Warning
Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform. The owners of these pages are invited to recreate their publication list from Infoscience. For any assistance, please consult the Infoscience help or contact support.
2024
Prolamins’ 3D structure: A new insight into protein modeling using the language of numbers and shapes
Food Hydrocolloids. 2024-09-01. Vol. 154, p. 110154. DOI : 10.1016/j.foodhyd.2024.110154.Non-targeted facilitation of primary sludge anaerobic fermentation by micro-aeration and the simultaneous nutrients transformations
Chemical Engineering Journal. 2024-07-01. Vol. 491, p. 151930. DOI : 10.1016/j.cej.2024.151930.Micropreparative Gel Electrophoresis for Purification of Nanoscale Bioconjugates
Bioconjugate Chemistry. 2024. DOI : 10.1021/acs.bioconjchem.3c00388.In vivo polydopamine coating of Rhodobacter sphaeroides for enhanced electron transfer
Nano Research. 2024. DOI : 10.1007/s12274-023-6398-z.Polydopamine-coated photoautotrophic bacteria for improving extracellular electron transfer in living photovoltaics
Nano Research. 2024. DOI : 10.1007/s12274-023-6396-1.2023
Photoluminescence brightening of single-walled carbon nanotubes through conjugation with graphene quantum dots
2023-03-05. DOI : 10.1101/2023.02.28.528463.Living Photovoltaics based on Recombinant Expression of MtrA Decaheme in Photosynthetic Bacteria
2023-03-01. DOI : 10.1101/2023.02.28.530417.Implementation of a flavin biosynthesis operon improves extracellular electron transfer in bioengineered Escherichia coli
2023-01-02
Electrospun zein incorporating phycocyanin and Spirulina extract: Fabrication, characterization, and potential application
Lwt-Food Science And Technology. 2023-10-14. Vol. 188, p. 115408. DOI : 10.1016/j.lwt.2023.115408.Engineering extracellular electron transfer for enhanced energy harvesting in microbial electrochemical devices
Lausanne, EPFL, 2023.Prediction of mycotoxin response of DNA-wrapped nanotube sensor with machine learning
2023. DOI : 10.1101/2023.09.07.556334.Extracellular electron transfer pathways to enhance the electroactivity of modified Escherichia coli
Joule. 2023. Vol. 7, num. 9, p. 2092-2106. DOI : 10.1016/j.joule.2023.08.006.Directed evolution of nanosensors for the detection of mycotoxins
2023. DOI : 10.1101/2023.06.13.544576.Investigating the effect of inflammation on the progression of B-cell lymphoma dissemination in the sentinel lymph node
Lausanne, EPFL, 2023.Polypyrrole Electrodes Show Strain‐Specific Enhancement of Photocurrent from Cyanobacteria
Advanced Materials Technologies. 2023-04-04. DOI : 10.1002/admt.202201839.Covalent conjugation of proteins onto fluorescent single-walled carbon nanotubes for biological and medical applications
Materials Advances. 2023. Vol. 4, num. 3, p. 823-834. DOI : 10.1039/D2MA00714B.Differential near-infrared imaging of heterocysts using single-walled carbon nanotubes
Photochemical & Photobiological Sciences. 2023. Vol. 22, p. 103–113. DOI : 10.1007/s43630-022-00302-3.2022
Carbon nanotube uptake in cyanobacteria for near-infrared imaging and enhanced bioelectricity generation in living photovoltaics
Nature Nanotechnology. 2022-09-19. DOI : 10.1038/s41565-022-01198-x.Bioengineering a glucose oxidase nanosensor for near-infrared continuous glucose monitoring
Nanoscale Advances. 2022-05-04. p. 1-9. DOI : 10.1039/D2NA00092J.Plasmon-induced near-infrared fluorescence enhancement of single-walled carbon nanotubes
Carbon. 2022-04-04. Vol. 194, p. 162-175. DOI : 10.1016/j.carbon.2022.03.040.2021
Tailored extracellular electron transfer pathways enhance the electroactivity of Escherichia coli
bioRxiv. 2021-08-28. DOI : 10.1101/2021.08.28.458029.A simple micropreparative gel electrophoresis technique for purification of proteins, nucleic acids, and bioconjugates
bioRxiv. 2021-05-26. DOI : 10.1101/2021.03.26.436431.Modulating the properties of DNA-SWCNT sensors using chemically modified DNA
bioRxiv. 2021-02-21. DOI : 10.1101/2021.02.20.432105.Distinguishing dopamine and calcium responses using XNA-nanotube sensors for improved neurochemical sensing
bioRxiv. 2021-02-20. DOI : 10.1101/2021.02.20.428669.Biotechnology Applications of Nanocarbons in Plant and Algal Systems
Carbon Nanostructures for Biomedical Applications; Royal Society of Chemistry, 2021-02-15.Directed evolution of DNA-wrapped single-walled carbon nanotube complexes for optical sensing
Lausanne, EPFL, 2021.2020
Synthetic Biology: A Solution for Tackling Nanomaterial Challenges
The Journal of Physical Chemistry Letters. 2020-05-22. Vol. 11, p. 4791-4802. DOI : 10.1021/acs.jpclett.0c00929.Transport and programmed release of nanoscale cargo from cells by using NETosis
Nanoscale. 2020-04-28. Vol. 12, num. 16, p. 9104-9115. DOI : 10.1039/d0nr00864h.Banning carbon nanotubes would be scientifically unjustified and damaging to innovation
Nature Nanotechnology. 2020-03-10. Vol. 15, p. 164–166. DOI : 10.1038/s41565-020-0656-y.Design of Optimized PEDOT‐Based Electrodes for Enhancing Performance of Living Photovoltaics Based on Phototropic Bacteria
Advanced Materials Technologies. 2020-02-13. p. 1-9, 1900931. DOI : 10.1002/admt.201900931.Sensing platform
EP4163635; US2022333154; CN115197995; US2022315979; JP2022130615; JP2022538067; AU2022204551; KR20220098272; CN114599793; EP3987049; KR20220035138; AU2020294875; LU101273; WO2020254336.
2020.Establishing a Ternary System for Optical Monitoring of DNA-Protein Interactions with Single-Walled Carbon Nanotubes
Lausanne, EPFL, 2020.Site-Specific Protein Conjugation onto Fluorescent Single-Walled Carbon Nanotubes
Chemistry of Materials. 2020-09-18. Vol. 32, num. 20, p. 8798-8807. DOI : 10.1021/acs.chemmater.0c02051.Optical Biosensors for Improved Neurochemical Sensing Using Single-Walled Carbon Nanotubes
Lausanne, EPFL, 2020.Interaction of Fluorescent Single-Walled Carbon Nanotubes with Photosynthetic Microbes
Lausanne, EPFL, 2020.2019
Templating colloidal sieves for tuning nanotube surface interactions and optical sensor responses
Journal of Colloid and Interface Science. 2019-12-21. Vol. 565, p. 55-62. DOI : 10.1016/j.jcis.2019.12.058.Non-covalent Methods of Engineering Optical Sensors Based on Single-Walled Carbon Nanotubes
Frontiers in Chemistry. 2019-09-19. Vol. 7, num. 612. DOI : 10.3389/fchem.2019.00612.Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials
Nano Research. 2019-06-11. Vol. 12, p. 2184–2199. DOI : 10.1007/s12274-019-2438-0.Protein Bioconjugation to Carbon Nanotubes for Near-Infrared Sensing
Lausanne, EPFL, 2019.Analytical Approaches for Monitoring DNA–Protein Interactions
CHIMIA International Journal for Chemistry. 2019-04-01. Vol. 73, num. 4, p. 283-287. DOI : 10.2533/chimia.2019.283.Directed evolution of the optoelectronic properties of synthetic nanomaterials
Chemical Communications. 2019-02-27. Vol. 55, num. 1, p. 3239-3242. DOI : 10.1039/C8CC08670B.2018
Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes
ACS Applied Materials & Interfaces. 2018-10-02. Vol. 10, num. 43, p. 37386-37395. DOI : 10.1021/acsami.8b12287.Spinning-disc confocal microscopy in the second near-infrared window (NIR-II)
Scientific Reports. 2018-09-13. Vol. 8, num. 1, p. 1-1-. DOI : 10.1038/s41598-018-31928-y.Xeno Nucleic Acid Nanosensors for Enhanced Stability Against Ion-Induced Perturbations
The Journal of Physical Chemistry Letters. 2018-07-13. Vol. 9, num. 15, p. 4336-4343. DOI : 10.1021/acs.jpclett.8b01879.2017
Mediatorless, Reversible Optical Nanosensor Enabled through Enzymatic Pocket Doping
Small. 2017. Vol. 1701654, p. 1-10. DOI : 10.1002/smll.201701654.A synthetic biology approach to engineering living photovoltaics
Energy & Environmental Science. 2017. Vol. 10, num. 5, p. 1102-1115. DOI : 10.1039/C7EE00282C.Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications
ACS Applied Materials and Interfaces. 2017. Vol. 9, num. 13, p. 11321–11331. DOI : 10.1021/acsami.7b00810.2016
Living on the Edge: Re-shaping the Interface of Synthetic Biology and Nanotechnology
Chimia. 2016. Vol. 70, num. 11, p. 773-779. DOI : 10.2533/chimia.2016.773.Engineering the Selectivity of the DNA-SWCNT Sensor
Journal of Solid State Science and Technology. 2016. Vol. 5, num. 8, p. M3067-M3074. DOI : 10.1149/2.0111608jss.2015
Applications of Nanoparticles for Reactive Oxygen Species (ROS) Scavenging in Photosynthetic Systems
2015. 227th ECS Meeting, Chicago, Illinois, USA, May 24-28, 2015. DOI : 10.1149/06612.0001ecst.2014
Spatiotemporal Intracellular Nitric Oxide Signaling Captured Using Internalized, Near-Infrared Fluorescent Carbon Nanotube Nanosensors
Nano Letters. 2014. Vol. 14, p. 4887-4894. DOI : 10.1021/nl502338y.Plant nanobionics approach to augment photosynthesis and biochemical sensing [Erratum to document cited in CA160:482675]
Nature Materials. 2014. Vol. 13, p. 530. DOI : 10.1038/nmat3947.Plant nanobionics approach to augment photosynthesis and biochemical sensing
Nature materials. 2014. Vol. 13, num. 4, p. 400-408. DOI : 10.1038/nmat3890.2013
Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes
Nature Nanotechnology. 2013. Vol. 8, p. 959-968. DOI : 10.1038/nnano.2013.236.Effect of Reductive Dithiothreitol and Trolox on Nitric Oxide Quenching of Single-Walled Carbon Nanotubes
Journal of Physical Chemistry C. 2013. Vol. 117, p. 593-602. DOI : 10.1021/jp307175f.Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting
Advanced Energy Materials. 2013. Vol. 3, p. 881-893. DOI : 10.1002/aenm.201201014.2012
Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy
ACS Nano. 2012. Vol. 6, p. 10632-10645. DOI : 10.1021/nn303716n.NoRSE: noise reduction and state evaluator for high-frequency single event traces
Bioinformatics. 2012. Vol. 28, p. 296-297. DOI : 10.1093/bioinformatics/btr632.An Engineering Analysis of Natural and Biomimetic Self-Repair Processes for Solar Energy Harvesting
Massachusetts Institute of Technology, 2012.2011
Single Molecule Detection of Nitric Oxide Enabled by d(AT)15 DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes
Journal of the American Chemical Society. 2011. Vol. 133, p. 567-581. DOI : 10.1021/ja1084942.Periplasmic Binding Proteins as Optical Modulators of Single-Walled Carbon Nanotube Fluorescence: Amplifying a Nanoscale Actuator
Angewandte Chemie, International Edition. 2011. Vol. 50, num. 8, p. 1828-1831. DOI : 10.1002/anie.201006167.Applicability of Birth-Death Markov Modeling for Single-Molecule Counting Using Single-Walled Carbon Nanotube Fluorescent Sensor Arrays
Journal of Physical Chemistry Letters. 2011. Vol. 2, p. 1690-1694. DOI : 10.1021/jz200572b.Transduction of Glycan-Lectin Binding Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes for Glycan Profiling
Journal of the American Chemical Society. 2011. Vol. 133, p. 17923-17933. DOI : 10.1021/ja2074938.Single-Molecule Detection of H2O2 Mediating Angiogenic Redox Signaling on Fluorescent Single-Walled Carbon Nanotube Array
ACS Nano. 2011. Vol. 5, p. 7848-7857. DOI : 10.1021/nn201904t.Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics
Proceedings of the National Academy of Sciences of the United States of America. 2011. Vol. 108, p. 8544-8549. DOI : 10.1073/pnas.1005512108.The chemical dynamics of nanosensors capable of single-molecule detection
Journal of Chemical Physics. 2011. Vol. 135, p. 084124/1-084124/10. DOI : 10.1063/1.3606496.Near-Infrared Fluorescent Sensors based on Single-Walled Carbon Nanotubes for Life Sciences Applications
ChemSusChem. 2011. Vol. 4, p. 848-863. DOI : 10.1002/cssc.201100070.Biomimetic strategies for solar energy conversion: a technical perspective
Energy & Environmental Science. 2011. Vol. 4, p. 3834-3843. DOI : 10.1039/c1ee01363g.Dynamic and reversible self-assembly of photoelectrochemical complexes based on lipid bilayer disks, photosynthetic reaction centers, and single-walled carbon nanotubes
Langmuir. 2011. Vol. 27, p. 1599-1609. DOI : 10.1021/la103469s.Label-Free, Single Protein Detection on a Near-Infrared Fluorescent Single-Walled Carbon Nanotube/Protein Microarray Fabricated by Cell-Free Synthesis
Nano Letters. 2011. Vol. 11, p. 2743-2752. DOI : 10.1021/nl201033d.2010
Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes
Nature Nanotechnology. 2010. Vol. 5, p. 302-309. DOI : 10.1038/nnano.2010.24.Single-molecule optical detection of nitroaromatic compounds by carbon nanotubes
2010. p. INOR-454.Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate
Nature Chemistry. 2010. Vol. 2, p. 929-936. DOI : 10.1038/nchem.822.Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate
2010. p. COLL-510.2009
The chemistry of single-walled nanotubes
MRS Bulletin. 2009. Vol. 34, p. 950-961. DOI : 10.1557/mrs2009.218.
BOOK CHAPTERS |
Biomimetic Self-Repair of Nanotube-Based Complexes for the Regeneration of Photoactivity A. A. Boghossian, M. H. Ham, J. H. Choi, M. S. Strano in Self-Healing at the Nanoscale, Taylor & Francis 2012. |
Self-Repairing Photoelectrochemical Complexes Based on Nanoscale Synthetic and Biological Components M. H. Ham, A. A. Boghossian, J. H. Choi, M .S. Strano, M.S. in Encyclopedia of Nanotechnology, Springer 2012. |
Biotechnology Applications of Nanocarbons in Plant and Algal Systems
A. Antonucci, A.J. Gillen, A.A. Boghossian in Carbon Nanomaterials for Biomedical Applications, Royal Society of Chemistry 2021