F. P. Kinik, T. N. Nguyen, M. Mensi, C. P. Ireland, K. C. Stylianou, and B. Smit, Sustainable Hydrogenation of Nitroarenes to Anilines with Highly Active in-situ Generated Copper Nanoparticles ChemCatChem (2020) DOI: 10.1002/cctc.202000150
![](https://www.epfl.ch/labs/lsmo/wp-content/uploads/2020/03/ken201-1024x605.jpg)
Abstract
Metal nanoparticles (NPs) are usually stabilized by a capping agent, a surfactant, or a support material, to maintain their integrity. However, these strategies can impact their intrinsic catalytic activity. Here, we demonstrate that the inâsitu formation of copper NPs (Cu0NPs) upon the reduction of the earthâabundant Jacquesdietrichite mineral with ammonia borane (NH3BH3, AB) can provide an alternative solution for stability issues. During the formation of Cu0NPs, hydrogen gas is released from AB, and utilized for the reduction of nitroarenes to their corresponding anilines, at room temperature and under ambient pressure. After the nitroareneâtoâaniline conversion is completed, regeneration of the mineral occurs upon the exposure of Cu0NPs to air. Thus, the hydrogenation reaction can be performed multiple times without the loss of the Cu0NPsâ activity. As a proofâofâconcept, the hydrogenation of drug molecules âflutamideâ and ânimesulideâ was also performed and isolated their corresponding aminoâcompounds in high selectivity and yield.