2025
Connecting scales in reaction engineering
Nature Chemical Engineering. 2025. Vol. 2, num. 3, p. 156 – 159. DOI : 10.1038/s44286-025-00197-8.Microenvironment effects from first principles multiscale modeling of electrochemical CO2 reduction
2025
Impact of Gas Bubble Evolution Dynamics on Electrochemical Reaction Overpotentials in Water Electrolyser Systems
JOURNAL OF PHYSICAL CHEMISTRY C. 2025. DOI : 10.1021/acs.jpcc.5c00220.2024
ICP–MS Assisted EDX Tomography: A Robust Method for Studying Electrolyte Penetration Phenomena in Gas Diffusion Electrodes Applied to CO2 Electrolysis
Small methods. 2024. Vol. 8, num. 12. DOI : 10.1002/smtd.202400200. Multi-Scale Modeling of Electrochemical CO2 Reduction
2024. MATSUS Spring 2025 Conference, Sevilla, Spain, 2025-03-03 – 2025-03-07. DOI : 10.29363/nanoge.matsusspring.2025.330.Probabilistic Techno-Economic Assessment of Medium-Scale Photoelectrochemical Fuel Generation Plants
Energy and Fuels. 2024. Vol. 38, num. 13, p. 12058 – 12077. DOI : 10.1021/acs.energyfuels.4c00936.Contrasting Views of the Electric Double Layer in Electrochemical CO2 Reduction: Continuum Models vs Molecular Dynamics
Journal Of Physical Chemistry C. 2024. Vol. 128, num. 25, p. 10450 – 10464. DOI : 10.1021/acs.jpcc.4c03469.High-throughput parallel testing of ten photoelectrochemical cells for water splitting: case study on the effects of temperature in hematite photoanodes
Sustainable Energy & Fuels. 2024. DOI : 10.1039/d4se00451e.Reversible photo-electrochemical device for solar hydrogen and power generation
Cell Reports Physical Science. 2024. p. 101984. DOI : 10.1016/j.xcrp.2024.101984.In Situ Synthesis of CuxO/N Doped Graphdiyne with Pyridine N Configuration for Ammonia Production via Nitrate Reduction
Small. 2024. DOI : 10.1002/smll.202310467.Stability and degradation of (oxy)nitride photocatalysts for solar water splitting
RSC Sustainability. 2024. DOI : 10.1039/D4SU00096J.Optical characterization of a solar concentrating dish system
2024. 9 European Thermal Sciences Conference, Bled, Slovenia, 2024-06-10 – 2024-06-13. DOI : 10.1088/1742-6596/2766/1/012094.Quantifying mass transport limitations in a microfluidic CO2 electrolyzer with a gas diffusion cathode
Communications Chemistry. 2024. Vol. 7, num. 1. DOI : 10.1038/s42004-024-01122-5.Radiative transfer in luminescent solar concentrators
Journal of Quantitative Spectroscopy and Radiative Transfer. 2024. Vol. 319, p. 108957. DOI : 10.1016/j.jqsrt.2024.108957.Modeling, design and economics of PEC devices
Lausanne, EPFL, 2024.Experimental and numerical pore-scale characterization of multi-mode heat transfer in porous ceramics exposed to a transverse heat flux
2024. 9 European Thermal Sciences Conference, Bled, Slovenia, 2024-06-10 – 2024-06-13. DOI : 10.1088/1742-6596/2766/1/012207.Rate-Determining Step for Electrochemical Reduction of Carbon Dioxide into Carbon Monoxide at Silver Electrodes
ACS Catalysis. 2024. p. 8437 – 8445. DOI : 10.1021/acscatal.4c00192.2023
Modeling of the airflow dynamics in an incubator running on a thermal battery
2023.Surface Charge Boundary Condition Often Misused in CO2 Reduction Models
Journal Of Physical Chemistry C. 2023. Vol. 127, num. 37, p. 18784 – 18790. DOI : 10.1021/acs.jpcc.3c05364.Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device
Nature Energy. 2023. DOI : 10.1038/s41560-023-01247-2.Recognizing the life and scientific contributions of a pioneer in solar thermochemistry: Prof. Aldo Steinfeld
Solar Energy. 2023. Vol. 252, p. 401 – 402. DOI : 10.1016/j.solener.2023.01.050.Geodesic Convolutional Neural Network Characterization of Macro-Porous Latent Thermal Energy Storage
ASME Journal of Heat and Mass Transfer. 2023. Vol. 145, num. 5, p. 052902. DOI : 10.1115/1.4056663.Design and operational guidelines of solar-driven catalytic conversion of CO2 and H2 to fuels
Applied Energy. 2023. Vol. 334, p. 120617. DOI : 10.1016/j.apenergy.2022.120617.A holistic investigation of photocatalytic hydrogen generation
Lausanne, EPFL, 2023.Single emulsion drops for photocatalytic water splitting as a membrane-free approach to product separation
Cell Reports Physical Science. 2023. p. 101755. DOI : 10.1016/j.xcrp.2023.101755.Pathways to enhance electrochemical CO2 reduction identified through direct pore-level modeling
EES Catalysis. 2023. DOI : 10.1039/D3EY00122A.Beam radiation penetration in particle b e ds for heat transfer modeling of a centrifugal solar particle receiver
Journal Of Quantitative Spectroscopy & Radiative Transfer. 2023. Vol. 295, p. 108403. DOI : 10.1016/j.jqsrt.2022.108403.Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars
Nature Communications. 2023. Vol. 14, num. 3141. DOI : 10.1038/s41467-023-38676-2.Photovoltaics at multi-terawatt scale: Waiting is not an option
Science. 2023. Vol. 380, num. 6640, p. 39 – 42. DOI : 10.1126/science.adf6957.Morphology and Transport Characterization of Catalyst Layers for CO2 Reduction
Journal of The Electrochemical Society. 2023. Vol. 170, num. 10, p. 104507. DOI : 10.1149/1945-7111/acff1c.Photoelectrochemical behaviour of photoanodes under high photon fluxes
Journal of Materials Chemistry. 2023. Vol. A11, num. 44, p. 23895 – 23908. DOI : 10.1039/D3TA05257E.Multiphysics model for assessing photoelectrochemical phenomena under concentrated irradiation
Electrochimica Acta. 2023. Vol. 462, p. 142703. DOI : 10.1016/j.electacta.2023.142703.2022
Solar fuel processing: Comparative mini-review on research, technology development, and scaling
Solar Energy. 2022. Vol. 246, p. 294 – 300. DOI : 10.1016/j.solener.2022.09.019.Modeling the Photostability of Solar Water-Splitting Devices and Stabilization Strategies
ACS Applied Materials & Interfaces. 2022. DOI : 10.1021/acsami.2c08204.Multi-configuration evaluation of a megajoule-scale high-temperature latent thermal test-bed
Applied Thermal Engineering. 2022. Vol. 214, p. 118697. DOI : 10.1016/j.applthermaleng.2022.118697.Integrated solar-driven high-temperature electrolysis operating with concentrated irradiation
Joule. 2022. DOI : 10.1016/j.joule.2022.07.013.Enhanced Solar-to-Fuel Efficiency of Ceria-Based Thermochemical Cycles via Integrated Electrochemical Oxygen Pumping
Acs Energy Letters. 2022. Vol. 7, num. 8, p. 2711 – 2716. DOI : 10.1021/acsenergylett.2c01318.Photo‐Electrochemical Conversion of CO 2 Under Concentrated Sunlight Enables Combination of High Reaction Rate and Efficiency
Advanced Energy Materials. 2022. p. 2200585. DOI : 10.1002/aenm.202200585.Conductive Heat Transfer in Partially Saturated Gas Diffusion Layers with Evaporative Cooling
Journal of The Electrochemical Society. 2022. Vol. 169, p. 034515. DOI : 10.1149/1945-7111/ac4e5c.Design guidelines for next-generation sodium-nickel-chloride batteries
Lausanne, EPFL, 2022.Modeling and assessment of high-temperature photo-electrochemical devices
Lausanne, EPFL, 2022.Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium
Nature Catalysis. 2022. Vol. 5, p. 268 – 276. DOI : 10.1038/s41929-022-00761-y.Multi-Scale Study of High-Temperature Latent Heat Storage With Metallic Phase Change Materials
Lausanne, EPFL, 2022.2021
Prospects and challenges in designing photocatalytic particle suspension reactors for solar fuel processing
Chemical Science. 2021. Vol. 12, num. 29, p. 9866 – 9884. DOI : 10.1039/D1SC01504D.Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials
International Journal of Heat and Mass Transfer. 2021. Vol. 164, p. 120525. DOI : 10.1016/j.ijheatmasstransfer.2020.120525.Multiphase transport and evaporative cooling in fuel cell gas diffusion layers
Lausanne, EPFL, 2021.Non-uniform porous structures and cycling control for optimized fixed-bed solar thermochemical water splitting
Journal of Solar Energy Engineering. 2021. p. 1 – 24. DOI : 10.1115/1.4052960.Numerical characterization and engineering of transport in morphologically complex heterogeneous media
Lausanne, EPFL, 2021.Modeling and design guidelines of high-temperature photoelectrochemical devices
Sustainable Energy & Fuels. 2021. Vol. 5, num. 7, p. 2169 – 2180. DOI : 10.1039/D0SE01749C.2020
Mitigating voltage losses in photoelectrochemical cell scale-up
Sustainable Energy & Fuels. 2020. Vol. 4, num. 6, p. 2734 – 2740. DOI : 10.1039/d0se00246a.Pressure Drop and Convective Heat Transfer in Different SiSiC Structures Fabricated by Indirect Additive Manufacturing
Journal Of Heat Transfer-Transactions Of The Asme. 2020. Vol. 142, num. 3, p. 032702. DOI : 10.1115/1.4045732.Design guidelines for Al-12%Si latent heat storage encapsulations to optimize performance and mitigate degradation
Applied Surface Science. 2020. Vol. 505, p. 143684. DOI : 10.1016/j.apsusc.2019.143684.Optimizing and Implementing Light Trapping in Thin-Film, Mesostructured Photoanodes
ACS Applied Materials & Interfaces. 2020. Vol. 12, num. 5, p. 5739 – 5749. DOI : 10.1021/acsami.9b17856.Multi-physical characterization of cellular ceramics for high-temperature applications
Lausanne, EPFL, 2020.Dynamic system modeling of thermally-integrated concentrated PV-electrolysis
International Journal of Hydrogen Energy. 2020. Vol. 46, num. 18, p. 10666 – 10681. DOI : 10.1016/j.ijhydene.2020.12.151.Practical challenges in the development of photoelectrochemical solar fuels production
Sustainable Energy & Fuels. 2020. Vol. 4, num. 3, p. 985 – 995. DOI : 10.1039/C9SE00869A.Sodium plating and stripping from Na-β”-alumina ceramics beyond 1000 mA/cm2
Materials Today Energy. 2020. Vol. 18, p. 100515. DOI : 10.1016/j.mtener.2020.100515.Numerical optimization of evaporative cooling in artificial gas diffusion layers for fuel cell applications
Applied Thermal Engineering. 2020. Vol. 186, p. 116460. DOI : 10.1016/j.applthermaleng.2020.116460.Effective conductivity of porous ceramics in a radiative environment
Ceramics International. 2020. Vol. 46, num. 3, p. 2805 – 2815. DOI : 10.1016/j.ceramint.2019.09.272.Theoretical maximum photogeneration efficiency and performance characterization of InxGa1-xN/Si tandem water-splitting photoelectrodes
APL Materials. 2020. Vol. 8, num. 7, p. 071111. DOI : 10.1063/5.0007034.2019
Majority Charge Carrier Transport in Particle-based Photoelectrodes
Journal of Physical Chemistry C. 2019. Vol. 123, num. 43, p. 26082 – 26094. DOI : 10.1021/acs.jpcc.9b07580.Rapid Performance Optimization Method for Photoelectrodes
Journal of Physical Chemistry C. 2019. Vol. 123, num. 36, p. 21838 – 21851. DOI : 10.1021/acs.jpcc.9b04102.Kinetic Competition between Water-Splitting and Photocorrosion Reactions in Photoelectrochemical Devices
Chemsuschem. 2019. Vol. 12, num. 9, p. 1984 – 1994. DOI : 10.1002/cssc.201802558.A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation
Nature Energy. 2019. Vol. 4, p. 399 – 407. DOI : 10.1038/s41560-019-0373-7.Preparation of high-conductivity, high-capacity phase change media capsules with enhanced thermos-chemical stability in thermal energy storage applications
Lausanne, EPFL, 2019.Integrated photo-electrochemical device for concentrated irradiation
US11781230; US2022220623; HUE057997; HRP20220391; EP4001469; ES2909621; PT3500694; DK3500694; US11248301; EP3500694; EP3500694; US2019177860; WO2018033886.
2019.Design and optimization of a high-temperature latent heat storage unit
Applied Energy. 2019. Vol. 261, p. 114330. DOI : 10.1016/j.apenergy.2019.114330.Controlling strategies to maximize reliability of integrated photo-electrochemical devices exposed to realistic disturbances
Sustainable Energy & Fuels. 2019. Vol. 3, num. 5, p. 1297 – 1306. DOI : 10.1039/c8se00441b.Unsteady Radiative Heat Transfer Model of a Ceria Particle Suspension Undergoing Solar Thermochemical Reduction
Journal Of Thermophysics And Heat Transfer. 2019. Vol. 33, num. 1, p. 63 – 77. DOI : 10.2514/1.T5314.Pcm-based heat exchanger and uses thereof
EP3794297; US2021222959; EP3794297; CN112424551; WO2019220395.
2019.Modeling and experimentation of conductive and radiative transfer through heterogeneous insulators in high-flux environments
Lausanne, EPFL, 2019.Optimizing Mesostructured Silver Catalysts for Selective Carbon Dioxide Conversion into Fuels
Energy & Environmental Science. 2019. Vol. 12, num. 5, p. 1668 – 1678. DOI : 10.1039/C9EE00656G.Sequential Cascade Electrocatalytic Conversion of Carbon Dioxide to C-C Coupled Products
Acs Applied Energy Materials. 2019. Vol. 2, num. 6, p. 4551 – 4559. DOI : 10.1021/acsaem.9b00791.Linking Morphology and Multi-Physical Transport in Structured Electrodes
Lausanne, EPFL, 2019.Material and mesostructural design guidelines for high performing photoelectrodes
Lausanne, EPFL, 2019.Inverse Analysis of Radiative Flux Maps for the Characterization of High Flux Sources
Journal of Solar Energy Engineering. 2019. Vol. 141, num. 2, p. 021011. DOI : 10.1115/1.4042227.2018
Modeling and design guidelines for direct steam generation solar receivers
Applied Energy. 2018. Vol. 216, p. 761 – 776. DOI : 10.1016/j.apenergy.2018.02.044.Solar production of nylon polymers and prescursors for nylon polymer production
US2020048415; WO2018172927; WO2018172927.
2018.Design and demonstration of a prototype 1.5 kWth hybrid solar/autothermal steam gasifier
Fuel. 2018. Vol. 211, p. 331 – 340. DOI : 10.1016/j.fuel.2017.09.059.Continuum-scale Modeling of Solar Water-splitting Devices
Integrated Solar Fuel Generators; Royal Society of Chemistry, 2018. p. 500 – 536.Integrated photo-electrochemical device for concentrated irradiation
US11781230; US2022220623; HUE057997; HRP20220391; EP4001469; ES2909621; PT3500694; DK3500694; US11248301; EP3500694; EP3500694; US2019177860; WO2018033886.
2018.