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License Information for Reinforcement Learning (EE-568)

▷ This work is released under a Creative Commons License with the following terms:
▷ Attribution

▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

▷ Non-Commercial
▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the

work for commercial purposes – unless they get the licensor’s permission.
▷ Share Alike

▶ The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor’s work.

▷ Full Text of the License
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Literature recap: Overview of reinforcement learning approaches

Value-based RL (Critic)

◦ Learn the optimal value functions V ⋆, Q⋆

◦ Algorithms: Monte Carlo, SARSA, Q-learning, etc.

◦ Use temporal difference (low variance)

◦ Does not scale to large action spaces

Policy-based RL (Actor)

◦ Learn the optimal policy via gradient methods

◦ Algorithms: PG, NPG, TRPO, PPO, etc.

◦ Scales to large or continuous action spaces

◦ High variance, sample inefficiency
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Actor-Critic (AC) methods

◦ AC methods aim at combining the advantages of actor-only methods and critic-only methods.

Interaction of Actor-Critic [25].

◦ The actor uses the policy gradient to update the learning policy.

◦ The critic uses TD learning to estimate the value function.
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EE-568 perspective: Policy improvement updates as bilevel optimization

◦ Recall from Lecture 2 that the policy iteration updates can be written as follows

πk+1(·|s) = argmaxπ∈∆A ⟨π, Qπk
(s, ·)⟩,

▶ Qπk is the fixed point of the operator T πk , i.e. Qπk = T πk
Qπk .

▶ Equivalently, we can write Qπk = argminQ∈R|S||A|∥Q− T πk
Q∥2.

▶ Hence, we can equivalently express the policy improvement update as a bilevel optimization problem

πk+1(·|s) = argmaxπ∈∆A ⟨π, q⋆(s, ·)⟩

s.t. q⋆ = argminQ∈R|S|×|A|∥Q− T πk
Q∥2.

Remarks: ◦ Methods that solve this program with function approximation are known as Actor-Critic methods.

◦ The outer problem updates are called actor updates.

◦ The inner problem updates are called critic updates.
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Actor-Critic methods

◦ Actor-critic algorithms follow an approximate policy gradient:

∇θJ(πθ) ≈
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Qw(s, a)∇θ log πθ(a | s)]

]
.

∇θJ(πθ) ≈
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Aw(s, a)∇θ log πθ(a | s)]

]
.

◦ Actor: adjust the policy parameter θ using policy gradient using the value function estimated by the critic.

◦ Critic: update the parameter w to estimate action-value or advantage function.

Qw(s, a) ≈ Qπθ (s, a)

Aw(s, a) ≈ Qπθ (s, a)− V πθ (s)
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Bias in Actor-Critic methods

◦ Recall action value expression of policy gradient

∇θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Qπθ (s, a)∇θ log πθ(a | s)]

]
.

◦ Policy gradient estimators used by actor-critic algorithms:

∇̂θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Qw(s, a)∇θ log πθ(a | s)]

]
.

◦ Approximating the policy gradient using value function approximation Qw could introduce bias.

◦ Luckily, if the value function approximation Qw is chosen carefully, one may avoid such bias.
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Compatible function approximation theorem

Compatible function approximation theorem [26]
Suppose the following two conditions are satisfied:
◦ Value function approximation at w⋆ is compatible to the policy, i.e.,

∇wQw⋆ (s, a) = ∇θ log πθ(a | s).

◦ Value function parameter w⋆ minimizes the mean-squared error, i.e.,

min
w
E

s∼λ
πθ
µ ,a∼πθ(·|s)[(Qw(s, a)−Qπθ (s, a))2].

Then the policy gradient using critic Qw⋆ (s, a) is exact:

∇θJ(θ) =
1

1− γ
E

s∼λ
πθ
µ ,a∼πθ(·|s)[∇θ log πθ(a | s)Qw⋆ (s, a)].

Remarks: ◦ Proof follows immediately from first-order optimality condition.

◦ Example: Qw(s, a) = ∇θ log πθ(a | s)⊤w.
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Variant I: Online Action-Value Actor-Critic

Online Action-Value Actor-Critic Algorithm
Initialize θ0, w0, state s0 ∼ µ, a0 ∼ πθ0 (· | s0).
for each step of the episode t = 0, ..., T do

Obtain (rt, st+1, at+1) from πθt .

Compute policy gradient estimator: ∇̂θJ(πθt ) = Qwt (st, at)∇θ log πθt (at | st).

Actor update θ: θt+1 = θt + αt∇̂θJ(πθt ).
Compute temporal difference: δt = rt + γQwt (st+1, at+1)−Qwt (st, at).
Critic update: wt+1 = wt − βtδt∇wQwt (st, at).

end for

Remarks: ◦ Uses temporal difference to estimate the value function Qπθ .

◦ Examples for Qw: linear value function approximation Qw(s, a) = ϕ(s, a)⊤w.
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Variant II: Advantage Actor-Critic

Advantage Actor-Critic (A2C)
Initialize θ0, w0, state s0 ∼ µ.
for each step of the episode t = 0, ..., T do

Take action at ∼ πθt (· | st), obtain (rt, st+1).
Estimate advantage function: δt = rt + γVwt (st+1)− Vwt (st).
Compute policy gradient estimator: ∇̂θJ(πθt ) = δt∇θ log πθt (at | st).

Actor update: θt+1 = θt + αt∇̂θJ(πθt ).
Critic update: wt+1 = wt − βtδt∇wVwt (st).

end for

Remarks: ◦ Use Vw(s) to approximate V πθ (s), for instance V w(s) ≈ ϕ(s)⊤w.

◦ Use one step lookahead to estimate Qπθ (st, at) ≈ r(st, at) + γV πθ (st+1).

◦ Use advantage function to approximate the policy gradient.
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Various Actor-Critic extensions

◦ Natural Actor-Critic [16]: use TRPO [22] or NPG[8] to update the actor

◦ Actor-Critic with generalized advantage estimator [23]: generalize advantage function with TD(λ)

Âk
t (st, at) = r(st, at) + γr(st+1, at+1) + · · ·+ γkVw(st+k)− Vw(st)

ÂGAE
t (st, at) = (1− λ)

∑∞

k=1
λk−1Âk

t (st, at)

◦ Soft Actor-Critic [6]: use entropy regularization in the objective to add strong convexity to the upper problem:

max
π
E

[
∞∑

t=0

γtr(st, at) + ρ · H(π(·|st))

]
, where H(π(·|s)) = Ea∼π(·|s)[− log π(a|s)],

where ρ is a smoothing parameter (i.e, smooths the dual).
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Convergence of Actor-Critic methods

Remarks: ◦ The asymptotic analysis of two time-scale actor-critic methods (i.e., limt→∞
αt
βt

= 0) is in [2, 9].

◦ The proof is based on two-time-scale stochastic approximation and ODE analysis.

◦ Finite-sample analyses of actor-critic methods (tabular or LFA) have been studied recently [33].

◦ This work is based on the bilevel optimization perspective; see e.g., [33].
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Deep reinforcement learning = DL + RL

◦ Tabular methods and linear function approximation are insufficient for large-scale RL applications.

◦ Using neural networks seems to be a must.
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Neural networks

◦ Nested composition of (learnable) linear transformation with (fixed) nonlinear activation functions

◦ Example: a single-layer neural network (shallow neural network)

Figure: Networks of increasing width

f(x; W, α) =
m∑

i=1

αi · σ(w⊤
i x)

Activation function σ(·)
◦ Identity: σ(u) = u

◦ Sigmoid: σ(u) = 1
1+exp(−u)

◦ Tanh: σ(u) = tanh(u)
◦ Rectified linear unit (ReLU): σ(u) = max(0, u)
◦ ...

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 14/ 46



Deep neural networks

◦ More hidden layers, different activation functions, more general graph structure ....
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Why neural networks?

◦ Universal Approximation
▶ Any continuous function on a compact domain can be (uniformly) approximated to arbitrary accuracy by a

single-hidden layer neural network with a non-polynomial activation function. [Cybenko, 1989; Hornik et
al., 1989; Barron, 1993]

▶ But the number of neurons can be large.

◦ Benefits of depth
▶ A deep network cannot be approximated by a reasonably-sized shallow network.[34]
▶ For example, there exists a function with O(L2) layers and width 2 which requires width O(2L) to

approximate with O(L) layers [27]. For more refined depth separation results see [20].
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Example: ATARI network architecture

Figure: ATARI Network Architecture for Q(s, a): History of frames as input. One output per action. [12]
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Challenges with training neural networks in RL

◦ Deadly triad: divergence when combining function approximation, bootstrapping, and off-policy learning

◦ Non iid data

◦ Sample inefficiency

◦ High variance

◦ Overfitting

◦ Saddle points

◦ ...
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A summary of the common fixes or RL tricks of the trade

◦ Better data: e.g., experience replay (mix online data and a buffer from past experience)
▶ Reduce correlation, allow mini-batch update
◦ Better objective: e.g., use entropy regularization
▶ Improve optimization landscape, encourage exploration
◦ Better optimizers: e.g., adaptive SGD such as Adam and RMSProp
▶ Adaptive learning rates
◦ Better estimation: e.g., use eligibility traces, target works
▶ Reduce overestimation bias, balance bias-variance tradeoff
◦ Better sampling: e.g., use prioritized replay (sample based on priority)
▶ Prioritize transitions on which we can learn much
◦ Better implementation: e.g., parallel implementation (multithreading of CPU)
▶ Speed up training, reduce correlation, allow better exploration
◦ Better architectures: e.g. dueling networks
▶ Encode inductive biases that are good for RL
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Value-based deep RL

◦ Idea: use neural networks for value function approximation

◦ Recall Q-learning:

Q Learning
Q(st, at) ← Q(st, at) + αt[rt + γ maxa Q(st+1, a)−Q(st, at)]

Q-learning with function approximation
wt+1 ← wt + αt[rt + γ maxa Qwt (st+1, a)−Qwt (st, at)]∇Qwt (st, at)

Remarks: ◦ Note that Q-learning is not a(n unbiased) stochastic gradient descent method.
◦ Naive deep Q-learning could diverge due to sample correlation and moving targets.
◦ Deep Q-Networks (DeepMind, 2015) [12]: combine several techniques for stabilizing Q-learning.
◦ Experience replay (better data efficiency and make data more stationary).
◦ Target networks (prevent target objective from changing too fast).
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Deep Q-Networks (DQN)

◦ Main idea: minimize the following mean-square error by SGD (or adaptive SGD)

min
w

L (w) = Es,a,r,s′∼D

[(
r + γ max

a′
Q(s′, a′; w−)−Q(s, a; w)

)2
]

◦ The target parameter w− is held fixed and updated periodically

Figure: A more general view of DQN. Source: https://zhuanlan.zhihu.com/p/468385820
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Another bilevel interpretation

◦ DQN aims at finding the optimal policy and state action value function directly.
▶ Recall from lecture 2 that π⋆(·|s) = argmaxπ∈∆A ⟨π, Q⋆(s, ·)⟩.

▶ Recall from lecture 2 that we have that Q⋆ = argminQ∈R|S||A|∥Q− T π⋆
Q∥.

◦ These facts lead to the following bilevel optimization problem

π⋆(·|s) = argmaxπ∈∆A ⟨π, Q⋆(s, ·)⟩

s.t. Q⋆ = argminQ∈R|S||A|∥Q− T π⋆
Q∥.

Remarks: ◦ This bilevel problem is more complex than the one in Actor Critic.

◦ The reason is that the inner problem depends on the solution of the outer problem.

◦ This optimization template is implementable if the transition dynamics is known.

◦ DQN attempts to approximately solve this bilevel problem.
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DQN in playing Atari games [12]

Figure: Five Atari 2600 Games: Pong, Breakout, Space Invaders, Seaquest, Beam Rider

Figure: Average total reward for a fixed number of steps.

◦ DQN source code: https://github.com/deepmind/dqn

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 23/ 46

https://github.com/deepmind/dqn


DQN extensions I
◦ Double DQN (DeepMind, 2016) [29]: Use separate networks to select best action and evaluate best action to
reduce overestimation bias

min
w

L (w) = Es,a,r,s′∼D

[(
r + γQ(s′, arg max

a′
Q(s′, a′; w); w−)−Q(s, a; w)

)2
]

Figure: Value estimates by DQN (orange) and Double DQN (blue) on Atari games. The straight horizontal lines are computed
by running the corresponding agents after learning concluded, and averaging the actual discounted return obtained from each
visited state.
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DQN extensions II

◦ DQN with prioritized experience replay [21]: Pri-
oritize transitions in proportion to the absolute Bell-
man error

p ∝
∣∣∣r + γ max

a′
Q(s′, a′; w)−Q(s, a; w)

∣∣∣
◦ Dueling DQN [30]: Split Q-networks into two
streams to estimate value function and advantage
function

Q(s, a; w, α, β) = V (s; w, β) + Ā(s, a; w, α)
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DQN mega extension

◦ Can these extensions be combined? Yes, Rainbow [7]!
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The big zoo of DQN

Plot of median human-normalized score over all 57
Atari games for each agent

◦ Source code: https://github.com/deepmind/dqn_zoo
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Policy-based/Actor-Critic DRL

◦ Combine the actor-critic approach with Deep Q Network

▶ Asynchronous Advantage Actor-Critic (A3C)) [11]
▶ Soft Actor Critic (SAC) [6]
▶ Deep deterministic policy gradient (DDPG) [10]: continuous control
▶ Twin Delayed DDPG (TD3) [4]: continuous control
▶ ....
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A3C [11]

◦ Idea: advantage actor-critic + deep Q-network + asynchronous implementation

Figure: Comparison for DQN and A3C on five Atari 2600 games. 1-step Q means asynchronous one-step Q-learning.
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DDPG [10] and TD3 [4]

◦ DDPG: deterministic policy gradient + deep Q-network
◦ Select action a ∼ µ(s; θ) +N (0, σ2) (add noise to enhance exploration)
◦ Policy update: ∇θJ(θ) ≈ 1

N

∑
i
∇aQw(si, µ(si; θ))∇θµ(si; θ)

◦ TD3: DDPG + clipped action exploration + delayed policy update + pessimistic double Q-learning
▶ Select action a ∼ µ(s; θ) + ϵ, ϵ ∼ clip(N(0, σ2),−c, c)
▶ Delayed policy update: update critic more frequent than policy

Figure: Learning curves for the OpenAI gym continuous control tasks.
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Summary

◦ Deep Value-based Methods
▶ DQN
▶ Double DQN
▶ Dueling DQN
▶ DQN with prioritized experience replay
▶ Rainbow
▶ ....

◦ Deep Policy-based/Actor-Critic Methods
▶ TRPO
▶ PPO
▶ A3C
▶ SAC
▶ DDPG/TD3
▶ ....

Question: So, which one should we choose in practice? when do they work well?
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Deep RL resources

◦ OpenAI Spinning up: https://spinningup.openai.com/

◦ The awesome list of deep RL (libraries and tutorials): https://github.com/kengz/awesome-deep-rl
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Reinforcement learning

◦ Environment: Markov Decision Process (MDP) M = (S,A, T, γ, µ, r)

◦ Agent: Parameterized deterministic policy πθ : S → A, where θ ∈ Θ

Reinforcement learning (RL) game
At time step t = 0: S0 ∼ µ(·)
for t = 1, 2, . . . do:

agent observes the environment’s state St ∈ S
agent chooses an action At = πθ(St) ∈ A
agent receives a reward Rt+1 = r(St, At)
agent finds itself in a new state St+1 ∼ T (· | St, At)
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Exploration vs. exploitation in RL
◦ Challenge: Exploration vs. exploitation!

◦ Objective (non-concave): maxθ∈Θ J(θ) := E

[∑∞
t=1 γt−1Rt

∣∣∣ πθ,M
]

▶ The environment only reveals the rewards after actions

▶ Exploitation: Maximize objective by choosing the appropriate action

▶ Exploration: Gather information on other actions
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An optimization interpretation

◦ Objective (non-concave): maxθ∈Θ J(θ) := E

[∑∞
t=1 γt−1Rt

∣∣∣ πθ,M
]

◦ Exploitation: Progress in the gradient direction

θt+1 ← θt + ηt
̂∇θJ(θt)

◦ Exploration: Add stochasticity while collecting the episodes

▶ noise injection in the action space [24, 10]

a = πθ(s) +N (0, σ2I)

▶ noise injection in the parameter space [18]

θ̃ = θ +N (0, σ2I)
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Reinforcement learning with Langevin dynamics I

◦ Explore via an infinite dimensional concave-problem (linear in p):

maximize
p∈M(Θ)

E
θ∼p

[J(θ)]

◦ M(Θ) is the (infinite dimensional) space of all probability distributions on Θ.

◦ p⋆ = arg maxp E
θ∼p

[J(θ)] is a delta measure centered at θ⋆ = arg maxθ J(θ).
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Reinforcement learning with Langevin dynamics II

◦ Exploit via a well-known entropy smoothing trick:

maximize
p∈M(Θ)

E
θ∼p

[J(θ)] + βH(p)

▶ H(p) = E
θ∼p

[− log p(θ)] is the entropy of the distribution p.

▶ the optimal solution takes the form p⋆
β(θ) ∝ exp

(
1
β

J(θ)
)

.

◦ Our proposal for explore-exploit

▶ Use Langevin dynamics [31] to draw samples from p⋆
β(θ)

▶ Use homotopy on the smoothing parameter β
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Learning robust policies

◦ Why robust RL? In short: Generalization under environmental changes

▶ upshots: self-driving car in varying environmental conditions

▶ trends: from simple parametric models to super expressive neural networks

▶ challenges: computational costs as well as the difficulty of training

◦ Highlight: Robust Adversarial Reinforcement Learning (RARL) [17]

▶ train an agent neural net

▶ train an adversary neural net

▶ setup a minimax game between the two

◦ Several variants exist [14, 32]

◦ Action Robust RL [28]
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Two-Player Zero-Sum Markov Game
◦ Players:

◦ Environment: Markov Decision Process (MDP) M = (S,A, Ā, T, γ, r, µ)

◦ Agent: parameterized deterministic policy πθ : S → A, where θ ∈ Θ

◦ Adversary: parameterized deterministic policy νω : S → Ā, where ω ∈ Ω

Two-Player Zero-Sum Markov Game
At time step t = 0: S0 ∼ µ(·)
for t = 1, 2, . . . do:

both players observe the environment’s state St ∈ S
both players choose the actions At = πθ(St) ∈ A, and Āt = νω(St) ∈ Ā
the agent gets a reward Rt+1 = r(St, At, Āt) while the adversary gets −Rt+1

both players find themselves in a new state St+1 ∼ T (· | St, At, Āt)

◦ Performance objective:

max
θ∈Θ

min
ω∈Ω

J(θ, ω) := E

[
∞∑

t=1

γt−1Rt

∣∣∣ πθ, νω ,M

]
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Robust Adversarial Reinforcement Learning (RARL)
◦ A natural pure strategy-based minimax objective

max
θ∈Θ

min
ω∈Ω

J(θ, ω).

▶ θ: an agent neural net

▶ ω: an adversary neural net

▶ highly non-concave/non-convex objective

◦ Theoretical challenges

▶ a saddle point might NOT exist [3]

▶ no provably convergent algorithm

◦ Practical challenges

▶ the simple (alternating) SGD does NOT work well in practice

▶ adaptive methods (Adam, RMSProp,...) highly unstable, heavy tuning
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RARL: From pure to mixed Nash Equilibrium

◦ Objective of RARL is a pure strategy formulation:

max
θ∈Θ

min
ω∈Ω

J(θ, ω).

◦ A new objective of RARL: Our mixed strategy proposal via game theory

max
p∈M(Θ)

min
q∈M(Ω)

Eθ∼pEω∼q [J(θ, ω)] .

where M(Z) B {all (regular) probability measures on Z}.

◦ Existence of NE (p⋆, q⋆): Glicksberg’s existence theorem [5].
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A re-thinking of RARL via the mixed Nash equilibrium
◦ Upshot: Our mixed Nash Equilibrium proposal ≡ bi-linear matrix games

max
p∈M(Θ)

min
q∈M(Ω)

Eθ∼pEω∼q [J(θ, ω)]

⇕
max

p∈M(Θ)
min

q∈M(Ω)
⟨p, Gq⟩

▶ Caveat: Infinite dimensions!!!

◦ Key ingredients moving forward

▶ ⟨p, h⟩ B
∫

hdp for a measure p and function h (Riesz representation)

▶ the linear operator G and its adjoint G†:

(Gq)(θ) B Eω∼q [J(θ, ω)]

(G†p)(ω) B Eθ∼p [J(θ, ω)] ,

where G :M(Ω)→ F(Θ), and G† :M(Θ)→ F(Ω).
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Training Phase

◦ We use the following special adversary with α = 0.1 (Noisy Action Robust MDP):

Noisy Action Robust MDP Game
for t = 1, 2, . . . do:

both players observe the environment’s state St ∈ S
both players choose the actions At = µ(St) ∈ A, and A′

t = ν(St) ∈ A
the resulting action Āt = (1− α)At + αA′

t is executed in the environment M
the agent gets a reward Rt+1 = r(St, Āt) while the adversary gets −Rt+1

both players find themselves in a new state St+1

◦ We train the policy based on specific environment parameters

◦ i.e., standard relative mass variables in OpenAI gym.
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Testing Phase

◦ Robustness under Adversarial Disturbances (x-axis of the heatmap):

◦ measure performance in the presence of an adversarial disturbance.

◦ Robustness to Test Conditions (y-axis of the heatmap):

◦ measure performance with respect to varying test conditions.
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Experimental evaluation via MuJoCo
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Wrap up!

◦ That’s it folks!

◦ We hope to have made you passioned and skilled to start your project !

◦ If not done yet register your project via the following form https://forms.gle/ssLrrH5FSAGs42wQ6.

◦ From now on Thursdays at 1 pm the TAs will be available to answer your questions.

◦ We can not guarantee support in other time slots.

◦ Please send your poster by 23rd May 2024 via Moodle.

◦ Posters and apero on 30th May 2024! Details will follow.
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Supplementary: Entropic mirror descent iterates in infinite dimension

◦ Negative Shannon entropy and its Fenchel dual: (dz BLebesgue)

◦ Φ(p) =
∫

p log dp
dz

.

◦ Φ⋆(h) = log
∫

eh.

◦ dΦ and dΦ⋆: Fréchet derivatives.1

Theorem (Infinite-dimensional mirror descent, informal)
For a learning rate η, a probability measure p, and an arbitrary function h, we can equivalently define

p+ = MD(p, h) ≡ p+ = dΦ⋆ (dΦ(p)− ηh) ≡ dp+ =
e−ηhdp∫
e−ηhdp

.

Moreover, most the essential ingredients in the analysis of finite-dimensional prox methods can be generalized to
infinite dimension.

◦ Continuous analog of the entropic mirror descent [1]
◦ Mirror-prox also possible [13]

1Under mild regularity conditions on the measure/function.
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Supplementary: Entropic mirror descent in infinite dimension: rates

◦ Algorithm:

Theorem (Convergence Rates)
Let Φ(p) =

∫
dp log dp

dz
. Then

1. Entropic MD ⇒ O(T − 1
2 )-NE.

2. If only stochastic derivatives (Ĝ†p and −Ĝq) are available, then Entropic MD ⇒ O(T − 1
2 )-NE in

expectation.
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Supplementary: Reinforcement learning from human feedback (RLHF) in LLM [35, 15]
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Supplementary: Reinforcement learning from human feedback (RLHF) in LLM [35, 15]
◦ Notation:
▶ Policy: a language model π.
▶ State: input sentence s.
▶ Action: output sentence a, follows distribution π(·|s).
◦ Building LLM - Step 1: Pre-train an LLM based on unlabeled corpus.

◦ Building LLM - Step 2: Supervised fine-tune via collected demonstration, denoted by πSFT.

Figure: Step 2: Supervised fine-tune.
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Supplementary: Reinforcement learning from human feedback (RLHF) in LLM [35, 15]

◦ Building LLM - Step 3: Using RLHF to further improve πSFT based on some data pairs (s, aw ≻ al).
▶ s: “Write me a poem about the history of jazz.”
▶ Generate aw and al according to πSFT(·|s).
▶ aw: “In smoky halls where shadows dance, A rhythm born of circumstance...”
▶ al: “In the heart of New Orleans, where the streets hummed...”
▶ aw ≻ al means aw is better than al, annotated by human preference.
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Supplementary: Reinforcement learning from human feedback (RLHF) in LLM [35, 15]

Figure: Diagram of RLHF, from [19].

◦ The Bradley-Terry (BT) model assumes these pairs follows the distribution p⋆

p⋆(aw ≻ al | s) =
exp (r⋆(s, aw))

exp (r⋆(s, aw)) + exp (r⋆(s, al))
≜ σ(r⋆(s, aw)− r⋆(s, al)). (1)

where σ is the sigmoid function, r⋆ is some unknown latent reward model.

◦ This reward function can be learned by adding a linear layer into πSFT, denoted by rϕ with parameters ϕ.

◦ Given pairs D =
{

s(i), a
(i)
w , a

(i)
l

}N

i=1
(assumed sampled from p⋆), learn rϕ by maximum likelihood.

max L(rϕ) = E(s,aw,al)∼D
[
log σ(rϕ(s, aw)− rϕ(s, al))

]
. (2)
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Supplementary: Reinforcement learning from human feedback (RLHF) in LLM

◦ The learned reward function is used to provide feedback for fine-tuning LLMs (getting a new policy πθ).

max
πθ

LRLHF(πθ) = Ex∼D,y∼πθ(a|s)rϕ(s, a)− βKL(πθ(a | s) || πSFT(a | s))︸                                      ︷︷                                      ︸
ensuring the policy doesn’t change a lot.

= Ex∼D,y∼πθ(a|s) rϕ(s, a)− β(log πθ(a | s)− log πSFT(a | s))︸                                                             ︷︷                                                             ︸
rPPO(s,a)

.
(3)

◦ This process is optimized via PPO with the reward function: rPPO(s, a).
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Supplementary: Direct Preference Optimization (DPO) [19]
◦ In RLHF, we need to first fit an explicit reward model. In DPO, we don’t need.

Figure: Diagram of DPO, from [19].

Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 16/ 17



Supplementary: Direct Preference Optimization (DPO)
◦ We start with Eq. 3 under a general reward function r⋆. It is easy to prove that the optimal solution is:

π⋆(a | s) =
1

Z(s)
πSFT(a | s) exp

( 1
β

r⋆(s, a)
)

, (4)

where Z(s) =
∑

y
πSFT(a | s) exp

(
1
β

r⋆(s, a)
)

is the partition function.

◦ But we can not obtain π⋆(a | s) in this way as it is expensive to estimate Z(s).

◦ Alternatively, let us rearrange Eq. 4 as follows:

r⋆(s, a) = β log
π⋆(a | s)

πSFT(a | s)
+ β log Z(s). (5)

◦ Substituting Eq. 5 into Eq. 1, the partition function cancels out and we get:

p⋆(aw ≻ al | s) = σ

[(
β log

π⋆(aw | s)
πSFT(aw | s)

− β log
π⋆(al | s)

πSFT(al | s)

)]
. (6)

◦ Hence, the object of DPO becomes:

max LDPO(πθ) = −E(s,aw,al)∼D

[
log σ

(
β log

πθ(aw | s)
πSFT(aw | s)

− β log
πθ(al | s)

πSFT(al | s)

)]
. (7)
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