Advancing the Synthesis for Perdeuterated Small Organic Chemicals via Electrochemical CO2 Reduction
ACS CATALYSIS. 2025. num. 2, p. 1038 – 1045. DOI : 10.1021/acscatal.4c06353.Anion Exchange Membrane Water Electrolysis at 10 A ⋅ cm−2 Over 800 Hours
Angewandte Chemie (International ed. in English). 2025. Vol. 64, num. 1. DOI : 10.1002/anie.202413698.Encapsulated alloy catalysts and their methods of preparation
WO2025016880; EP4491301.
2025.Artificial Metalloenzymes with Two Catalytic Cofactors for Tandem Abiotic Transformations
Angewandte Chemie International Edition. 2025. DOI : 10.1002/anie.202422783.Well-Defined Co2 Dual-Atom Catalyst Breaks Scaling Relations of Oxygen Reduction Reaction
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2024. Vol. 146, num. 51. DOI : 10.1021/jacs.4c12705.An oxide-promoted, self-supported Ni4Mo catalyst for high current density anion exchange membrane water electrolysis
ENERGY & ENVIRONMENTAL SCIENCE. 2024. DOI : 10.1039/d4ee04528a.Strain by metal nitrides accelerates oxygen reduction
NATURE MATERIALS. 2024. Vol. 23, num. 12, p. 1610 – 1611. DOI : 10.1038/s41563-024-02014-8.Nickel-Catalyzed Enantio- and Diastereoselective Synthesis of Fluorine-Containing Vicinal Stereogenic Centers
ACS Central Science. 2024. Vol. 10, num. 8, p. 1657 – 1666. DOI : 10.1021/acscentsci.4c00819.Recycling Spent Ternary Cathodes to Oxygen Evolution Catalysts for Pure Water Anion-Exchange Membrane Electrolysis
ACS nano. 2024. Vol. 18, num. 33, p. 22454 – 22464. DOI : 10.1021/acsnano.4c07340.Engineered Phenylalanine Ammonia-Lyases for the Enantioselective Synthesis of Aspartic Acid Derivatives
Angewandte Chemie International Edition. 2024. DOI : 10.1002/anie.202406008.Regiodivergent and Enantioselective Synthesis of Cyclic Sulfones via Ligand-Controlled Nickel-Catalyzed Hydroalkylation
Angewandte Chemie International Edition. 2024. DOI : 10.1002/anie.202406767.Deoxygenative Transformation of Alcohols via Phosphoranyl Radical from Exogenous Radical Addition
Angewandte Chemie International Edition. 2024. Vol. 63, num. 10, p. e202401575. DOI : 10.1002/anie.202401575.A redox-responsive prodrug for tumor-targeted glutamine restriction
Journal Of Controlled Release. 2024. Vol. 368, p. 251 – 264. DOI : 10.1016/j.jconrel.2024.02.031.Fluorinated polyaromatics with linear, branched or crosslinked structure for anion exchange membranes and ionomers
WO2024094894; EP4365216.
2024.6-diazo-5-oxo-l-norleucine prodrugs
WO2024094526.
2024.Nickel molybdenum catalysts and their methods of preparation
WO2024231574; EP4461850.
2024.Field-enhanced CO electroreduction in membrane electrolyzers at a dehydrated interface
Chem. 2024. DOI : 10.1016/j.chempr.2024.10.019.Integration of Hypervalent Iodine Reagents and Carbazolyl Cyanobenzenes-Based Dyes into Peptides: New Opportunities for Biomolecule Functionalization
Lausanne, EPFL, 2024.Smart chemistry for traceless release of anticancer therapeutics
Biomaterials. 2023. Vol. 303, p. 122353. DOI : 10.1016/j.biomaterials.2023.122353.Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology
Angewandte Chemie International Edition. 2023. Vol. 62, num. 43, p. e202311896. DOI : 10.1002/anie.202311896.Tailored water and hydroxide transport at a quasi-two-phase interface of membrane electrode assembly electrolyzer for CO electroreduction
Joule. 2023. Vol. 7, num. 10, p. 2349 – 2360. DOI : 10.1016/j.joule.2023.08.008.Robust Piperidinium-Enriched Polystyrene Ionomers for Anion Exchange Membrane Fuel Cells and Water Electrolyzers
Acs Energy Letters. 2023. Vol. 8, num. 10, p. 4043 – 4051. DOI : 10.1021/acsenergylett.3c01402.Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation
Nature Catalysis. 2023. Vol. 6, p. 773 – 783. DOI : 10.1038/s41929-023-01007-1.Copper-Catalyzed Benzylic Functionalization of Lignin-Derived Monomers
Chemsuschem. 2023. DOI : 10.1002/cssc.202300703.Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates
Chem. 2023. Vol. 9, num. 8. DOI : 10.1016/j.chempr.2023.03.022.Anion Exchange Membranes for Hydrogen Technologies: Challenges and Progress
Chimia. 2023. Vol. 77, num. 7-8, p. 494 – 500. DOI : 10.2533/chimia.2023.494.High entropy molybdate-derived FeOOH catalyzes oxygen evolution reaction in alkaline media
Electrochimica Acta. 2023. Vol. 463, p. 142775. DOI : 10.1016/j.electacta.2023.142775.Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells
Advanced Materials. 2023. Vol. 35, num. 26, p. 2210432. DOI : 10.1002/adma.202210432.Operando identification of a side-on nickel superoxide intermediate and the mechanism of oxygen evolution on nickel oxyhydroxide
Chem Catalysis. 2023. Vol. 3, num. 1, p. 100475. DOI : 10.1016/j.checat.2022.11.014.Aryl-ether-free polyaromatic polymers with branched structures for anion exchange membranes
KR20240073965; CN118076658; WO2023062127; EP4166586.
2023.Anion Exchange Ionomers Enable Sustained Pure-Water Electrolysis Using Platinum-Group-Metal-Free Electrocatalysts
ACS Energy Letters. 2023. Vol. 8, num. 12, p. 5018 – 5024. DOI : 10.1021/acsenergylett.3c01866.Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes
Chinese Journal Of Catalysis. 2023. Vol. 44, p. 127 – 138. DOI : 10.1016/S1872-2067(22)64190-1.Development of stimuli-responsive chemistry for tumor-targeted immunotherapy
Lausanne, EPFL, 2023.The design and development of anion exchange membranes for hydrogen fuel cells
Lausanne, EPFL, 2023.Enantio- and diastereoselective construction of vicinal C(sp(3)) centres via nickel-catalysed hydroalkylation of alkenes
Nature Catalysis. 2022. Vol. 5, num. 12, p. 1180 – 1187. DOI : 10.1038/s41929-022-00894-0.The Function of Two Radical-SAM Enzymes, HcgA and HcgG, in the Biosynthesis of the [Fe]-Hydrogenase Cofactor
Angewandte Chemie International Edition. 2022. Vol. 61, num. 50, p. e202213239. DOI : 10.1002/anie.202213239.A Cation Concentration Gradient Approach to Tune the Selectivity and Activity of CO2 Electroreduction
Angewandte Chemie International Edition. 2022. Vol. 61, num. 49, p. e202214173. DOI : 10.1002/anie.202214173.Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes
Nature Communications. 2022. Vol. 13, num. 1, p. 3356. DOI : 10.1038/s41467-022-31096-8.Enhanced rate performance of lithium-ion battery anodes using a cobalt-incorporated carbon conductive agent
Inorganic Chemistry Frontiers. 2022. DOI : 10.1039/d2qi00273f.Streamlined Alkylation via Nickel-Hydride-Catalyzed Hydrocarbonation of Alkenes
Journal Of The American Chemical Society. 2022. Vol. 144, num. 16, p. 7015 – 7029. DOI : 10.1021/jacs.1c13482.Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction
Angewandte Chemie International Edition. 2022. p. e202203335. DOI : 10.1002/anie.202203335.Bronze-Phase TiO2 as Anode Materials in Lithium and Sodium-Ion Batteries
Advanced Functional Materials. 2022. p. 2201675. DOI : 10.1002/adfm.202201675.An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells
Nature Materials. 2022. DOI : 10.1038/s41563-022-01221-5.In Vitro Biosynthesis of the [Fe]-Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors
Angewandte Chemie International Edition. 2022. p. e202200994. DOI : 10.1002/anie.202200994.Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst
Angewandte Chemie International Edition. 2022. p. e202202649. DOI : 10.1002/anie.202202649.Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides
Energy & Environmental Science. 2022. Vol. 15, num. 1, p. 206 – 214. DOI : 10.1039/d1ee02999a.Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium
Nature Catalysis. 2022. Vol. 5, p. 268 – 276. DOI : 10.1038/s41929-022-00761-y.Mapping Catalyst‐Solvent Interplay in Competing Carboamination/Cyclopropanation Reactions
Chemistry – A European Journal. 2022. p. e202200399. DOI : 10.1002/chem.202200399.Ring-Opening Reactions of Aminocyclopropanes and Aminocyclobutanes
Lausanne, EPFL, 2022.Atomic doping & coating for Electrocatalysis & Li-ion batteries
Lausanne, EPFL, 2022.Branched Poly(Aryl Piperidinium) Membranes for Anion-Exchange Membrane Fuel Cells
Angewandte Chemie International Edition. 2022. p. e202114892. DOI : 10.1002/anie.202114892.Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis
Nature Energy. 2021. Vol. 6, p. 1054 – 1066. DOI : 10.1038/s41560-021-00925-3.Photocatalytic Decarboxylative Coupling of Aliphatic N-hydroxyphthalimide Esters with Polyfluoroaryl Nucleophiles
Angewandte Chemie International Edition. 2021. Vol. 60, num. 44, p. 23557 – 23563. DOI : 10.1002/anie.202108465.Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion
Cell Reports Physical Science. 2021. Vol. 2, num. 9, p. 100567. DOI : 10.1016/j.xcrp.2021.100567.Copper-Catalyzed Intermolecular Functionalization of Unactivated C(sp(3))-H Bonds and Aliphatic Carboxylic Acids
Journal Of The American Chemical Society. 2021. Vol. 143, num. 36, p. 14667 – 14675. DOI : 10.1021/jacs.1c05874.Visible-Light-Driven Catalytic Deracemization of Secondary Alcohols
Angewandte Chemie International Edition. 2021. Vol. 60, num. 42, p. 22833 – 22838. DOI : 10.1002/anie.202107570.Diversifying Metal-Ligand Cooperative Catalysis in Semi-Synthetic [Mn]-Hydrogenases
Angewandte Chemie International Edition. 2021. Vol. 60, num. 24, p. 13350 – 13357. DOI : 10.1002/anie.202100443.Mechanochemical synthesis of novel rutile-type high entropy fluorides for electrocatalysis
Journal of Materials Chemistry A. 2021. Vol. 9, num. 14, p. 8998 – 9009. DOI : 10.1039/D0TA10209A.Intermolecular oxidative amination of unactivated alkenes by dual photoredox and copper catalysis
Chemical Science. 2021. Vol. 12, num. 5, p. 1901 – 1906. DOI : 10.1039/d0sc05952h.Chiral Alkyl Amine Synthesis via Catalytic Enantioselective Hydroalkylation of Enecarbamates
Journal Of The American Chemical Society. 2021. Vol. 143, num. 4, p. 1959 – 1967. DOI : 10.1021/jacs.0c11630.Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction**
Angewandte Chemie International Edition. 2021. Vol. 60, num. 6, p. 3095 – 3103. DOI : 10.1002/anie.202011388.Electronic Multi-material Fibers and Textiles: Novel Designs and Applications
Lausanne, EPFL, 2021.Copper-catalyzed transformations of carboradicals generated by electrochemical and photochemical methods: oxidative amination and polyfluoroarylation
Lausanne, EPFL, 2021.The design and synthesis of nanostructured hydrogen oxidation reaction electrocatalysts for hydroxide exchange membrane fuel cells
Lausanne, EPFL, 2021.Atomic Level Insights of Non-Noble Metal Catalysts for the Oxygen Evolution Reaction
Lausanne, EPFL, 2021.Enantioselective C(sp(3))-C(sp(3)) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis
Nature Chemistry. 2021. Vol. 13, num. 3, p. 270 – 277. DOI : 10.1038/s41557-020-00576-z.High-Efficiency Anion Exchange Membrane Water Electrolysis Employing Non-Noble Metal Catalysts
Advanced Energy Materials. 2020. p. 2002285. DOI : 10.1002/aenm.202002285.Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step
Journal Of The American Chemical Society. 2020. Vol. 142, num. 27, p. 11901 – 11914. DOI : 10.1021/jacs.0c04867.Tandem Photoredox and Copper-Catalyzed Decarboxylative C(sp3)–N Coupling of Anilines and Imines Using an Organic Photocatalyst
Organic Letters. 2020. Vol. 22, num. 14, p. 5412 – 5416. DOI : 10.1021/acs.orglett.0c01769.The Role of Percent Volume Buried in the Characterization of Copper(I) Complexes for Lighting Purposes
Molecules. 2020. Vol. 25, num. 11, p. 2647. DOI : 10.3390/molecules25112647.Mechanistic Investigations of Nickamine-catalyzed Hydrosilylation of Alkenes: Nickel Nanoparticles Are the Active Species
Chimia. 2020. Vol. 74, num. 6, p. 444 – 449. DOI : 10.2533/chimia.2020.444.Deciphering Iron-Dependent Activity in Oxygen Evolution Catalyzed by Nickel-Iron Layered Double Hydroxide
Angewandte Chemie International Edition. 2020. Vol. 59, num. 21, p. 8072 – 8077. DOI : 10.1002/anie.201915803.Efficient Hydrogen Oxidation Catalyzed by Strain-Engineered Nickel Nanoparticles
Angewandte Chemie International Edition. 2020. Vol. 59, num. 27, p. 10797 – 10801. DOI : 10.1002/anie.201916314.Nickel catalysis enables convergent paired electrolysis for direct arylation of benzylic C–H bonds
Chemical Science. 2020. Vol. 11, num. 39, p. 10786 – 10791. DOI : 10.1039/D0SC01445A.Biomimetic Hydrogenation Catalyzed by a Manganese Model of [Fe]-Hydrogenase
Angewandte Chemie International Edition. 2020. Vol. 59, num. 12, p. 4942 – 4946. DOI : 10.1002/anie.201914377.Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting
Advanced Science. 2020. p. 1902102. DOI : 10.1002/advs.201902102.Iron-Catalyzed Reductive Coupling of Alkyl Iodides with Alkynes To Yield cis-Olefins: Mechanistic Insights from Computation
Acs Omega. 2020. Vol. 5, num. 3, p. 1586 – 1594. DOI : 10.1021/acsomega.9b03578.Arylsilylation of Electron-Deficient Alkenes via Cooperative Photoredox and Nickel Catalysis
Acs Catalysis. 2020. Vol. 10, num. 1, p. 777 – 782. DOI : 10.1021/acscatal.9b04916.Oxygen evolution reaction catalyzed by first-row transition metal oxides: stability and mechanism
Lausanne, EPFL, 2020.Aliphatic Carboxylic Acids as Coupling Partners in Carbon-Heteroatom Bond-Forming Reactions
Lausanne, EPFL, 2020.Synthetic methodologies for C-C and C-N bond formation involving alkyl radicals
Lausanne, EPFL, 2020.Copper(I) Based Photoredox Chemistry
Lausanne, EPFL, 2020.Mechanistic Studies of Two Ni-Catalyzed Reactions: Reductive Amidation of Esters with Nitroarenes and Hydrosilylation of Alkenes
Lausanne, EPFL, 2020.Stability profiles of transition metal oxides in the oxygen evolution reaction in alkaline medium
Journal Of Materials Chemistry A. 2019. Vol. 7, num. 45, p. 25865 – 25877. DOI : 10.1039/c9ta10308b.Ligand-Controlled Regiodivergent Hydroalkylation of Pyrrolines
Angewandte Chemie International Edition. 2019. Vol. 58, num. 51, p. 18519 – 18523. DOI : 10.1002/anie.201912629.Deoxygenative trifluoromethylthiolation of carboxylic acids
Chemical Science. 2019. Vol. 10, num. 41, p. 9555 – 9559. DOI : 10.1039/c9sc03396c.Double bridged mu(2)-Halide Cu (II) complexes for the electrocatalytic reduction of CO2
Electrochimica Acta. 2019. Vol. 321, p. 134675. DOI : 10.1016/j.electacta.2019.134675.Functional Models of the Nickel Pincer Nucleotide Cofactor of Lactate Racemase
Angewandte Chemie International Edition. 2019. Vol. 58, num. 47, p. 16869 – 16872. DOI : 10.1002/anie.201910490.A Cobalt-Iron Double-Atom Catalyst for the Oxygen Evolution Reaction
Journal of The American Chemical Society. 2019. Vol. 141, num. 36, p. 14190 – 14199. DOI : 10.1021/jacs.9b05268.Nickel-Catalyzed Regioselective Hydroalkylation and Hydroarylation of Alkenyl Boronic Esters
Angewandte Chemie International Edition. 2019. Vol. 58, num. 39, p. 13854 – 13859. DOI : 10.1002/anie.201907045.Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides
Angewandte Chemie International Edition. 2019. Vol. 58, num. 30, p. 10295 – 10299. DOI : 10.1002/anie.201903200.Metal-Sulfide Catalysts Derived from Lignosulfonate and their Efficient Use in Hydrogenolysis
Chemsuschem. 2019. Vol. 12, num. 14, p. 3271 – 3277. DOI : 10.1002/cssc.201900677.Xile Hu
Chemcatchem. 2019. Vol. 11, num. 14, p. 3127 – 3127. DOI : 10.1002/cctc.201900931.A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor
Nature Chemistry. 2019. Vol. 11, num. 7, p. 669 – 675. DOI : 10.1038/s41557-019-0266-1.Homogeneous Reactions Limit the Efficiency of Gold Electrodes in CO2 Electroreduction
Acs Central Science. 2019. Vol. 5, num. 6, p. 933 – 935. DOI : 10.1021/acscentsci.9b00461.Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO
Science. 2019. Vol. 364, num. 6445, p. 1091 – 1094. DOI : 10.1126/science.aaw7515.The atomic-resolution crystal structure of activated [Fe]-hydrogenase
Nature Catalysis. 2019. Vol. 2, num. 6, p. 537 – 543. DOI : 10.1038/s41929-019-0289-4.From Alkyl Halides to Ketones: Nickel-Catalyzed Reductive Carbonylation Utilizing Ethyl Chloroformate as the Carbonyl Source
Angewandte Chemie International Edition. 2019. Vol. 58, num. 22, p. 7454 – 7458. DOI : 10.1002/anie.201903330.Ni3N as an Active Hydrogen Oxidation Reaction Catalyst in Alkaline Medium
Angewandte Chemie International Edition. 2019. Vol. 58, num. 22, p. 7445 – 7449. DOI : 10.1002/anie.201902751.Nickamine and Analogous Nickel Pincer Catalysts for Cross-Coupling of Alkyl Halides and Hydrosilylation of Alkenes
Accounts Of Chemical Research. 2019. Vol. 52, num. 5, p. 1471 – 1483. DOI : 10.1021/acs.accounts.9b00118.Prof. Hu’s Doctoral Dissertation:
Metal complexes of tripodal N-heterocyclic carbene ligands: Synthesis, structure, bonding, and reactivity. Hu, Xile. Univ. of California, San Diego, CA, USA. Avail. UMI, Order No. DA3153698. (2004), 209 pp. From: Diss. Abstr. Int., B 2005, 65(11), 5714. Dissertation written in English. CAN 143:277686 AN 2005:706822