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It is theoretically shown that by superimposing diffraction-free solutions of the Helmholtz equation, one can con-
struct localized diffraction-free beams that pass through predetermined points on subwavelength distances. These
beams are based on the phenomenon of superoscillations and thus do not contain any evanescent waves. The effect
of an aperture and noise is examined in specific examples where truncated beams with λ=3 subwavelength features
can propagate into the far field. © 2011 Optical Society of America
OCIS codes: 260.1960, 050.1940, 350.5500.

The advance of the nanofabrication techniques during
the last decades has made possible to easily realize op-
tical nanostructures [1,2]. As a result, the study of the
near field attracts a lot of interest due to potential appli-
cations in imaging and biology. Superresolution methods
[1–4] is also an intense field of research, since it extends
the traditional imaging below the diffraction limit. Since
the spatial dimensions of such structures are far smaller
than the wavelength of the optical field, the study of eva-
nescent waves is inevitable. Evanescent waves decay
very fast and as a result restrict the subwavelength infor-
mation to the near field only. Various tools and methods
are used to extract this information and transfer it to the
far field. In particular, the most known way is the use of
nanotips [1,2] that scan the near field. In all cases evanes-
cent waves are present. A recently proposed way of
achieving superresolution in the near field is to use the
counterintuitive effect of superoscillations [5–14]. In this
framework, an optical field can exist that contains
subwavelength variations (always in the low intensity re-
gions) but no evanescent waves. Superoscillations have
been recently introduced and experimentally observed in
the optical domain [5,8,10–13] in the context of superre-
solution [10,11], and far-field subwavelength focusing
[12,13]. A question of interest is whether superoscillatory
beams can transfer subwavelength information to the far
field by simple propagation (no focusing, no lenses or
any other device).
In this Letter, we show how to create superoscillatory

diffraction-free beams [15–19] by superimposing already
known diffraction-free solutions of the Helmholtz equa-
tion [15–17]. Such optical beams do not contain any eva-
nescent waves and can propagate practically undistorted
carrying these subwavelength features into the far field.
Let us consider the two-dimensional Hemlholtz equa-

tion in the free space that is given by

∂2U

∂z2
� ∂2U

∂x2
� ∂2U

∂y2
� k20U � 0; �1�

where U is the electric field envelope, k0 � 2π=λ0, and λ0
is the free-space wavelength. Any linear superposition of
the waves with the same propagation constant results in
a diffraction-free beam. A celebrated example is that of
the mth order Bessel beam [15,16] which is given by the

expression U�r;ϕ; z� � Jm�ar�eimϕ�iβz, where the dis-
persion relation is a2 � β2 � k20 and β the propagation
constant of the beam. From the dispersion relation, we
can deduce that 0 < a < k0. This means that the lobes
of any Bessel beam have a width of the order of λ0. We
are interested to see if a stationary diffraction-free solu-
tion of Eq. (1) of the general form U�x; y; z� � g�x; y�eiβz
can be superoscillatory. For this to happen, we force this
solution to pass through a set of predetermined points
Pm�~rm�;m � 1; :::; N , ~rm � �xm; ym� separated by sub-
wavelength distances. We also assume that our solution
is a superposition of N diffraction-free beams

g�x; y� �
XN

m�1

cmfm−1�x; y�; �2�

where the coefficients cm are unknown. Note that all
theseN beams have the same propagation constant β and
no evanescent waves. Therefore Eq. (2) describes a sta-
tionary superposition and not a periodic interference pat-
tern. The solution of the problem is given by the relation

~c � M
↔−1

•
~G; �3�

where Mij � f j−1�~ri�, ~c � �c1c2:::cN �T , ~G � �g�~r1�g�~r2�:::
g�~rN��T , and i, j = 1,...N. The numerical solution of the
above problem gives us the coefficients ~c, and thus
the superoscillatory diffraction-free beam. At this point
we have to note that our method is quite general, as it
is not an optimization technique, does not involve any fo-
cusing of the obtained beam and also does not depend on
any fixed distance between the source and the target.
Furthermore, the generated subwavelength regions are
not the outcome of any optimization algorithm for the fo-
cal spot, but inherent properties of the general superos-
cillatory solution and as such remain invariant for any
propagation distance z. Therefore, they can be located
in multiple parts of the final fully coherent beam (center
and/or tails). This is in sharp contrast with superoscilla-
tions in speckle beams, where subwavelength features
appear in random positions of a partially coherent beam.
As we will see below, the required number of diffraction-
free beams is very small, and the subwavelength features
have a width of the order of λ=3 (at least). As a result,
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free-space transfer of subwavelength images (embedded
in a superposition of diffractionless beams) to the far
field is possible with our method.
From now on, we consider for simplicity only superpo-

sitions of Bessel beams f n � Jn�ar�einϕ, even though f n
can be any family of stationary diffractionless beams. For
better understanding, we apply the above formulation to
the simplest analytically solvable case of a beam that
passes through three points on the x axis [Fig. 1(a)].
The two points P1 and P3 are located at x � −δ and
x � δ, respectively, while the third one P2 is at the origin.
Since all these points are located near zero, we can use
the asymptotic expansion of the Bessel functions to cal-
culate the superposition coefficients of the three Bessel
beams, which are c1 � g�~r2�≡ G2, c2 � �G3 − G1��aδ�−1,
and c3 � 4�G1 � G3 − 2G2��aδ�−2. If, for example, ~G �
� 0 1 0 �T then ~c � � 1 0 −8=�aδ�2 �T and the total
field can be written as g�r;ϕ� � J0�ar� − �8=�aδ�2�J2�ar�
ei2ϕ. When aδ ≪ 1, which means that δ ≪ λ0, the ratio
rI � �max�jU j2��soregion=Imax, between the intensity at
the subwavelength regions and the maximum intensity,
approaches high values, a result typical of superoscilla-
tions. In all our calculations, the wavelength is λ0 � 1 μm
and the spatial frequency of the Bessel beams is
a � 2 μm−1. For this transverse wavenumber, one can
show that for linearly polarized beams the adopted scalar
approximation is pretty accurate and vectorial effects
can be neglected. As a first example, we choose the three
points of Fig. 1(a) such that the distance between them is
d�P2; P3� � 245 nm and d�P1; P2� � 490 nm. The trans-
verse intensity profile of the resulted superoscillatory
beam is depicted in Fig. 2(a). The FWHM of the intensity
at the formed subwavelength region is w ∼ 400 nm, with
rI ∼ 1=70, and the beam is a superposition of J0, J1, J2.
Moreover, for the eight points cross pattern shown in
Fig. 1(b), we get a superposition of J2, J6 [Fig. 2(b)], with
a ratio of rI ∼ 1=85 and w ∼ 350 nm. Also, for the 12-point
pattern of Fig. 1(c), we have a superposition of J2, J6, J10
[Fig. 2(c)], with a ratio of rI ∼ 1=600 and w ∼ 300 nm.
Note that we can force the superposition to pass through
any pattern in the transverse plane, even that of a subwa-
velength image. This precise control is what makes the
suggested method a possible tool for subwavelength
imaging. By increasing the number of points we increase
the number of the superimposed beams. Also by decreas-
ing the distances between these points, we decrease
dramatically the ratio rI and make the experimental
observability of the imposed superoscillations more
difficult.

Let us now examine in more detail the nature of a
superoscillatory diffractionless beam. By imposing alter-
nate sign � 1 −1 1 −1 � prescribed values of the field
at the middle points P5, P6, P7, P8 of the pattern of
Fig. 1(c), we get the beam with the intensity profile of
Fig. 3(a). A cross section along the x axis of the field
(absolute value) of such a beam is given in Fig. 3(b),
where the superoscillatory regions are located inside
the red squares. Again we have a superposition of J2,
J6, J10, but with a ratio of rI ∼ 1=300 and w ∼ 300 nm.
The phase θ�x; y� of the transverse field is presented
in Fig. 3(c), where we can clearly see the existence of
multiple optical vortices [20], not only on the subwave-
length regions but all over the beam. The phase also
gives us valuable insight since we can calculate the local
wavenumber kl ≡∇θ�x; y� [5,6,8], and see that in the
superoscillatory regions the kl exceeds the maximum
transverse wavenumber k0. When this happens, ∇2ρ=ρ >

0 in these regions [8], where ρ�x; y� � jg�x; y�j. Indeed
this is the case for the field of Fig. 3(b) as we can see
in Fig. 3(d), where the y-cut of the ∇2ρ=ρ is plotted ver-
sus the transverse coordinate x. Clearly∇2ρ=ρ > 0 on the
vicinity of the P1, P5, P9 points where the field is forced to
pass. This proves that at this region the beam is super-
oscillatory. In other words, our beam carries subwave-
length features in predetermined regions without any
evanescent waves.

Fig. 1. (Color online) Schematic diagrams of three dif-
ferent patterns (a), (b), and (c) of predetermined points (red
dots) in the x‒y plane. The distances between the dots are
subwavelength.

Fig. 2. (Color online) Transverse intensity profiles of the
resulted diffractionless beams that are based on the patterns
depicted in Figs. 1(a)–1(c), respectively.

Fig. 3. (Color online) (a) Intensity transverse profile, (b) y-cut
of the jUj in (a), (c) phase of the field in (a), and (d) y-cut of the
∇2ρ=ρ of the field in (a). The red squares in (b) and the black in
(c), denote the location of the superoscillatory regions. The red
(upper) line in (d) is the y-cut of jUj around the superoscillatory
region located at x ∼ 5 μm.
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The effect of an aperture and noise is examined to un-
derstand if truncation of such beams will allow the em-
bedded subwavelength features to propagate undistorted
into the far field. We apply the Rayleigh–Sommerfeld dif-
fraction integral formulation [21] to examine their dif-
fraction properties. A supergaussian type of aperture
(with a FWHM ∼ 160 μm) is assumed, and 20% noise
is added in both amplitude of the input beams of
Figs. 2(a) and 3(a). The absolute values of the fields at
a distance of z � 250 μm and z � 150 μm are depicted
in Figs. 4(a) and 4(b) (solid lines), respectively. The input
field profiles (jagged lines) are also shown for compari-
son. We can clearly see that the field can propagate
undistorted for a distance of 150λ0 ≫ λ0, carrying sub-
wavelength features of the order of 300 nm into the far
field. This distance can be much greater by choosing a
wider aperture at the input.
In conclusion, we have theoretically studied the

properties of diffractionless beams with subwavelength
features that propagate undistorted into the far field.
These beams do not contain any evanescent waves
and are superoscillatory.

We would like to thank D. N. Christodoulides and
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Fig. 4. (Color online) Normalized jUj (solid red lines) of the
truncated beam at y=0 for (a) Fig. 2(a) as an input after
z � 250 μm, and (b) Fig. 3(a) as an input after z � 150 μm,
and under the presence of noise. The jagged blue lines represent
the fields at the input, and the green squares the superoscillatory
regions.
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