Stencil Lithography

Our aim is to push the limits of shadow-mask surface pattering to reach smaller structures (> 50 nm) and to upscale to larger substrates. We strive to find solutions to challenges such as aperture clogging, gap induced blurring and surface diffusion. Further we develop a so-called dynamic stencil tool where the shadow mask moves with respect to the substrate.

Stencil lithography

The stencil is fabricated and aligned to the substrate Both substrate and stencil are placed into the evaporator The stencil is removed, leaving the patterned substrate

Stencil lithography is a high resolution shadow-mask technique used for structuring surfaces at the micro and nanometer scales. It is a one-step technique that eliminates resist-related processing steps, common otherwise in standard lithography. A stencil (membrane with apertures) is placed (aligned if necessary) and clamped to a substrate. The clamped set is placed in an evaporator and material is despotied through the stencil’s apertures onto the substrate.

Stencil lithography is applicable to deposition, etching and implantation.

Dynamic stencil lithography consists of the relative motion of the stencil to the substrate during deposition or in between deposition steps. This allows the in-situ fabrication of multi-material, multi-layer micro- and nanopatterns.

Keywords: stencil, stencil lithography


Publications

 

Nanobridge Stencil Enabling High Resolution Arbitrarily Shaped Metallic Thin Films on Various Substrates

Y-C. Sun; G. Boero; J. Brugger 

Advanced Materials Technologies. 2022. DOI : 10.1002/admt.202201119.

Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal

Y-C. Sun; G. Boero; J. Brugger 

ACS Applied Electronic Materials. 2021. Vol. 3, num. 12, p. 5423 – 5432. DOI : 10.1021/acsaelm.1c00884.

Biodegradable Frequency‐Selective Magnesium Radio‐Frequency Microresonators for Transient Biomedical Implants

M. Rüegg; R. Blum; G. Boero; J. Brugger 

Advanced Functional Materials. 2019. Vol. 29, num. 39, p. 1903051. DOI : 10.1002/adfm.201903051.

Growth of Large-Area 2D MoS2 Arrays at Pre-Defined Locations Using Stencil Mask Lithography

I. Sharma; Y. Batra; V. Flauraud; J. Brugger; B. R. Mehta 

Journal of Nanoscience and Nanotechnology. 2018. Vol. 18, num. 3, p. 1824 – 1832. DOI : 10.1166/jnn.2018.14265.

Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes

P. Winkler; R. Regmi; V. Flauraud; J. Brugger; H. Rigneault et al. 

The Journal of Physical Chemistry Letters. 2018. num. 9, p. 110 – 119. DOI : 10.1021/acs.jpclett.7b02818.

Growth Of Organic Semiconductor Thin Films with Multi-Micron Domain Size and Fabrication of Organic Transistors Using a Stencil Nanosieve

P. Fesenko; V. Flauraud; S. Xie; E. Kang; T. Uemura et al. 

ACS Applied Materials & Interfaces. 2017. Vol. 9, num. 28, p. 23314 – 23318. DOI : 10.1021/acsami.7b06584.

Shape Memory Micro- and Nanowire Libraries for the High-Throughput Investigation of Scaling Effects

T. Oellers; D. Koenig; A. Kostka; S. Xie; J. Brugger et al. 

Acs Combinatorial Science. 2017. Vol. 19, num. 9, p. 574 – 584. DOI : 10.1021/acscombsci.7b00065.

In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement

V. Flauraud; R. Regmi; P. M. Winkler; D. T. L. Alexander; H. Rigneault et al. 

Nano Letters. 2017. Vol. 17, num. 3, p. 1703 – 1710. DOI : 10.1021/acs.nanolett.6b04978.

Exploring Nanoscale Electrical Properties of CuO-Graphene Based Hybrid Interfaced Memory Device by Conductive Atomic Force Microscopy

B. Singh; B. Mehta; D. Varandani; A. V. Savu; J. Brugger 

Journal of Nanoscience and Nanotechnology. 2016. Vol. 16, num. 4, p. 4044 – 4051. DOI : 10.1166/jnn.2016.10713.

Arrays of Pentacene Single Crystals by Stencil Evaporation

P. Fesenko; V. Flauraud; S. Xie; J. Brugger; J. Genoe et al. 

Crystal Growth & Design. 2016. Vol. 16, p. 4694−4700. DOI : 10.1021/acs.cgd.6b00765.

3D nanostructures fabricated by advanced stencil lithography

F. Yesilkoy; V. Flauraud; M. Rüegg; B. Kim; J. Brugger 

Nanoscale. 2016. Vol. 9, p. 4945 – 4950. DOI : 10.1039/C5NR08444J.

Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films

D. Varandani; K. Agarwal; J. Brugger; B. R. Mehta 

Review Of Scientific Instruments. 2016. Vol. 87, num. 8, p. 084903. DOI : 10.1063/1.4960332.

Fabrication of complex oxide microstructures by combinatorial chemical beam vapour deposition through stencil masks

E. Wagner; C. S. Sandu; S. Harada; G. Benvenuti; V. Savu et al. 

Thin Solid Films. 2015. Vol. 586, p. 64 – 69. DOI : 10.1016/j.tsf.2015.04.021.

Large-Scale Arrays of Bowtie Nanoaperture Antennas for Nanoscale Dynamics in Living Cell Membranes

V. Flauraud; T. S. van Zanten; M. Mivelle; C. Manzo; M. F. Garcia Parajo et al. 

Nano Letters. 2015. Vol. 15, num. 6, p. 4176 – 4182. DOI : 10.1021/acs.nanolett.5b01335.

Application of stencil masks for ion beam lithographic patterning

S. Brun; V. Savu; S. Schintke; E. Guibert; H. Keppner et al. 

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2013. Vol. 306, p. 292 – 295. DOI : 10.1016/j.nimb.2012.12.064.

Large-Area Gold/Parylene Plasmonic Nanostructures Fabricated by Direct Nanocutting

V. Auzelyte; B. Gallinet; V. Flauraud; C. Santschi; S. Dutta-Gupta et al. 

Advanced Optical Materials. 2013. Vol. 1, num. 1, p. 50 – 54. DOI : 10.1002/adom.201200017.

Resistless Fabrication of Nanoimprint Lithography (NIL) Stamps Using Nano-Stencil Lithography

L. G. Villanueva; O. Vazquez-Mena; C. Martin-Olmos; A. V. Savu; K. Sidler et al. 

Micromachines. 2013. Vol. 4, p. 370 – 377. DOI : 10.3390/mi4040370.

Stencil-Nanopatterned Back Reflectors for Thin-Film Amorphous Silicon n-i-p Solar Cells

C. Pahud; V. Savu; M. Klein; O. Vazquez-Mena; F-J. Haug et al. 

Ieee Journal Of Photovoltaics. 2013. Vol. 3, num. 1, p. 22 – 26. DOI : 10.1109/Jphotov.2012.2213583.

High-Resolution Resistless Nanopatterning on Polymer and Flexible Substrates for Plasmonic Biosensing Using Stencil Masks

O. Vazquez Mena; T. Sannomiya; M. Tosun; G. Villanueva; A. V. Savu et al. 

ACS Nano. 2012. Vol. 6, num. 6, p. 5474 – 5481. DOI : 10.1021/nn301358n.

CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique

B. Singh; B. R. Mehta; D. Varandani; A. V. Savu; J. Brugger 

Nanotechnology. 2012. Vol. 23, num. 49, p. 495707. DOI : 10.1088/0957-4484/23/49/495707.