
▶ states: the states of the board
▶ action: move in each turn
▶ reward: zero for all non-terminal steps; the terminal reward at the

end of the game: +1 for winning and -1 for losing.
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Two-player zero-sum Markov games

◦ What is two-player zero-sum Markov games?

◦ Bellman operators in two-player zero-sum Markov games

◦ Algorithms for two-player zero-sum games
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Bellman operators in two-player zero-sum Markov games

◦ Let r(s, π1(s), π2(s)) the expected immediate reward/cost (player 1/player 2) at state s under policies π1, π2.

◦ Define the operator Tπ1 as follows:

[Tπ1 V ] (s) = max
π1

min
π2

[
r(s, π1(s), π2(s)) + γ

∑
s′

P(s′ | s, π1(s), π2(s)) · V (s′)

]
◦ Define the operator Tπ2 as follows:

[Tπ2 V ] (s) = min
π2

max
π1

[
r(s, π1(s), π2(s)) + γ

∑
s′

P(s′ | s, π1(s), π2(s)) · V (s′)

]
◦ Tπ1 and Tπ2 are equivalent and we use T ≡ Tπ1 ≡ Tπ2 .

◦ The fixed point of T is V ⋆.
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Two-player zero-sum Markov games

◦ What is two-player zero-sum Markov games?

◦ Bellman operators in two-player zero-sum Markov games

◦ Algorithms for two-player zero-sum games
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Value iteration for two-player zero-sum Markov games

Value iteration for two-player zero-sum Markov games [23]
for each stage t do

Apply the Bellman operator T at each iteration

V t+1 = T V t.

end for

Theorem (Convergence of value iteration)∥∥Vt −V⋆
∥∥

∞
≤ γt

∥∥V0 −V⋆
∥∥

∞
.
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Policy iteration for two-player zero-sum Markov games

◦ π1 is said to be greedy, denoted as π1 ∈ G(V ) if and only if for each state s ∈ S,

π1(·|s) := arg max
π1(·|s)

min
π2(·|s)

[
r(s, π1(s), π2(s)) + γ

∑
s′

P(s′ | s, π1(s), π2(s)) · V (s′)

]

Policy iteration for two-player zero-sum Markov games
for each stage t do

find πt
1 ∈ G(V t−1)

compute V t = minπ2 V πt
1,π2

end for

Remarks: ◦ The first step requires the solution of |S| linear programs.

◦ The second step to compute V t = minπ2 V π1,π2 requires solving
▶ the MDP with transition Ea1∼πt

1(·|s)[P (· | s, a1, a2)], and
▶ the reward −Ea1∼πt

1(·|s)[r(s, a1, a2)].
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Value and Policy Iteration in zero-sum Markov games

Pros
▶ Compute Nash Equilibrium.
▶ Simple to implement.

Cons
▶ Computationally expensive.
▶ Model-based (they need the exact description of the Markov game).

Model-free methods for NE
▶ Policy gradient [5]
▶ Optimistic mirror decent + actor-critic [24]
▶ Natural policy gradient + actor-critic [1]
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Policy gradient in two-player zero-sum Markov games

Policy gradient in two-player zero-sum Markov games [5]
for each stage i = 1 to ... do

A trajectory {(st, αt
1, αt

2)}H−1
t=0 is sampled according to policies πi

1, πi
2.

▶ Player 1 updates πi+1
1 as follows,

πi+1
1 ← Πeucl

[
πi

1+

(
H−1∑
t=0

r(st, αt
1, αt

2)

)
·

H−1∑
t=0

∇ log(πi
1(at

1|s
t)

]
▶ Player 2 updates πi+1

2 as follows,

πi+1
2 ← Πeucl

[
πi

2−

(
H−1∑
t=0

r(st, αt
1, αt

2)

)
·

H−1∑
t=0

∇ log(πi
2(at

2|s
t)

]
where Πeucl[·] is the euclidean projection to the set of policies.

end for
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Policy gradient in two-player zero-sum Markov games

Theorem (Informal, [5])
Policy-gradient in two-player zero-sum games requires O(1/ϵ12.5) stages to converge to an ϵ-Nash Equilibrium.

Policy gradient in two-player zero-sum Markov games
▶ Model-free
▶ Each player needs to learn only her individual experienced payoffs.
▶ Efficient and simple to implement.

Cons
Huge sample-complexity, PL needs to sample O(1/ϵ12.5) trajectories to find an ϵ-NE.
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Other model-free methods for two-player zero-sum Markov games
◦ Recent methods model-free drastically improve on the sample complexity.

Optimistic gradient decent/ascent with actor-critic [24]
▶ At each stage i a trajectory {(st, αt

1, αt
2)}H−1

t=0 is sampled according to πi
1, πi

2.
▶ Agent 1 (resp. agent 2) estimates the Q̂i(s, a1) as follows,

Q̂i(s, a1)←

∑H−1
t=0 1[st = s, at

1 = a1] ·
(

r(at
1, at

2, st) + γV i−1(st+1)
)∑H−1

t=0 1[st = s, at
1 = a1]

← Critic

▶ At each state s, optimistic gradient ascent (descent for player 2) uses Q̂i(s, a) to update πi(·|s).

Convergence [24]
Optimistic gradient decent/ascent with actor-critic in two-player zero-sum games requires O(1/ϵ4) stages to
converge to an ϵ-Nash Equilibrium.

State of the art [1]
Natural policy gradient with actor-critic in two-player zero-sum games requires O(1/ϵ2) stages to converge to
an ϵ-Nash Equilibrium.
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Summary

◦ Markov games
▶ What is Markov game?
▶ Value functions and Nash equilibria
▶ Algorithms for Markov games

◦ Two-player zero-sum Markov games
▶ What is two-player zero-sum Markov games?
▶ Bellman operators in two-player zero-sum Markov games
▶ Algorithms for two-player zero-sum games
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Supplementary Material
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Nonlinear optimization to find NE [9]

◦ Minimizes the sum of the lookahead utility deviations

◦ Constrains the policies to be valid distributions

◦ Assume we know reward and transition functions

minimize
π,V

∑
i∈I

∑
s

(Vi(s)−Qi(s, π(·|s)))

subject to Vi(s) ≥ Qi (s, ai, π−i(·|s)) for all i, s, ai∑
ai

πi (ai | s) = 1 for all i, s

πi (ai | s) ≥ 0 for all i, s, ai,

where Qi(s, π(·|s)) = ri(s, π(·|s)) + γ
∑

s′ P (s′ | s, π(·|s)) Vi (s′).
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Nonlinear optimization: Equivalence between the optimal solution and NE

Theorem (Equivalence between optimal solution and NE[9])
A joint policy π⋆ is a NE with value V ⋆ if and only if (π⋆, V ⋆) is a global minimum to this nonlinear
programming.

Remarks: ◦ The nonlinearity arises in ri(s, π(·|s)) and P (s′ | s, π(·|s)).

◦ The proof of the theorem uses the following lemma.

Lemma
In an MDP, V ⋆ is the optimal value with the optimal policy π⋆ if and only if

V ⋆(s) = r(s, π⋆(·|s)) +
∑
s′∈S

P
(

s′ | s, π⋆(·|s)
)

V ⋆(s′), ∀s ∈ S

V ⋆(s) ≥ r(s, a) +
∑
s′∈S

P
(

s′ | s, a
)

V ⋆(s′), ∀s ∈ S, a ∈ A.
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Nonlinear optimization: Equivalence between the optimal solution and NE

◦ We are ready to prove the theorem.

Proof.
◦ (=⇒) Assume π⋆ is a NE with value V ⋆

1. The second and third constraints hold trivially.
2. The first constraint makes the optimum at least 0.
3. The lemma implies the first constraint is feasible and the objective value at (π⋆, V ⋆) is 0.

◦ (⇐=) Assume (π⋆, V ⋆) is a global minimum to the nonlinear programming
1. The optimum is 0 and is achievable by the reasoning above.
2. By the lemma, three constraints and the objective at (π⋆, V ⋆) being 0 implies that π⋆ is a NE with value

V ⋆.
□
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Policy gradient algorithms in linear quadratic (LQ) games

◦ Generalization of LQR to multiple agents setting

◦ Continuous, vector valued state s ∈ Rm and action space ai ∈ Rdi for agent i.

◦ Linear dynamics for state transition: with matrices A ∈ Rm×m and Bi ∈ Rdi×m

st+1 = Ast +
n∑

i=1

Bia
t
i.

◦ Consider the linear feedback policy ai = πi(s) = −Kis with Ki ∈ Rm×di .

◦ Player i’s loss function is quadratic function: with Qi ∈ Rm×m, Ri ∈ Rdi×di and initial state distribution D0

ℓi(K1, ..., Kn) = Es0∼D0

[
∞∑

t=0

(st)T Qis
t + (at

i)T Ria
t
i

]
.
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Non-convergence of policy gradient algorithms in linear quadratic games

◦ Each player wants to minimize its loss ℓi(K1, . . . , Ki, ..., Kn)

◦ (K⋆
1 , ..., K⋆

n) is a Nash equilibrium if for each agent i

ℓi (K⋆
1 , . . . , K⋆

i , . . . , K⋆
N ) ≤ ℓi (K⋆

1 , . . . , Ki, . . . , K⋆
N ) , ∀Ki ∈ Rdi×m.

◦ Policy gradient algorithms
Kt+1

i = Kt
i − αi

∂ℓi

∂Ki
(Kt

1, ..., Kt
n).

Theorem (Non-convergence of policy gradient in LQ games [15])
There is a LQ game that the set of initial conditions in a neighborhood of the Nash equilibrium from which
gradient converges to the Nash equilibrium is of measure zero.

◦ Remark: When the initial policy is close enough to NE and stepsize is small enough, it still may not converge.
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Non-convergence of policy gradient algorithms in linear quadratic games

◦ Implement policy gradient on two LQ games with two players with dimension d1 = d2 = 1 and m = 2.

◦ Nash equilibrium is avoided by the gradient dynamics.

◦ Players converge to the same cycle from different initializations.
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