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Hybrid processor to compute invariant moments for pattern
recognition
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A hybrid optical-digital processor is described that computes invariant moments of an image in parallel by spatial
convolution with a single fixed mask.

Introduction

The use of invariant moments" 2 for pattern recognition
and scene matching has received considerable atten-
tion.1-8 The majority of this work has utilized digital
processors. 3 -6 In this Letter, we describe a hybrid op-
tical-digital system that can compute all the invariant
moments of a 2-D image in parallel by spatial convolu-
tion. This is an extension of earlier work7 that required
separate masks for each moment computation and
differs from other optical methods8 that use differen-
tiation and Fourier transformation.

Invariant Moments

From the theory of invariant moments,'- 6 it is well
known that the following functions are invariant under
translation and rotation:

01 =20 + P02, (1)

'02 = (920 - 02)2 + 4 p,12 , (2)

03= (30 - 3112)2 + (3P21 -03)
2 , (3)

04 = (P30 + P12) 2 + (P21 + po3) 2 , (4)

05= (30 - 3A12)Go30 + P12)[(PO + P12) 2 - 3(Y21
+ 1103)21 + (3A21 - 03)(21 + P03)[3(P30 + P12)2

- (t21 + PO3)2], (5)
06 = (P20 - A02)[(U30 + P12)2 - (P21 + P03)2 ]

+ 4P11(p30 + A12)(P21 + P03), (6)
07 = (3p21 - AM)(P30 + P12)[(P30 + P12) 2

- 3 (P21 + P03)2] - (P30 - 3P12)(P21 + P03)[3 (P30
+ P12)2 - (P21 + P03)2]. (7)

In Eqs. (1)-(7), the Ppq are the central moments, and
they are defined as

Pp C f= X Xpyqf (X + ML0y + dxdy.
S-o s moO moo (8)

Theju, can be expressed [Eqs. (l)-(6)] in terms of the
moments

mpg = ff xPyq/(x,y)dxdy (9)

of an image f(xy) where p, q = 0, 1, 2, ... For in-
stance, 0o0 = MOO, A20 = M20- (m10

2 /mOO). A set of
scale, rotation, and translation invariant moments can
be obtained by substituting

77pq = Apq1Jt0V, (10)

where y = 1 + (p + q)/2, for Ppq in Eqs. (1)-(7). The
proof of the invariance of these moments is given in Ref.
1. Maitra6 has recently extended this work to include
invariance to contrast differences and with attention
to increased computational accuracy. From this brief
introduction, we see that the set of seven absolute in-
variant moments 4, can be used in the description or
characterization of an image and that these moments
can be computed from the standard moments mpg.

Previous experimental work has indicated that these
seven moments permit recognition of multisensor im-
agery5 and provide adequate discrimination between
letters.' To compute eleven moments mpg for a 512 X
512 image in 30 msec requires at least 1.6 X 108 opera-
tions per second. This high computational load and the
associated analog-to-digital converter and storage re-
quirements make real-time operation of this system
using digital technology difficult. In this Letter, we
consider the use of the real-time and parallel-processing
features of optical systems to implement such a pat-
tern -recognition system.

Hybrid Processor

A simplified version of a hybrid processor to compute
the 0q moments from the mpq moments is shown in Fig.
1 The output-wave amplitude at P3 is given by
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Fig. 1. Schematic diagram of a conceptual hybrid processor
to compute the invariant moments. (PD, photodetector.)
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u (W,wY) = ff f(xy)g(xy)

X exp[-j(wxx + wyy)]dxdy, (Ila)

and its value on-axis is

UAW o= ' f(xy)g(xy)dxdy,

where f(x,y) and g(x,y) describe the transmittance of
the input at P, and the mask at P2. If g(x,y) = 1 or x
or y or xy, the corresponding u (0,0) output is moo, milo,
m0l, ml,, etc. From this simplified initial system de-
scription, we see how the moments mpq can be optically
computed at P3. A dedicated digital postprocessor can
then compute the absolute invariant moments d, by
appropriate addition, subtraction, multiplication, and
division of the mpg. From tests made on typical im-
agery (500 X 500 pixels in a 25-mm X 25-mm format),
the dynamic range of the 0, was found to be far larger
than for the mpq (>200 dB versus 40 dB).7 Because of
this observation and since the operations required in
computing the (An from the mpg can easily be performed
digitally to the necessary accuracy, the hybrid-system
architecture of Fig. 1 was chosen. In this system, the
mipq (which require the bulk of the computational load)
are computed optically, and the kn are then digitally
calculated from these Mpq values.

In the practical realization of a system of the form
shown in Fig. 1, various issues arise: (1) The effective
transmittance function for the mask must be bipolar
(e.g., x and y are integrated over positive and negative
values). Otherwise a dc bias will appear on the detector
that will increase its dynamic range requirements and
complicate the digital postprocessing. (2) In the system
described in Fig. 1, separate masks are required for each
mpq computation. This greatly reduces the potential
speed and parallel-processing advantages of optical
processors. We now consider a more realistic version
of the system of Fig. 1 without the aforementioned
disadvantages. This new version does impose more-
strict space-bandwidth requirements on the Fourier-
transform lens. However, this is normally not the
limiting factor.

If we letg(x,y) = exp[x exptjwox)]exp[y exptjwoy)]
in Eq. (lOa), the P3 light distribution evaluation at
(w.,w,) = (pWo,qwo) becomes

U(WXW~y) x=pozowy=qwo = U(pwo,qwo) = mpq/P!q!

O err wxiylz

tao k=O 3co i Sk! exp[+j(iwox + kcooy)]
X f(x,y) exp[-j(wxx + Wyy)]

x dXdywx=ppwo,wy=qqwo, (12)

where use has been made of the identity

exptx exp(jwox)J = E xrei'nwX/n!. (13)
n=O

From Eq. (12), we see that the P3 pattern contains the
Fourier transforms of f(x,y)xpyq for all (pq) combi-
nations centered at positions (wwy) = (pwo,qwo).
The value of the P3 pattern at these locations is pro-
portional to the desired moments mpq. Each mpq is
weighted by a factor of l/p!q!. Thus at higher orders
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Fig. 2. Schematic diagram of a practical hybrid processor
to compute the invariant moments. (FTL, Fourier-transform
lens; SSB, single sideband.)

there will be less optical power or lower signal-to-noise
ratio, and as a result the dynamic range of the mea-
surement will be lower. To permit detection of all the
moments with comparable dynamic ranges, the lower
orders can be attenuated to avoid saturation of the de-
tector while the higher orders remain unattenuated. In
addition, relatively longer detector integration can be
used at the higher orders, and the mask g(x,y) can be
appropriately modified to distribute the optical energy
more uniformly among the orders. To avoid overlap of
adjacent orders, we choose wo larger than the bandwidth
of the function f(x,y)xpyq . The Fourier transform of
f(x,y)xpyq is proportional to OpOqF(wxwy)/OwXP
awYqJ, where F(wx,wy) is the Fourier transform of
f (x,y). If f(x,y) is band limited by Wmax [i.e., F(wx,wY)
= 0 for Wmax > (wx2 + CY2 )1"2 ], then [(xy)xpyq is also
band limited by co. The mpq moments can thus be
sensed by detectors appropriately placed in P3.

Since the required g(x,y) in Eq. (12) is complex, we
realize it by two masks and the single-sideband (SSB)
filter shown in Fig. 2. We will now consider only a 1-D
mask for simplicity. We rewrite g(x) as

g(x) = exp[x exp(jUwox)]
= exp(x cos wox)exp(jx sin w0x) = tA (x)t93 (x), (14)

where tA is real and positive and tB is complex. To re-
alize tB, we record

1 + cos(x sin W0x + wcx) = 1 + JexpU(x sin w0 x
+ Wlx)] + exp[- j(x sin w0x + wix)]j/2 (15)

at Pi of Fig. 2. Lens Ll forms the Fourier transform of
Eq. (15) at P2 , where the SSB filter at P2 passes only the
second term in Eq. (15) and the optical axis is tilted to
remove the co, carrier term. Lens L2 in Fig. 2 thus
produces tB incident upon P3, where a second trans-
parency tA is placed. Leaving P3, we thus have the
desired tA (x)tB(x) = g(x) function. At P3 , we also place
the image f(x,y), so that leaving P3 we have f Xg. Lens
L3 in Fig. 2 forms the Fourier transform of f X g, so that
at P4 we find the desired Mpq functions spatially sepa-
rated as described by Eq. (12).

Discussion and Summary

Since the moments mpi, are bipolar, both the phase and
the amplitude of mpq must be computed. Fortunately,
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from Eq. (11) we see that u(wc,,wy) for a real function
f (xy) is bipolar, not complex, when evaluated at (cow,xy)
= (pcoo,qwo). Thus a simplified detection scheme can
be used, since the output (in 1-D for simplicity) is of the
form u(wcf)lp. = mpip! = (Imp I/p!)exp(j-rn), where
n = 0 or 1 only. Specifically, we can record the inter-
ference of u (co,, wy) and a constant off-axis plane wave
exp(jwxxo). This will produce a cos coxxo fringe pattern,
as in holography. When evaluated at wx = 0, the phase
of this fringe pattern will be 0 or wr, depending on the
polarity of Mpq, and the modulation of the fringe pat-
tern will be proportional to I mpg 1. Because each Mpq
is bipolar, we need only position two detectors in the
output (separated by half the period of the interference
fringe pattern). To reduce the dynamic-range re-
quirements of the detector, we can allow the dc level of
the interference pattern to saturate one detector and
hence read the minimum of the fringe pattern with the
second detector. Thus we require only two detectors
to measure each bipolar Mpq. One detector will always
be saturated, the output from the other detector will be
proportional to iMpq J, and which detector has the
nonsaturated output determines the sign of mpq.

Many other issues (beyond the scope of our initial
work) deserve attention in the use of invariant moments
for pattern recognition and in the optical computation
of the moments. In most previous work in this area, 3 8
only seven /, moments and up to third-order moments
MPip have been considered. The use of additional mo-
ments will certainly enhance the discrimination of such
a pattern-recognition system. Further analysis and
experimentation on specific image data bases are
needed to determine the number of moments needed.
Another issue of concern in any optical processor is its
accuracy. Since the data planes in an optical system
are continuous, we expect minimal interpolation errors 6

in the hybrid processor described. However, the dy-

namic-range requirements for the Mpq and 'tn moments
require more extensive analysis and experimental ver-
ification. The accuracy with which the g(x,y) mask
must be recorded is another potential error source.
However, since this mask is fixed, it should be possible
to synthesize it off-line to sufficient accuracy by using
a computer-controlled film recorder.

In this Letter, we have described a hybrid processor
that optically computes all the bipolar moments mpq of
a 2-D image in parallel, from which the invariant mo-
ments n,, can be computed by a dedicated digital
postprocessor. The use of this and similar optical
pattern-recognition techniques that do not employ
matched spatial filtering appears to be of importance
in the realization of practical hybrid pattern-recognition
systems.
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