Publications

Full publication list of professor Christophe Galland on Google Scholar

2024

Light Emission and Conductance Fluctuations in Electrically Driven and Plasmonically Enhanced Molecular Junctions

S. P. Amirtharaj; Z. Xie; J. S. Y. See; G. Rolleri; K. Malchow et al. 

Acs Photonics. 2024. Vol. 11, num. 6, p. 2388 – 2396. DOI : 10.1021/acsphotonics.4c00291.

Memristive Control of Plasmon-Mediated Nonlinear Photoluminescence in Au Nanowires

D. K. Sharma; A. Agreda; F. Dell’Ova; K. Malchow; G. C. des Francs et al. 

Acs Nano. 2024. DOI : 10.1021/acsnano.4c03276.

Plasmonically enhanced molecular junctions for investigation of atomic-scale fluctuations in self-assembled monolayers

S. P. Amirtharaj / C. M. G. Galland (Dir.)  

Lausanne, EPFL, 2024. 

Spontaneous Raman scattering as a probe of vibrational quantum coherence and plasmonic near-field

V. Vento / C. Galland (Dir.)  

Lausanne, EPFL, 2024. 

2023

Microscopic origin of polarization-entangled Stokes-anti-Stokes photons in diamond

T. A. Freitas; P. Machado; L. Valente; D. Sier; R. Correa et al. 

Physical Review A. 2023. Vol. 108, num. 5, p. L051501. DOI : 10.1103/PhysRevA.108.L051501.

Optically detected magnetic resonance with an open source platform

H. Babashah; H. Shirzad; E. Losero; V. Goblot; C. Galland et al. 

Scipost Physics Core. 2023. Vol. 6, num. 4, p. 065. DOI : 10.21468/SciPostPhysCore.6.4.065.

Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams

V. Vento; P. Roelli; S. S. Verlekar; C. Galland 

Nano Letters. 2023. Vol. 23, num. 11, p. 4885 – 4892. DOI : 10.1021/acs.nanolett.3c00561.

Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid

V. Vento; S. T. Velez; A. Pogrebna; C. Galland 

Nature Communications. 2023. Vol. 14, num. 1, p. 2818. DOI : 10.1038/s41467-023-38483-9.

Neuronal growth on high-aspect-ratio diamond nanopillar arrays for biosensing applications

E. Losero; S. Jagannath; M. Pezzoli; V. Goblot; H. Babashah et al. 

Scientific Reports. 2023. Vol. 13, num. 1. DOI : 10.1038/s41598-023-32235-x.

Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams

V. Vento; P. A. Rölli; S. S. Verlekar; C. Galland 

2023

High-precision optical magnetometry using Nitrogen Vacancies in CVD diamond

H. Babashah / C. M. G. Galland (Dir.)  

Lausanne, EPFL, 2023. 

Data and code associated with the paper ‘Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid’

V. Vento; S. Tarrago-Velez; A. Pogrebna; C. Galland 

2023.

Data and code associated with the paper ‘Mode-Specific Coupling of Nanoparticle-on-Mirror Cavities with Cylindrical Vector Beams’

V. Vento; P. A. Rölli; S. S. Verlekar; C. Galland 

2023.

2022

Quantitative and sensitive detection of alpha fetoprotein in serum by a plasmonic sensor

Y. Xiong; H. Hu; T. Zhang; Y. Xu; F. Gao et al. 

Nanophotonics. 2022. Vol. 11, num. 21, p. 4821 – 4829. DOI : 10.1515/nanoph-2022-0428.

Measurement-Induced Collective Vibrational Quantum Coherence under Spontaneous Raman Scattering in a Liquid

V. Vento; S. Tarrago Velez; A. Pogrebna; C. Galland 

2022

Molecular Vibration Explorer: an Online Database and Toolbox for Surface-Enhanced Frequency Conversion and Infrared and Raman Spectroscopy

Z. Koczor-Benda; P. Roelli; C. Galland; E. Rosta 

Journal Of Physical Chemistry A. 2022. DOI : 10.1021/acs.jpca.2c03700.

Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water

E. Glushkov; M. Macha; E. Raeth; V. Navikas; N. Ronceray et al. 

Acs Nano. 2022. Vol. 16, num. 3, p. 3695 – 3703. DOI : 10.1021/acsnano.1c07086.

Experimental QND measurements of complementarity on two-qubit states with IonQ and IBM Q quantum computers

N. Schwaller; V. Vento; C. Galland 

Quantum Information Processing. 2022. Vol. 21, num. 2, p. 75. DOI : 10.1007/s11128-021-03354-z.

Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission

H. Hu; W. Chen; X. Han; K. Wang; P. Lu 

Nanoscale. 2022. Vol. 14, num. 6, p. 2287 – 2295. DOI : 10.1039/d1nr05951c.

Assessment of the Bundle SNSPD Plus FPGA-Based TDC for High-Performance Time Measurements

F. Garzetti; N. Lusardi; E. Ronconi; A. Costa; S. T. Velez et al. 

Ieee Access. 2022. Vol. 10, p. 127894 – 127910. DOI : 10.1109/ACCESS.2022.3227462.

2022 Roadmap on integrated quantum photonics

G. Moody; V. J. Sorger; D. J. Blumenthal; P. W. Juodawlkis; W. Loh et al. 

Journal Of Physics-Photonics. 2022. Vol. 4, num. 1, p. 012501. DOI : 10.1088/2515-7647/ac1ef4.

2021

Continuous-wave frequency upconversion with a molecular optomechanical nanocavity

W. Chen; P. Roelli; H. Hu; S. Verlekar; S. P. Amirtharaj et al. 

Science. 2021. Vol. 374, num. 6572, p. 1264 – 1267. DOI : 10.1126/science.abk3106.

Quantum conformance test

G. Ortolano; P. Boucher; I. P. Degiovanni; E. Losero; M. Genovese et al. 

Science Advances. 2021. Vol. 7, num. 52, p. eabm3093. DOI : 10.1126/sciadv.abm3093.

Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities

A. Ahmed; K. Banjac; S. S. Verlekar; F. P. Cometto; M. Lingenfelder et al. 

Acs Photonics. 2021. Vol. 8, num. 6, p. 1863 – 1872. DOI : 10.1021/acsphotonics.1c00645.

Intrinsic luminescence blinking from plasmonic nanojunctions

W. Chen; P. A. Rölli; A. Ahmed; S. S. Verlekar; H. Hu et al. 

Nature Communications. 2021. Vol. 12, num. 1, p. 2731. DOI : 10.1038/s41467-021-22679-y.

Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures

J. Sun; Y. Li; H. Hu; W. Chen; D. Zheng et al. 

Nanoscale. 2021. Vol. 13, num. 8, p. 4408 – 4419. DOI : 10.1039/d0nr08592h.

Controlling the immobilization process of an optically enhanced protein microarray for highly reproducible immunoassay

D. Zhang; W. Dai; H. Hu; W. Chen; Y. Liu et al. 

Nanoscale. 2021. Vol. 13, num. 7, p. 4269 – 4277. DOI : 10.1039/d0nr08407g.

Dual-Tone Raman Study of Optical Picocavities

S. Verlekar; A. Ahmed; W. Chen; C. Gallan 

2021. Conference on Lasers and Electro-Optics Europe / European Quantum Electronics Conference (CLEO/Europe-EQEC), ELECTR NETWORK, Jun 21-25, 2021. DOI : 10.1109/CLEO/Europe-EQEC52157.2021.9542534.

Investigation of photoinduced effects in plasmonic nanocavities

A. Ahmed / C. M. G. Galland (Dir.)  

Lausanne, EPFL, 2021. 

Non-classical photon-phonon correlations at room temperature

S. Tarrago Velez / C. M. G. Galland (Dir.)  

Lausanne, EPFL, 2021. 

2020

Bell correlations between light and vibration at ambient conditions

S. T. Velez; V. Sudhir; N. Sangouard; C. Galland 

Science Advances. 2020. Vol. 6, num. 51, p. eabb0260. DOI : 10.1126/sciadv.abb0260.

Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures

Z. Li; B. Corbett; A. Gocalinska; E. Pelucchi; W. Chen et al. 

Light-Science & Applications. 2020. Vol. 9, num. 1, p. 180. DOI : 10.1038/s41377-020-00414-4.

Molecular Platform for Frequency Upconversion at the Single-Photon Level

P. Roelli; D. Martin-Cano; T. J. Kippenberg; C. Galland 

Physical Review X. 2020. Vol. 10, num. 3, p. 031057. DOI : 10.1103/PhysRevX.10.031057.

Fundamentals and perspectives of ultrafast photoferroic recording

A. V. Kimel; A. M. Kalashnikova; A. Pogrebna; A. K. Zvezdin 

Physics Reports-Review Section Of Physics Letters. 2020. Vol. 852, p. 1 – 46. DOI : 10.1016/j.physrep.2020.01.004.

2019

Preparation and Decay of a Single Quantum of Vibration at Ambient Conditions

S. T. Velez; K. Seibold; N. Kipfer; M. D. Anderson; V. Sudhir et al. 

Physical Review X. 2019. Vol. 9, num. 4, p. 041007. DOI : 10.1103/PhysRevX.9.041007.

2018

Two-Color Pump-Probe Measurement of Photonic Quantum Correlations Mediated by a Single Phonon

M. D. Anderson; S. Tarrago Velez; K. Seibold; H. Flayac; V. Savona et al. 

Physical Review Letters. 2018. Vol. 120, num. 23, p. 233601. DOI : 10.1103/PhysRevLett.120.233601.

Nanoparticle on mirror plasmonic nanostructure for molecular cavity optomechanics

A. Ahmed; S. T. Velez; T. Zhu; B. Fernandez; N. Kipfer et al. 

2018. International Conference on Optical MEMS and Nanophotonics (OMN), Lausanne, SWITZERLAND, Jul 29-Aug 02, 2018. p. 42 – 43. DOI : 10.1109/OMN.2018.8454631.

Nonlinear characterization of a silicon integrated Bragg waveguide filter

M. Massara; M. Menotti; N. Bergamasco; N. Harris; T. Baehr-Jones et al. 

OPTICS LETTERS. 2018. Vol. 43, num. 5, p. 1171 – 1174. DOI : 10.1364/OL.43.001171.

2016

Proposal for an Optomechanical Bell Test

V. C. Vivoli; T. Barnea; C. Galland; N. Sangouard 

Physical Review Letters. 2016. Vol. 116, num. 7, p. 070405. DOI : 10.1103/PhysRevLett.116.070405.

Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

D. Grassani; A. Simbula; S. Pirotta; M. Galli; M. Menotti et al. 

Scientific Reports. 2016. Vol. 6, p. 23564. DOI : 10.1038/srep23564.

Towards Flexible, Scalable and Low Loss Non-reciprocal System in Silicon Photonics

Y. Yang; C. Galland; Y. Liu; T. Baehr-Jones; M. Hochberg 

2016. ‘IEEE 13th International Conference on Group IV Photonics (GFP)’, ‘IEEE 13th International Conference on Group IV Photonics (GFP)’. p. 62 – 63. DOI : 10.1109/GROUP4.2016.7739083.

2015

Towards On-Chip Continuous-Variable Quantum Key Distribution

M. Ziebell; M. Persechino; N. Harris; C. Galland; D. Marris-Morini et al. 

2015. European Conference on Lasers and Electro-Optics, Munich Germany, 21–25 June 2015.

High-resolution measurement of energy correlations of photon pairs generated in silicon ring resonators

M. Liscidini; D. Grassani; A. Simbula; M. Galli; S. Pirotta et al. 

2015. 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, 5-9 July 2015. p. 1 – 4. DOI : 10.1109/ICTON.2015.7193639.

Molecular Optomechanics with Plasmons: Backaction at the nanoscale

P. Roelli; C. Galland; N. Piro; T. J. Kippenberg 

2015. Frontiers in Optics, San Jose, California, 2015. DOI : 10.1364/FIO.2015.FTu5C.5.

Measurement of Energy Correlations of Photon Pairs Generated in Silicon Ring Resonators

D. Grassani; A. Simbula; M. Galli; S. Pirotta; T. Baher-Jones et al. 

2015. CLEO: Applications and Technology, San Jose, California, 2015. DOI : 10.1364/CLEO_AT.2015.JW2A.4.

Joint Spectral Density measurement of energy correlations of photon pairs generated by a silicon microring resonator

D. Grassani; A. Simbula; M. Galli; S. Pirotta; T. Baehr-Jones et al. 

2015. European Conference on Lasers and Electro-Optics, Munich Germany, 21–25 June 2015.

On chip source of photon pairs with integrated pump filtering and signal/idler demultiplexing

N. Harris; D. Grassani; A. Simbula; M. Pant; M. Galli et al. 

2015. European Conference on Lasers and Electro-Optics, Munich Germany, 21–25 June 2015.

Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering

P. Roelli; C. Galland; N. Piro; T. J. Kippenberg 

Nature Nanotechnology. 2015. Vol. 11, num. 2, p. 164 – 169. DOI : 10.1038/nnano.2015.264.

2014

On-Chip Heralded Single Photon Source with Demultiplexing and Pump Filtering

N. C. Harris; C. Galland; D. Bajoni; M. Pant; D. Grassani et al. 

2014. CLEO: QELS_Fundamental Science, San Jose, California, 2014. DOI : 10.1364/CLEO_QELS.2014.FTh3A.8.

Broadband optical isolator using phase modulators and mach-zehnder interferometers

C. Galland; T. Baehr-Jones 

US2014334764.

2014.

Efficient, compact and low loss thermo-optic phase shifter in silicon

N. C. Harris; Y. Ma; J. Mower; T. Baehr-Jones; D. Englund et al. 

Optics Express. 2014. Vol. 22, num. 9, p. 10487 – 10493. DOI : 10.1364/Oe.22.010487.

Electrochemical Control of Two-Color Emission from Colloidal Dot-in-Bulk Nanocrystals

S. Brovelli; W. K. Bae; F. Meinardi; B. S. Gonzalez; M. Lorenzon et al. 

Nano Letters. 2014. Vol. 14, num. 7, p. 3855 – 3863. DOI : 10.1021/nl501026r.

Dual-Color Electroluminescence from Dot-in-Bulk Nanocrystals

S. Brovelli; W. K. Bae; C. Galland; U. Giovanella; F. Meinardi et al. 

Nano Letters. 2014. Vol. 14, num. 2, p. 486 – 494. DOI : 10.1021/nl403478s.

Experimental demonstration of broadband Lorentz non-reciprocity in an integrable photonic architecture based on Mach-Zehnder modulators

Y. Yang; C. Galland; Y. Liu; K. Tan; R. Ding et al. 

Optics Express. 2014. Vol. 22, num. 14, p. 17409 – 17422. DOI : 10.1364/Oe.22.017409.

Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems

N. C. Harris; D. Grassani; A. Simbula; M. Pant; M. Galli et al. 

Physical Review X. 2014. Vol. 4, num. 4, p. 041047. DOI : 10.1103/PhysRevX.4.041047.

Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics

C. Galland; N. Sangouard; N. Piro; N. Gisin; T. J. Kippenberg 

Physical Review Letters. 2014. Vol. 112, num. 14, p. 143602. DOI : 10.1103/PhysRevLett.112.143602.

2013

Broadband on-chip optical non-reciprocity using phase modulators

C. Galland; R. Ding; N. C. Harris; T. Baehr-Jones; M. Hochberg 

Optics Express. 2013. Vol. 21, num. 12, p. 14500. DOI : 10.1364/OE.21.014500.

Dynamic Hole Blockade Yields Two-Color Quantum and Classical Light from Dot-in-Bulk Nanocrystals

C. Galland; S. Brovelli; W. K. Bae; L. A. Padilha; F. Meinardi et al. 

Nano Letters. 2013. Vol. 13, num. 1, p. 321 – 328. DOI : 10.1021/nl3045316.

Two-Color Quantum and Classical Light Using Dot-in-Bulk Semiconductor Nanocrystals

C. Galland; S. Brovelli; W. K. Bae; V. I. Klimov 

Nonlinear Optics. 2013.  p. NTh1A.2. DOI : 10.1364/NLO.2013.NTh1A.2.

A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography

L. He; Y. Liu; C. Galland; A. E-J. Lim; G-Q. Lo et al. 

IEEE Photonics Technology Letters. 2013. Vol. 25, num. 14, p. 1358 – 1361. DOI : 10.1109/LPT.2013.2265911.

A CMOS-compatible silicon photonic platform for high-speed integrated opto-electronics

C. Galland; A. Novack; Y. Liu; R. Ding; M. Gould et al. 

2013. DOI : 10.1117/12.2017053.

Systems and devices in a 30 GHz silicon-on-insulator platform

T. Baehr-Jones; K. Bergmen; M. Hochberg; L. Yang; Z. Yi et al. 

2013. 39th European Conference and Exhibition on Optical Communication (ECOC 2013), London, UK, p. 18 – 20. DOI : 10.1049/cp.2013.1278.

A compact and low loss Y-junction for submicron silicon waveguide

Y. Zhang; S. Yang; A. E-J. Lim; G-Q. Lo; C. Galland et al. 

Optics Express. 2013. Vol. 21, num. 1, p. 1310. DOI : 10.1364/OE.21.001310.

A CMOS-Compatible, Low-Loss, and Low-Crosstalk Silicon Waveguide Crossing

Y. Zhang; S. Yang; A. E-J. Lim; G-Q. Lo; C. Galland et al. 

IEEE Photonics Technology Letters. 2013. Vol. 25, num. 5, p. 422 – 425. DOI : 10.1109/LPT.2013.2241049.

The Road to Affordable, Large-Scale Silicon Photonics

M. Streshinsky; R. Ding; Y. Liu; A. Novack; C. Galland et al. 

Optics and Photonics News. 2013. Vol. 24, num. 9, p. 32. DOI : 10.1364/OPN.24.9.000032.

2012

Tuning Radiative Recombination in Cu-Doped Nanocrystals via Electrochemical Control of Surface Trapping

S. Brovelli; C. Galland; R. Viswanatha; V. I. Klimov 

Nano Letters. 2012. Vol. 12, num. 8, p. 4372 – 4379. DOI : 10.1021/nl302182u.

The Role of a Fabless Silicon Photonics Industry in the Era of Quantum Engineering

M. Hochberg; C. Galland; R. Ding; Y. Liu; Y. Zhang et al. 

2012. Latin America Optics and Photonics Conference, Sao Sebastiao, Brazil, 2012. DOI : 10.1364/LAOP.2012.LM3C.3.

Exciton-assisted optomechanics with suspended carbon nanotubes

I. Wilson-Rae; C. Galland; W. Zwerger; A. Imamoğlu 

New Journal of Physics. 2012. Vol. 14, num. 11, p. 115003. DOI : 10.1088/1367-2630/14/11/115003.

Lifetime blinking in nonblinking nanocrystal quantum dots

C. Galland; Y. Ghosh; A. Steinbrück; J. A. Hollingsworth; H. Htoon et al. 

Nature Communications. 2012. Vol. 3, p. 908. DOI : 10.1038/ncomms1916.

2011

Pump-Intensity- and Shell-Thickness-Dependent Evolution of Photoluminescence Blinking in Individual Core/Shell CdSe/CdS Nanocrystals

A. V. Malko; Y-S. Park; S. Sampat; C. Galland; J. Vela et al. 

Nano Letters. 2011. Vol. 11, num. 12, p. 5213 – 5218. DOI : 10.1021/nl2025272.

Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots

C. Galland; Y. Ghosh; A. Steinbrück; M. Sykora; J. A. Hollingsworth et al. 

Nature. 2011. Vol. 479, num. 7372, p. 203 – 207. DOI : 10.1038/nature10569.

2010

Quantum Optics with Single-Wall Carbon Nanotube

C. Galland / I. Atac; S. Vahid (Dir.)  

ETH Zurich, 2010. 

2008

Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields

J. Dreiser; M. Atatüre; C. Galland; T. Müller; A. Badolato et al. 

Physical Review B. 2008. Vol. 77, num. 7, p. 075317. DOI : 10.1103/PhysRevB.77.075317.

Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube

A. Högele; C. Galland; M. Winger; A. Imamoğlu 

Physical Review Letters. 2008. Vol. 100, num. 21, p. 217401. DOI : 10.1103/PhysRevLett.100.217401.

Non-Markovian Decoherence of Localized Nanotube Excitons by Acoustic Phonons

C. Galland; A. Högele; H. E. Türeci; A. Imamoğlu 

Physical Review Letters. 2008. Vol. 101, num. 6, p. 067402. DOI : 10.1103/PhysRevLett.101.067402.

All-Optical Manipulation of Electron Spins in Carbon-Nanotube Quantum Dots

C. Galland; A. Imamoğlu 

Physical Review Letters. 2008. Vol. 101, num. 15, p. 157404. DOI : 10.1103/PhysRevLett.101.157404.