Publication List without graphic

Engineered Phenylalanine Ammonia-Lyases for the Enantioselective Synthesis of Aspartic Acid Derivatives

I. Buslov; S. Desmons; Y. Duhoo; X. Hu 

Angewandte Chemie-International Edition. 2024-06-17. DOI : 10.1002/anie.202406008.

Regiodivergent and Enantioselective Synthesis of Cyclic Sulfones via Ligand-Controlled Nickel-Catalyzed Hydroalkylation

C. Fan; U. Dhawa; D. Qian; D. Sakic; J. Morel et al. 

Angewandte Chemie-International Edition. 2024-06-14. DOI : 10.1002/anie.202406767.

Deoxygenative Transformation of Alcohols via Phosphoranyl Radical from Exogenous Radical Addition

W. Xu; C. Fan; X. Hu; T. Xu 

Angewandte Chemie-International Edition. 2024-03-05. Vol. 63, num. 10, p. e202401575. DOI : 10.1002/anie.202401575.

A redox-responsive prodrug for tumor-targeted glutamine restriction

C. J. Prangea; N. Y. Ben Sayed; B. Feng; C. Goepfertd; D. O. Trujillo et al. 

Journal Of Controlled Release. 2024-02-29. Vol. 368, p. 251-264. DOI : 10.1016/j.jconrel.2024.02.031.

6-diazo-5-oxo-l-norleucine prodrugs

C. J. Prange; X. Hu; L. Tang; N. Y. Ben Sayed 

WO2024094526.

2024.

Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology

W. Wang; R. Tachibana; Z. Zou; D. Chen; X. Zhang et al. 

Angewandte Chemie-International Edition. 2023-10-23. Vol. 62, num. 43, p. e202311896. DOI : 10.1002/anie.202311896.

Tailored water and hydroxide transport at a quasi-two-phase interface of membrane electrode assembly electrolyzer for CO electroreduction

W. Ren; W. Ma; X. Hu 

Joule. 2023-10-18. Vol. 7, num. 10, p. 2349-2360. DOI : 10.1016/j.joule.2023.08.008.

Synergistic interactions between PtRu catalyst and nitrogen-doped carbon support boost hydrogen oxidation

W. Ni; J. L. Meibom; N. Ul Hassan; M. Chang; Y-C. Chu et al. 

Nature Catalysis. 2023-08-31. Vol. 6, p. 773–783. DOI : 10.1038/s41929-023-01007-1.

Copper-Catalyzed Benzylic Functionalization of Lignin-Derived Monomers

L. Lavrencic; U. Dhawa; A. Blumenstein; X. Hu 

Chemsuschem. 2023-08-17. DOI : 10.1002/cssc.202300703.

Copper lattice tension boosts full-cell CO electrolysis to multi-carbon olefins and oxygenates

W. Ma; S. Xie; B. Zhang; X. He; X. Liu et al. 

Chem. 2023-08-10. Vol. 9, num. 8. DOI : 10.1016/j.chempr.2023.03.022.

Fluorinated Poly(aryl piperidinium) Membranes for Anion Exchange Membrane Fuel Cells

X. Wu; N. Chen; C. Hu; H-A. Klok; Y. M. Lee et al. 

Advanced Materials. 2023-05-11. Vol. 35, num. 26, p. 2210432. DOI : 10.1002/adma.202210432.

Smart chemistry for traceless release of anticancer therapeutics

C. J. Prange; X. Hu; L. Tang 

Biomaterials. 2023-11-04. Vol. 303, p. 122353. DOI : 10.1016/j.biomaterials.2023.122353.

Anion Exchange Ionomers Enable Sustained Pure-Water Electrolysis Using Platinum-Group-Metal-Free Electrocatalysts

Y. Zheng; A. Serban; H. Zhang; N. Chen; F. Song et al. 

ACS Energy Letters. 2023. Vol. 8, num. 12, p. 5018-5024. DOI : 10.1021/acsenergylett.3c01866.

Robust Piperidinium-Enriched Polystyrene Ionomers for Anion Exchange Membrane Fuel Cells and Water Electrolyzers

N. Chen; Q. Jiang; F. Song; X. Hu 

Acs Energy Letters. 2023-09-06. Vol. 8, num. 10, p. 4043–4051. DOI : 10.1021/acsenergylett.3c01402.

Anion Exchange Membranes for Hydrogen Technologies: Challenges and Progress

X. Wu; X. Hu 

Chimia. 2023-08-01. Vol. 77, num. 7-8, p. 494-500. DOI : 10.2533/chimia.2023.494.

High entropy molybdate-derived FeOOH catalyzes oxygen evolution reaction in alkaline media

S. Lee; L. Bai; J. Jeong; D. Stenzel; S. Schweidler et al. 

Electrochimica Acta. 2023-07-06. Vol. 463, p. 142775. DOI : 10.1016/j.electacta.2023.142775.

Development of stimuli-responsive chemistry for tumor-targeted immunotherapy

C. J. Prange / X. Hu; L. Tang (Dir.)  

Lausanne, EPFL, 2023. 

Aryl-ether-free polyaromatic polymers with branched structures for anion exchange membranes

X. Wu; X. Hu 

KR20240073965; CN118076658; WO2023062127; EP4166586.

2023.

The design and development of anion exchange membranes for hydrogen fuel cells

X. Wu / X. Hu; H-A. Klok (Dir.)  

Lausanne, EPFL, 2023. 

Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes

Q. Xie; D. Ren; L. Bai; R. Ge; W. Zhou et al. 

Chinese Journal Of Catalysis. 2023-01-01. Vol. 44, p. 127-138. DOI : 10.1016/S1872-2067(22)64190-1.

Operando identification of a side-on nickel superoxide intermediate and the mechanism of oxygen evolution on nickel oxyhydroxide

S. Lee; Y-C. Chu; L. Bai; H. M. Chen; X. Hu 

Chem Catalysis. 2023-01-19. Vol. 3, num. 1, p. 100475. DOI : 10.1016/j.checat.2022.11.014.

Enantio- and diastereoselective construction of vicinal C(sp(3)) centres via nickel-catalysed hydroalkylation of alkenes

S. Bera; C. Fan; X. Hu 

Nature Catalysis. 2022-12-01. Vol. 5, num. 12, p. 1180-1187. DOI : 10.1038/s41929-022-00894-0.

Streamlined Alkylation via Nickel-Hydride-Catalyzed Hydrocarbonation of Alkenes

Z. Zhang; S. Bera; C. Fan; X. Hu 

Journal Of The American Chemical Society. 2022-04-27. Vol. 144, num. 16, p. 7015-7029. DOI : 10.1021/jacs.1c13482.

An efficient nickel hydrogen oxidation catalyst for hydroxide exchange membrane fuel cells

W. Ni; T. Wang; F. Heroguel; A. Krammer; S. Lee et al. 

Nature Materials. 2022-04-04. DOI : 10.1038/s41563-022-01221-5.

The Function of Two Radical-SAM Enzymes, HcgA and HcgG, in the Biosynthesis of the [Fe]-Hydrogenase Cofactor

F. J. Arriaza-Gallardo; S. Schaupp; Y-C. Zheng; M. F. Abdul-Halim; H-J. Pan et al. 

Angewandte Chemie-International Edition. 2022-11-17. Vol. 61, num. 50, p. e202213239. DOI : 10.1002/anie.202213239.

A Cation Concentration Gradient Approach to Tune the Selectivity and Activity of CO2 Electroreduction

W. Ren; A. Xu; K. Chan; X. Hu 

Angewandte Chemie International Edition. 2022-11-14. Vol. 61, num. 49, p. e202214173. DOI : 10.1002/anie.202214173.

Proton Storage in Metallic H1.75MoO3 Nanobelts through the Grotthuss Mechanism

W. Xu; K. Zhao; X. Liao; C. Sun; K. He et al. 

Journal Of The American Chemical Society. 2022-09-19. Vol. 144, num. 38, p. 17407–17415. DOI : 10.1021/jacs.2c03844.

Enhancement of electrocatalytic oxygen evolution by chiral molecular functionalization of hybrid 2D electrodes

Y. Liang; K. Banjac; K. Martin; N. Zigon; S. Lee et al. 

Nature Communications. 2022-06-10. Vol. 13, num. 1, p. 3356. DOI : 10.1038/s41467-022-31096-8.

Enhanced rate performance of lithium-ion battery anodes using a cobalt-incorporated carbon conductive agent

A. C. J-P. Daubry; Z. Xu; M. Yang; Y-J. Cheng; Y. Xia et al. 

Inorganic Chemistry Frontiers. 2022-05-23. DOI : 10.1039/d2qi00273f.

Bronze-Phase TiO2 as Anode Materials in Lithium and Sodium-Ion Batteries

S. Liang; X. Wang; R. Qi; Y-J. Cheng; Y. Xia et al. 

Advanced Functional Materials. 2022-04-21.  p. 2201675. DOI : 10.1002/adfm.202201675.

Electronic Regulation of Nickel Single Atoms by Confined Nickel Nanoparticles for Energy-Efficient CO2 Electroreduction

W. Ren; X. Tan; C. Jia; A. Krammer; Q. Sun et al. 

Angewandte Chemie-International Edition. 2022-04-27.  p. e202203335. DOI : 10.1002/anie.202203335.

In Vitro Biosynthesis of the [Fe]-Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors

S. Schaupp; F. J. Arriaza-Gallardo; H-j. Pan; J. Kahnt; G. Angelidou et al. 

Angewandte Chemie-International Edition. 2022-03-30.  p. e202200994. DOI : 10.1002/anie.202200994.

Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium

J. Gu; S. Liu; W. Ni; W. Ren; S. Haussener et al. 

Nature Catalysis. 2022. Vol. 5, p. 268-276. DOI : 10.1038/s41929-022-00761-y.

Oxidase-Type C-H/C-H Coupling Using an Isoquinoline-Derived Organic Photocatalyst

L. Zhang; B. Pfund; O. S. Wenger; X. Hu 

Angewandte Chemie-International Edition. 2022-03-19.  p. e202202649. DOI : 10.1002/anie.202202649.

Atomic doping & coating for Electrocatalysis & Li-ion batteries

A. C. J-P. Daubry / X. Hu (Dir.)  

Lausanne, EPFL, 2022. 

Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides

S. Lee; A. Moysiadou; Y-C. Chu; H. M. Chen; X. Hu 

Energy & Environmental Science. 2022. Vol. 15, num. 1, p. 206-214. DOI : 10.1039/d1ee02999a.

Branched Poly(Aryl Piperidinium) Membranes for Anion-Exchange Membrane Fuel Cells

X. Wu; N. Chen; H-A. Klok; Y. M. Lee; X. Hu 

Angewandte Chemie-International Edition. 2021-12-27.  p. e202114892. DOI : 10.1002/anie.202114892.

Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis

L. Bai; C-S. Hsu; D. T. L. Alexander; H. M. Chen; X. Hu 

Nature Energy. 2021-11-01. Vol. 6, p. 1054–1066. DOI : 10.1038/s41560-021-00925-3.

Photocatalytic Decarboxylative Coupling of Aliphatic N-hydroxyphthalimide Esters with Polyfluoroaryl Nucleophiles

X. Yi; R. Mao; L. Lavrencic; X. Hu 

Angewandte Chemie-International Edition. 2021-09-28. Vol. 60, num. 44, p. 23557-23563. DOI : 10.1002/anie.202108465.

Diversifying Metal-Ligand Cooperative Catalysis in Semi-Synthetic [Mn]-Hydrogenases

H-J. Pan; G. Huang; M. D. Wodrich; F. F. Tirani; K. Ataka et al. 

Angewandte Chemie-International Edition. 2021-05-05. Vol. 60, num. 24, p. 13350-13357. DOI : 10.1002/anie.202100443.

The design and synthesis of nanostructured hydrogen oxidation reaction electrocatalysts for hydroxide exchange membrane fuel cells

W. Ni / X. Hu (Dir.)  

Lausanne, EPFL, 2021. 

Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for lignin conversion

L. Chen; L. Pan; A. P. van Muyden; L. Bai; J. Li et al. 

Cell Reports Physical Science. 2021-09-22. Vol. 2, num. 9, p. 100567. DOI : 10.1016/j.xcrp.2021.100567.

Copper-Catalyzed Intermolecular Functionalization of Unactivated C(sp(3))-H Bonds and Aliphatic Carboxylic Acids

R. Mao; S. Bera; A. C. Turla; X. Hu 

Journal Of The American Chemical Society. 2021-09-15. Vol. 143, num. 36, p. 14667-14675. DOI : 10.1021/jacs.1c05874.

Visible-Light-Driven Catalytic Deracemization of Secondary Alcohols

Z. Zhang; X. Hu 

Angewandte Chemie-International Edition. 2021-09-07. Vol. 60, num. 42, p. 22833-22838. DOI : 10.1002/anie.202107570.

Copper-catalyzed transformations of carboradicals generated by electrochemical and photochemical methods: oxidative amination and polyfluoroarylation

X. Yi / X. Hu (Dir.)  

Lausanne, EPFL, 2021. 

Dual anions engineering on nickel cobalt-based catalyst for optimal hydrogen evolution electrocatalysis

Q. Sun; Y. Tong; P. Chen; L. Chen; F. Xi et al. 

Journal Of Colloid And Interface Science. 2021-05-01. Vol. 589, p. 127-134. DOI : 10.1016/j.jcis.2020.12.098.

Dual Vacancies Confined in Nickel Phosphosulfide Nanosheets Enabling Robust Overall Water Splitting

Y. Tong; P. Chen; L. Chen; X. Cui 

Chemsuschem. 2021-05-17. Vol. 14, num. 12, p. 2576-2584. DOI : 10.1002/cssc.202100720.

Mechanochemical synthesis of novel rutile-type high entropy fluorides for electrocatalysis

P. Anitha Sukkurji; Y. Cui; S. Lee; K. Wang; R. Azmi et al. 

Journal of Materials Chemistry A. 2021-02-08. Vol. 9, num. 14, p. 8998-9009. DOI : 10.1039/D0TA10209A.

Chiral Alkyl Amine Synthesis via Catalytic Enantioselective Hydroalkylation of Enecarbamates

D. Qian; S. Bera; X. Hu 

Journal Of The American Chemical Society. 2021-02-03. Vol. 143, num. 4, p. 1959-1967. DOI : 10.1021/jacs.0c11630.

Intermolecular oxidative amination of unactivated alkenes by dual photoredox and copper catalysis

X. Yi; X. Hu 

Chemical Science. 2021-02-07. Vol. 12, num. 5, p. 1901-1906. DOI : 10.1039/d0sc05952h.

Atomic Level Insights of Non-Noble Metal Catalysts for the Oxygen Evolution Reaction

L. Bai / X. Hu (Dir.)  

Lausanne, EPFL, 2021. 

Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction**

L. Bai; S. Lee; X. Hu 

Angewandte Chemie-International Edition. 2021. Vol. 60, num. 6, p. 3095-3103. DOI : 10.1002/anie.202011388.

Tandem Photoredox and Copper-Catalyzed Decarboxylative C(sp3)–N Coupling of Anilines and Imines Using an Organic Photocatalyst

G. Barzanò; R. Mao; M. Garreau; J. Waser; X. Hu 

Organic Letters. 2020-06-26. Vol. 22, num. 14, p. 5412-5416. DOI : 10.1021/acs.orglett.0c01769.

Enantioselective C(sp(3))-C(sp(3)) cross-coupling of non-activated alkyl electrophiles via nickel hydride catalysis

S. Bera; R. Mao; X. Hu 

Nature Chemistry. 2020-12-30. Vol. 13, num. 3, p. 270-277. DOI : 10.1038/s41557-020-00576-z.

Nickel catalysis enables convergent paired electrolysis for direct arylation of benzylic C–H bonds

L. Zhang; X. Hu 

Chemical Science. 2020-04-27. Vol. 11, num. 39, p. 10786-10791. DOI : 10.1039/D0SC01445A.

Synthetic methodologies for C-C and C-N bond formation involving alkyl radicals

G. Barzanò / X. Hu (Dir.)  

Lausanne, EPFL, 2020. 

Copper(I) Based Photoredox Chemistry

M. Alkan / X. Hu (Dir.)  

Lausanne, EPFL, 2020. 

Aliphatic Carboxylic Acids as Coupling Partners in Carbon-Heteroatom Bond-Forming Reactions

R. Mao / X. Hu (Dir.)  

Lausanne, EPFL, 2020. 

High-Efficiency Anion Exchange Membrane Water Electrolysis Employing Non-Noble Metal Catalysts

P. Chen; X. Hu 

Advanced Energy Materials. 2020-09-02.  p. 2002285. DOI : 10.1002/aenm.202002285.

Nitrogen-Incorporated Cobalt Sulfide/Graphene Hybrid Catalysts for Overall Water Splitting

Y. Tong; Q. Sun; P. Chen; L. Chen; Z. Fei et al. 

Chemsuschem. 2020-08-14. Vol. 13, num. 18, p. 5112-5118. DOI : 10.1002/cssc.202001413.

Oxygen evolution reaction catalyzed by first-row transition metal oxides: stability and mechanism

A. Moysiadou / X. Hu (Dir.)  

Lausanne, EPFL, 2020. 

Mechanistic Studies of Two Ni-Catalyzed Reactions: Reductive Amidation of Esters with Nitroarenes and Hydrosilylation of Alkenes

M. L. Ploeger / X. Hu (Dir.)  

Lausanne, EPFL, 2020. 

The Role of Percent Volume Buried in the Characterization of Copper(I) Complexes for Lighting Purposes

M. Alkan-Zambada; E. C. Constable; C. E. Housecroft 

Molecules. 2020-06-01. Vol. 25, num. 11, p. 2647. DOI : 10.3390/molecules25112647.

Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step

A. Moysiadou; S. Lee; C-S. Hsu; H. M. Chen; X. Hu 

Journal Of The American Chemical Society. 2020-07-08. Vol. 142, num. 27, p. 11901-11914. DOI : 10.1021/jacs.0c04867.

Mechanistic Investigations of Nickamine-catalyzed Hydrosilylation of Alkenes: Nickel Nanoparticles Are the Active Species

M. L. Ploeger; I. Busbov; X. Hu 

Chimia. 2020-06-01. Vol. 74, num. 6, p. 444-449. DOI : 10.2533/chimia.2020.444.

Deciphering Iron-Dependent Activity in Oxygen Evolution Catalyzed by Nickel-Iron Layered Double Hydroxide

S. Lee; L. Bai; X. Hu 

Angewandte Chemie-International Edition. 2020-05-18. Vol. 59, num. 21, p. 8072-8077. DOI : 10.1002/anie.201915803.

Efficient Hydrogen Oxidation Catalyzed by Strain-Engineered Nickel Nanoparticles

W. Ni; T. Wang; P. A. Schouwink; Y-C. Chuang; H. M. Chen et al. 

Angewandte Chemie-International Edition. 2020-04-28. Vol. 59, num. 27, p. 10797-10801. DOI : 10.1002/anie.201916314.

Confinement of fluorine anions in nickel-based catalysts for greatly enhancing oxygen evolution activity

Y. Tong; H. Mao; P. Chen; Q. Sun; F. Yan et al. 

Chemical Communications. 2020-04-18. Vol. 56, num. 30, p. 4196-4199. DOI : 10.1039/d0cc01215g.

Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting

S. M. Thalluri; L. Bai; C. Lv; Z. Huang; X. Hu et al. 

Advanced Science. 2020-02-04.  p. 1902102. DOI : 10.1002/advs.201902102.

Iron-Catalyzed Reductive Coupling of Alkyl Iodides with Alkynes To Yield cis-Olefins: Mechanistic Insights from Computation

A. Daru; X. Hu; J. N. Harvey 

Acs Omega. 2020-01-28. Vol. 5, num. 3, p. 1586-1594. DOI : 10.1021/acsomega.9b03578.

Arylsilylation of Electron-Deficient Alkenes via Cooperative Photoredox and Nickel Catalysis

Z. Zhang; X. Hu 

Acs Catalysis. 2020-01-03. Vol. 10, num. 1, p. 777-782. DOI : 10.1021/acscatal.9b04916.

Biomimetic Hydrogenation Catalyzed by a Manganese Model of [Fe]-Hydrogenase

H-J. Pan; X. Hu 

Angewandte Chemie International Edition. 2020-03-02. Vol. 59, num. 12, p. 4942-4946. DOI : 10.1002/anie.201914377.

Functional Models of the Nickel Pincer Nucleotide Cofactor of Lactate Racemase

R. Shi; M. D. Wodrich; H-J. Pan; F. F. Tirani; X. Hu 

Angewandte Chemie-International Edition. 2019-10-11. Vol. 58, num. 47, p. 16869-16872. DOI : 10.1002/anie.201910490.

A Cobalt-Iron Double-Atom Catalyst for the Oxygen Evolution Reaction

L. Bai; C-S. Hsu; D. T. L. Alexander; H. M. Chen; X. Hu 

Journal of The American Chemical Society. 2019-09-11. Vol. 141, num. 36, p. 14190-14199. DOI : 10.1021/jacs.9b05268.

A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor

H-J. Pan; G. Huang; M. D. Wodrich; F. F. Tirani; K. Ataka et al. 

Nature Chemistry. 2019-07-01. Vol. 11, num. 7, p. 669-675. DOI : 10.1038/s41557-019-0266-1.

The atomic-resolution crystal structure of activated [Fe]-hydrogenase

G. Huang; T. Wagner; M. D. Wodrich; K. Ataka; E. Bill et al. 

Nature Catalysis. 2019-06-01. Vol. 2, num. 6, p. 537-543. DOI : 10.1038/s41929-019-0289-4.

An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction

F. Song; M. M. Busch; B. Lassalle-Kaiser; C-S. Hsu; E. Petkucheva et al. 

Acs Central Science. 2019-03-27. Vol. 5, num. 3, p. 558-568. DOI : 10.1021/acscentsci.9b00053.

An ultrathin cobalt-iron oxide catalyst for water oxidation on nanostructured hematite photoanodes

L. Liardet; J. E. Katz; J. Luo; M. Gratzel; X. Hu 

Journal Of Materials Chemistry A. 2019-03-21. Vol. 7, num. 11, p. 6012-6020. DOI : 10.1039/c8ta12295d.

Stability profiles of transition metal oxides in the oxygen evolution reaction in alkaline medium

A. Moysiadou; X. Hu 

Journal Of Materials Chemistry A. 2019-12-07. Vol. 7, num. 45, p. 25865-25877. DOI : 10.1039/c9ta10308b.

Ligand-Controlled Regiodivergent Hydroalkylation of Pyrrolines

D. Qian; X. Hu 

Angewandte Chemie-International Edition. 2019-11-14. Vol. 58, num. 51, p. 18519-18523. DOI : 10.1002/anie.201912629.

Deoxygenative trifluoromethylthiolation of carboxylic acids

R. Mao; S. Bera; A. Cheseaux; X. Hu 

Chemical Science. 2019-11-07. Vol. 10, num. 41, p. 9555-9559. DOI : 10.1039/c9sc03396c.

Double bridged mu(2)-Halide Cu (II) complexes for the electrocatalytic reduction of CO2

M. Sadehvand; A. Amiri; F. F. Tirani; J. Gu; K. Schenk-Joss 

Electrochimica Acta. 2019-10-20. Vol. 321, p. 134675. DOI : 10.1016/j.electacta.2019.134675.

Nickel-Catalyzed Regioselective Hydroalkylation and Hydroarylation of Alkenyl Boronic Esters

S. Bera; X. Hu 

Angewandte Chemie-International Edition. 2019-08-19. Vol. 58, num. 39, p. 13854-13859. DOI : 10.1002/anie.201907045.

Metal-Sulfide Catalysts Derived from Lignosulfonate and their Efficient Use in Hydrogenolysis

S. Liu; A. P. van Muyden; L. Bai; X. Cui; Z. Fei et al. 

Chemsuschem. 2019-07-19. Vol. 12, num. 14, p. 3271-3277. DOI : 10.1002/cssc.201900677.

Xile Hu

X. Hu 

Chemcatchem. 2019-07-18. Vol. 11, num. 14, p. 3127-3127. DOI : 10.1002/cctc.201900931.

Synthesis and Application of Transition Metal Oxides as Oxygen Evolution Catalysts

L. Liardet / X. Hu (Dir.)  

Lausanne, EPFL, 2019. 

Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides

S. Lee; K. Banjac; M. Lingenfelder; X. Hu 

Angewandte Chemie-International Edition. 2019-07-22. Vol. 58, num. 30, p. 10295-10299. DOI : 10.1002/anie.201903200.

From Alkyl Halides to Ketones: Nickel-Catalyzed Reductive Carbonylation Utilizing Ethyl Chloroformate as the Carbonyl Source

R. Shi; X. Hu 

Angewandte Chemie-International Edition. 2019-05-27. Vol. 58, num. 22, p. 7454-7458. DOI : 10.1002/anie.201903330.

Ni3N as an Active Hydrogen Oxidation Reaction Catalyst in Alkaline Medium

W. Ni; A. Krammer; C-S. Hsu; H. M. Chen; A. Schueler et al. 

Angewandte Chemie-International Edition. 2019-05-27. Vol. 58, num. 22, p. 7445-7449. DOI : 10.1002/anie.201902751.

Homogeneous Reactions Limit the Efficiency of Gold Electrodes in CO2 Electroreduction

J. Gu; X. Hu 

Acs Central Science. 2019-06-26. Vol. 5, num. 6, p. 933-935. DOI : 10.1021/acscentsci.9b00461.

Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO

J. Gu; C-S. Hsu; L. Bai; H. M. Chen; X. Hu 

Science. 2019-06-14. Vol. 364, num. 6445, p. 1091-1094. DOI : 10.1126/science.aaw7515.

Oxidative cleavage of -O-4 bonds in lignin model compounds with a single-atom Co catalyst

S. Liu; L. Bai; A. P. van Muyden; Z. Huang; X. Cui et al. 

Green Chemistry. 2019-04-21. Vol. 21, num. 8, p. 1974-1981. DOI : 10.1039/c9gc00293f.

Manganese-mediated reductive amidation of esters with nitroarenes

C. W. Cheung; N. Shen; S-P. Wang; A. Ullah; X. Hu et al. 

Organic Chemistry Frontiers. 2019-03-21. Vol. 6, num. 6, p. 756-761. DOI : 10.1039/c8qo01405a.

Nickamine and Analogous Nickel Pincer Catalysts for Cross-Coupling of Alkyl Halides and Hydrosilylation of Alkenes

R. Shi; Z. Zhang; X. Hu 

Accounts Of Chemical Research. 2019-05-01. Vol. 52, num. 5, p. 1471-1483. DOI : 10.1021/acs.accounts.9b00118.

Formal Aza-Wacker Cyclization by Tandem Electrochemical Oxidation and Copper Catalysis

X. Yi; X. Hu 

Angewandte Chemie-International Edition. 2019-03-26. Vol. 58, num. 14, p. 4700-4704. DOI : 10.1002/anie.201814509.

Cu-Catalyzed Photoredox Chlorosulfonation of Alkenes and Alkynes

M. Alkan-Zambada; X. Hu 

Journal Of Organic Chemistry. 2019-04-05. Vol. 84, num. 7, p. 4525-4533. DOI : 10.1021/acs.joc.9b00238.

Alkene hydrosilylation catalyzed by easily assembled Ni(II)-carboxylate MOFs

Z. Zhang; L. Bai; X. Hu 

Chemical Science. 2019-04-07. Vol. 10, num. 13, p. 3791-3795. DOI : 10.1039/c9sc00126c.

Photoelectrocatalytic arene C–H amination

L. Zhang; L. Liardet; J. Luo; D. Ren; M. Grätzel et al. 

Nature Catalysis. 2019-02-18. Vol. 2, num. 4, p. 366-373. DOI : 10.1038/s41929-019-0231-9.

Z-Selective Synthesis of Vinyl Boronates through Fe-Catalyzed Alkyl Radical Addition

G. Barzano; A. Cheseaux; X. Hu 

Organic Letters. 2019-01-18. Vol. 21, num. 2, p. 490-493. DOI : 10.1021/acs.orglett.8b03772.

Nickel iron diselenide compound, process for the preparation thereof and its use as a catalyst for oxygen evolution reaction

X. Hu; F. Song 

WO2018015891; EP3272707.

2018.