Please note that the publication lists from Infoscience integrated into the EPFL website, lab or people pages are frozen following the launch of the new version of platform. The owners of these pages are invited to recreate their publication list from Infoscience. For any assistance, please consult the Infoscience help or contact support.
2024
Contrasting Views of the Electric Double Layer in Electrochemical CO2 Reduction: Continuum Models vs Molecular Dynamics
Journal Of Physical Chemistry C. 2024-06-14. Vol. 128, num. 25, p. 10450-10464. DOI : 10.1021/acs.jpcc.4c03469.High-throughput parallel testing of ten photoelectrochemical cells for water splitting: case study on the effects of temperature in hematite photoanodes
Sustainable Energy & Fuels. 2024-05-30. DOI : 10.1039/d4se00451e.Reversible photo-electrochemical device for solar hydrogen and power generation
Cell Reports Physical Science. 2024. p. 101984. DOI : 10.1016/j.xcrp.2024.101984.Rate-Determining Step for Electrochemical Reduction of Carbon Dioxide into Carbon Monoxide at Silver Electrodes
ACS Catalysis. 2024. p. 8437-8445. DOI : 10.1021/acscatal.4c00192.Stability and degradation of (oxy)nitride photocatalysts for solar water splitting
RSC Sustainability. 2024. DOI : 10.1039/D4SU00096J.In Situ Synthesis of CuxO/N Doped Graphdiyne with Pyridine N Configuration for Ammonia Production via Nitrate Reduction
Small. 2024. DOI : 10.1002/smll.202310467.Modeling, design and economics of PEC devices
Lausanne, EPFL, 2024.Radiative transfer in luminescent solar concentrators
Journal of Quantitative Spectroscopy and Radiative Transfer. 2024. Vol. 319, p. 108957. DOI : 10.1016/j.jqsrt.2024.108957.Quantifying mass transport limitations in a microfluidic CO2 electrolyzer with a gas diffusion cathode
Communications Chemistry. 2024. Vol. 7, num. 1. DOI : 10.1038/s42004-024-01122-5.2023
Surface Charge Boundary Condition Often Misused in CO2 Reduction Models
Journal Of Physical Chemistry C. 2023-09-08. Vol. 127, num. 37, p. 18784-18790. DOI : 10.1021/acs.jpcc.3c05364.Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device
Nature Energy. 2023-04-10. DOI : 10.1038/s41560-023-01247-2.Recognizing the life and scientific contributions of a pioneer in solar thermochemistry: Prof. Aldo Steinfeld
Solar Energy. 2023-02-16. Vol. 252, p. 401-402. DOI : 10.1016/j.solener.2023.01.050.Geodesic Convolutional Neural Network Characterization of Macro-Porous Latent Thermal Energy Storage
ASME Journal of Heat and Mass Transfer. 2023-02-03. Vol. 145, num. 5, p. 052902. DOI : 10.1115/1.4056663.Design and operational guidelines of solar-driven catalytic conversion of CO2 and H2 to fuels
Applied Energy. 2023-01-20. Vol. 334, p. 120617. DOI : 10.1016/j.apenergy.2022.120617.Single emulsion drops for photocatalytic water splitting as a membrane-free approach to product separation
Cell Reports Physical Science. 2023. p. 101755. DOI : 10.1016/j.xcrp.2023.101755.Morphology and Transport Characterization of Catalyst Layers for CO2 Reduction
Journal of The Electrochemical Society. 2023. Vol. 170, num. 10, p. 104507. DOI : 10.1149/1945-7111/acff1c.Photoelectrochemical behaviour of photoanodes under high photon fluxes
Journal of Materials Chemistry. 2023. Vol. A11, num. 44, p. 23895-23908. DOI : 10.1039/D3TA05257E.A holistic investigation of photocatalytic hydrogen generation
Lausanne, EPFL, 2023.Photovoltaics at multi-terawatt scale: Waiting is not an option
Science. 2023. Vol. 380, num. 6640, p. 39-42. DOI : 10.1126/science.adf6957.Pathways to enhance electrochemical CO2 reduction identified through direct pore-level modeling
EES Catalysis. 2023. DOI : 10.1039/D3EY00122A.Multiphysics model for assessing photoelectrochemical phenomena under concentrated irradiation
Electrochimica Acta. 2023. Vol. 462, p. 142703. DOI : 10.1016/j.electacta.2023.142703.Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars
Nature Communications. 2023. Vol. 14, num. 3141. DOI : 10.1038/s41467-023-38676-2.Beam radiation penetration in particle b e ds for heat transfer modeling of a centrifugal solar particle receiver
Journal Of Quantitative Spectroscopy & Radiative Transfer. 2023-01-01. Vol. 295, p. 108403. DOI : 10.1016/j.jqsrt.2022.108403.2022
Solar fuel processing: Comparative mini-review on research, technology development, and scaling
Solar Energy. 2022-10-14. Vol. 246, p. 294-300. DOI : 10.1016/j.solener.2022.09.019.Modeling the Photostability of Solar Water-Splitting Devices and Stabilization Strategies
ACS Applied Materials & Interfaces. 2022-09-19. DOI : 10.1021/acsami.2c08204.Multi-configuration evaluation of a megajoule-scale high-temperature latent thermal test-bed
Applied Thermal Engineering. 2022-09-01. Vol. 214, p. 118697. DOI : 10.1016/j.applthermaleng.2022.118697.Integrated solar-driven high-temperature electrolysis operating with concentrated irradiation
Joule. 2022-08-23. DOI : 10.1016/j.joule.2022.07.013.Enhanced Solar-to-Fuel Efficiency of Ceria-Based Thermochemical Cycles via Integrated Electrochemical Oxygen Pumping
Acs Energy Letters. 2022-08-12. Vol. 7, num. 8, p. 2711-2716. DOI : 10.1021/acsenergylett.2c01318.Photo‐Electrochemical Conversion of CO 2 Under Concentrated Sunlight Enables Combination of High Reaction Rate and Efficiency
Advanced Energy Materials. 2022-06-19. p. 2200585. DOI : 10.1002/aenm.202200585.Multi-Scale Study of High-Temperature Latent Heat Storage With Metallic Phase Change Materials
Lausanne, EPFL, 2022.Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium
Nature Catalysis. 2022. Vol. 5, p. 268-276. DOI : 10.1038/s41929-022-00761-y.Design guidelines for next-generation sodium-nickel-chloride batteries
Lausanne, EPFL, 2022.Modeling and assessment of high-temperature photo-electrochemical devices
Lausanne, EPFL, 2022.Conductive Heat Transfer in Partially Saturated Gas Diffusion Layers with Evaporative Cooling
Journal of The Electrochemical Society. 2022. Vol. 169, p. 3. DOI : 10.1149/1945-7111/ac4e5c.2021
Prospects and challenges in designing photocatalytic particle suspension reactors for solar fuel processing
Chemical Science. 2021-07-01. Vol. 12, num. 29, p. 9866-9884. DOI : 10.1039/D1SC01504D.Numerical characterization and engineering of transport in morphologically complex heterogeneous media
Lausanne, EPFL, 2021.Non-uniform porous structures and cycling control for optimized fixed-bed solar thermochemical water splitting
Journal of Solar Energy Engineering. 2021. p. 1-24. DOI : 10.1115/1.4052960.Multiphase transport and evaporative cooling in fuel cell gas diffusion layers
Lausanne, EPFL, 2021.Modeling and design guidelines of high-temperature photoelectrochemical devices
Sustainable Energy & Fuels. 2021. Vol. 5, num. 7, p. 2169-2180. DOI : 10.1039/D0SE01749C.Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials
International Journal of Heat and Mass Transfer. 2021. Vol. 164, p. 120525. DOI : 10.1016/j.ijheatmasstransfer.2020.120525.2020
Mitigating voltage losses in photoelectrochemical cell scale-up
Sustainable Energy & Fuels. 2020-06-01. Vol. 4, num. 6, p. 2734-2740. DOI : 10.1039/d0se00246a.Pressure Drop and Convective Heat Transfer in Different SiSiC Structures Fabricated by Indirect Additive Manufacturing
Journal Of Heat Transfer-Transactions Of The Asme. 2020-03-01. Vol. 142, num. 3, p. 032702. DOI : 10.1115/1.4045732.Design guidelines for Al-12%Si latent heat storage encapsulations to optimize performance and mitigate degradation
Applied Surface Science. 2020-03-01. Vol. 505, p. 143684. DOI : 10.1016/j.apsusc.2019.143684.Optimizing and Implementing Light Trapping in Thin-Film, Mesostructured Photoanodes
Acs Applied Materials & Interfaces. 2020-02-05. Vol. 12, num. 5, p. 5739-5749. DOI : 10.1021/acsami.9b17856.Dynamic system modeling of thermally-integrated concentrated PV-electrolysis
International Journal of Hydrogen Energy. 2020. Vol. 46, num. 18, p. 10666-10681. DOI : 10.1016/j.ijhydene.2020.12.151.Numerical optimization of evaporative cooling in artificial gas diffusion layers for fuel cell applications
Applied Thermal Engineering. 2020. Vol. 186, p. 116460. DOI : 10.1016/j.applthermaleng.2020.116460.Sodium plating and stripping from Na-β”-alumina ceramics beyond 1000 mA/cm2
Materials Today Energy. 2020. Vol. 18, p. 100515. DOI : 10.1016/j.mtener.2020.100515.Theoretical maximum photogeneration efficiency and performance characterization of InxGa1-xN/Si tandem water-splitting photoelectrodes
APL Materials. 2020. Vol. 8, num. 7, p. 071111. DOI : 10.1063/5.0007034.Multi-physical characterization of cellular ceramics for high-temperature applications
Lausanne, EPFL, 2020.Practical challenges in the development of photoelectrochemical solar fuels production
Sustainable Energy & Fuels. 2020. Vol. 4, num. 3, p. 985-995. DOI : 10.1039/C9SE00869A.Effective conductivity of porous ceramics in a radiative environment
Ceramics International. 2020. Vol. 46, num. 3, p. 2805-2815. DOI : 10.1016/j.ceramint.2019.09.272.2019
Majority Charge Carrier Transport in Particle-based Photoelectrodes
The Journal of Physical Chemistry C. 2019-10-03. Vol. 123, num. 43, p. 26082–26094. DOI : 10.1021/acs.jpcc.9b07580.Rapid Performance Optimization Method for Photoelectrodes
Journal of Physical Chemistry C. 2019-08-07. Vol. 123, num. 36, p. 21838–21851. DOI : 10.1021/acs.jpcc.9b04102.Kinetic Competition between Water-Splitting and Photocorrosion Reactions in Photoelectrochemical Devices
Chemsuschem. 2019-05-08. Vol. 12, num. 9, p. 1984-1994. DOI : 10.1002/cssc.201802558.A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation
Nature Energy. 2019-04-29. Vol. 4, p. 399–407. DOI : 10.1038/s41560-019-0373-7.Pcm-based heat exchanger and uses thereof
EP3794297; US2021222959; EP3794297; CN112424551; WO2019220395.
2019.Integrated photo-electrochemical device for concentrated irradiation
US11781230; US2022220623; HUE057997; HRP20220391; EP4001469; ES2909621; PT3500694; DK3500694; US11248301; EP3500694; EP3500694; US2019177860; WO2018033886.
2019.Design and optimization of a high-temperature latent heat storage unit
Applied Energy. 2019. Vol. 261, p. 114330. DOI : 10.1016/j.apenergy.2019.114330.Modeling and experimentation of conductive and radiative transfer through heterogeneous insulators in high-flux environments
Lausanne, EPFL, 2019.Preparation of high-conductivity, high-capacity phase change media capsules with enhanced thermos-chemical stability in thermal energy storage applications
Lausanne, EPFL, 2019.Material and mesostructural design guidelines for high performing photoelectrodes
Lausanne, EPFL, 2019.Sequential Cascade Electrocatalytic Conversion of Carbon Dioxide to C-C Coupled Products
Acs Applied Energy Materials. 2019. Vol. 2, num. 6, p. 4551–4559. DOI : 10.1021/acsaem.9b00791.Optimizing Mesostructured Silver Catalysts for Selective Carbon Dioxide Conversion into Fuels
Energy Environmental Science. 2019. Vol. 12, num. 5, p. 1668-1678. DOI : 10.1039/C9EE00656G.Linking Morphology and Multi-Physical Transport in Structured Electrodes
Lausanne, EPFL, 2019.Controlling strategies to maximize reliability of integrated photo-electrochemical devices exposed to realistic disturbances
Sustainable Energy & Fuels. 2019. Vol. 3, num. 5, p. 1297-1306. DOI : 10.1039/c8se00441b.Unsteady Radiative Heat Transfer Model of a Ceria Particle Suspension Undergoing Solar Thermochemical Reduction
Journal Of Thermophysics And Heat Transfer. 2019-01-01. Vol. 33, num. 1, p. 63-77. DOI : 10.2514/1.T5314.Inverse Analysis of Radiative Flux Maps for the Characterization of High Flux Sources
Journal of Solar Energy Engineering. 2019. Vol. 141, num. 2, p. 021011. DOI : 10.1115/1.4042227.2018
Integrated photo-electrochemical device for concentrated irradiation
US11781230; US2022220623; HUE057997; HRP20220391; EP4001469; ES2909621; PT3500694; DK3500694; US11248301; EP3500694; EP3500694; US2019177860; WO2018033886.
2018.Solar production of nylon polymers and prescursors for nylon polymer production
US2020048415; WO2018172927; WO2018172927.
2018.