

The Methodology for Mechanistic

Study of Rate Determining Step

Speaker: Chen-Xu Liu

Supervisor: Prof. Jieping Zhu

04-04-2024

2. How to find the rate-determining step?

3. The classic example

Reactions can occur in *more than one step* and it is *the lowest step* that determines the rate of reaction.

The *rate-determining step* (RDS) is the slowest step of a chemical reaction that determines the speed (rate) at which the overall reaction proceeds.

The RDS is the step in a reaction mechanism that

has the highest activation energy.

It was also called *rate-limiting step* or *turnover-*

Example 1:

$NO_2 + CO \rightarrow NO + CO_2$

If this reaction occurred in a single step, its reaction rate: $rate = k[NO_2]^1[CO]^1$

In fact, however, the observed reaction rate is **second-order** in NO₂ and **zero-order** in CO, $rate = k[NO_2]^2[CO]^0 = k[NO_2]^2$.

It includes two elementary steps:

 $NO_2 + NO_2 \rightarrow NO + NO_3$ (slow step, rate-determining) $NO_3 + CO \rightarrow NO_2 + CO_2$ (fast step)

Example 2: Nucleophilic substitution reaction (simplification)

This reaction is found to be first-order with rate = k[R-X], which indicates that the first step is slow and determines the rate. The second step with nucleophilic reagent is much faster, so the overall rate is independent of the concentration of nucleophilic reagent.

How to find the rate-determining step?

DFT calculation

Energy information

-2.0 -4.0 -6.0

Structural information

Charge distribution information

Orbital information

2.0

0.0

Kinetic Isotope Effect Experiment

H/D KIE experiment

It needs to synthesize the substrate and **deuterated substrate**.

Sun, H.-Y.; Gorelsky, S. I.; Stuart, D. R.; Campeau, L.-G.; Fagnou, K. J. Org. Chem. 2010, 75, 8180-8189.

The C-H bond cleavage maybe the **rate-determining step** of a direct arylation reaction.

Generally speaking, $\text{KIE} = k_{\text{H}}/k_{\text{D}} > 2$; C-H bond cleavage maybe the rate-determining step.

Simmons, E. M.; Hartwig, J. F. *Angew. Chem. Int. Ed.* **2012**, *51*, 3066-3072. Dale, H. J. A.; Leach, A. G.; Lloyd-Jones, G. C. J. Am. Chem. Soc. **2021**, *143*, 21079-21099.

H/D KIE experiment

A) KIE determined from two parallel reactions

B) KIE determined from an intermolecular competition

C) KIE determined from an intramolecular competition

Method A is the **only one** that provides conclusive information on whether the C-H bond cleavage occurs during the **rate-determining step** of a reaction.

Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066-3072.

Dale, H. J. A.; Leach, A. G.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2021, 143, 21079-21099.

(3)

H/D KIE experiment: many examples

Yang, G.; Wu, H.; Gallarati, S.; Corminboeuf, C.; Wang, Q.; Zhu, J. J. Am. Chem. Soc. 2022, 144, 14047–14052.
Yang, Y.; Chen, J.; Shi, Y.; Liu, P.; Feng, Y.; Peng, Q.; Xu, S. J. Am. Chem. Soc. 2024, 146, 1635-1643.

This step is rate-determining step?

Lin, Z.; Oliveira, J. C. A.; Scheremetjew, A.; Ackermann, L. J. Am. Chem. Soc. 2024, 146, 228-239.

H/D KIE experiment

How to determine the rate-determining step for the reaction that do not involve C-H bonds?

Liu, X.; Zhou, Y.; Qi, X.; Li, R.; Liu, P.; Dong, G. Angew. Chem. Int. Ed. 2023, 62, e202310697.

Kinetic Isotope Effect Experiment

¹³C KIE experiment: KIE measured at natural-abundance

H/D KIE experiment need to synthesize the deuterated starting material; However, it is difficult to synthesized ¹³C labeled starting material.

Natural isotopes of atom:

Hydrogen: 1 H (99.9855%), 2 H (D, 0.0145%), 3 H (T, trace) 1 H NMRFluorine: 19 F (100%), 18 F (trace) 19 F NMRPhosphorus: 31 P (100%), 32 P (trace), 33 P (trace) 31 P NMR

Carbon: ¹²C (98.9%), ¹³C (1.06%)

¹³C KIE experiment: KIE measured at natural-abundance

Assume that reductive elimination is the rate-determining step.

¹³C KIE experiment: KIE measured at natural-abundance

1. Quantitative ¹³C NMR of starting material

 $KIE = \frac{\ln(1 - F)}{\ln[(1 - F)\frac{R}{R_0}]}$

- \mathbf{F} = conversion of starting material.
- \mathbf{R} = the peak ratio for the starting material at **high conversion**.
- \mathbf{R}_0 = the peak ratio for the initial starting material.

2. Quantitative ¹³C NMR of product

$$KIE = \frac{\ln(1 - F)}{\ln(1 - F\frac{R}{R_0})}$$

- \mathbf{F} = conversion of starting material.
- \mathbf{R} = the peak ratio for the product at **low conversion**.
- \mathbf{R}_0 = the peak ratio for the fully converted product.

Classical KIE_{12C/13C} values: 0.99<KIE<1.04

¹³C KIE experiment

Strong KIE_{12C/13C} at C3 and moderate one at C2.

Christian, C. F.; Takeya, T.; Szymanski, M. S.; Singleton, D. A. J. Org. Chem. 2007, 72, 6183-6189.

¹³C KIE experiment

Rathbun C. M.; Johnson, J. B. J. Am. Chem. Soc. 2011, 133, 2031-2033.

¹³C KIE experiment

Reaction Progress Kinetic Analysis (RPKA):

Reaction Progress Kinetic Analysis (RPKA) is a methodology that makes use of the voluminous data sets that are now readily obtained from continuous monitoring of the entire course of a reaction.

It can help to describe the driving forces of a reaction and may be used to help distinguish between different proposed mechanistic models.

The method: Reaction progress NMR; In situ FT-IR; In situ UV-vis; Reaction calorimetry.

Reaction at same "excess"

product inhibition or **catalyst deactivation**

Reaction at different "excess"

Reaction at different catalyst concentrations

Determine the reaction order, include substrates and catalyst.

It is very useful to find the rate-determining step.

The rate-determining step is related to **two molecules of palladium** and **one molecule of 2a**, but the rate is **suppressed by 1a**.

Lin, Z.; Oliveira, J. C. A.; Scheremetjew, A.; Ackermann, L. J. Am. Chem. Soc. 2024, 146, 228-239.

Current: zero order

Different "excess" experiments: Reaction order

The C-H cleavages of **2a** occurring during the catalytic cycle but before the rate-determining step.

Detailed kinetic analysis for determining the rate-determining step is needed.

Simmons, E. M.; Hartwig, J. F. *Angew. Chem. Int. Ed.* **2012**, *51*, 3066-3072. Lin, Z.; Oliveira, J. C. A.; Scheremetjew, A.; Ackermann, L. J. Am. Chem. Soc. **2024**, *146*, 228-239.

Hammett plots

Hammett equation describes a linear free-energy relationship relating reaction rates and equilibrium constants for many reactions involving benzoic acid derivatives with *meta-* and *para-*substituents to each other with just two parameters: a substituent constant and a reaction constant.

$$\log \frac{K}{K_0} = \sigma \cdot \rho \qquad \qquad \log \frac{k}{k_0} = \sigma \cdot \rho$$

Substituent

 σ = Substituent constant; ρ = Reaction rate constant;

 k_0 is the reaction rate of the unsubstituted reactant, and k that of a substituted reactant.

1. $\rho > 0$, negative charge is built during the reaction (or positive charge is lost). 2. $\rho = 0$, no sensitivity to substituents, and no charge is built or lost. 3. $\rho < 0$, the reaction builds positive charge (or loses negative charge). Hansch

Substituent	para enece	mena entet
Dimethylamino	-0.83	-0.211
Amino	-0.66	-0.161
Butylamino	-0.51	-0.34
Hydroxy	-0.37	+0.12
Methoxy	-0.268	+0.115
Ethoxy	-0.25	+0.015
Methyl	-0.170	-0.069
Trimethylsilyl	-0.07	-0.04
None	0.000	0.000
Fluoro	+0.062	+0.337
Chloro	+0.227	+0.373
Bromo	+0.232	+0.393
Iodo	+0.276	+0.353
Ethoxycarbonyl	+0.45	+0.37
Trifluoromethyl	+0.54	+0.43
Cyano	+0.66	+0.56
Nitro	+0.778	+0.710

nara- effect

meta- effect

Hansch, C.; A. Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195.

The classic example

The classic example

Investigations on active catalytic species

(a) L1 Rh L1 Rh-Cl L1、 L1 L1 \equiv **L1**/[Rh] = 1:1 B **C** L1/[Rh] = 1:2 A L1/[Rh] = 2:1 $L = C_2H_4$, N₂, solvent, etc. m/z 814.9705 for [M-3L]⁺⁻ m/z 1181.3497 for [M-CI] (b) (C) L1 = Ph Ph OMe **L1**/[Rh] = 1:2 109.1 A Ph´ èh 110.8 $[Rh(C_2H_4)_2Cl]_2$ (5 mol%) (R,R)-L1 (x mol%) Fe LiO^tBu (3.0 equiv) MeC C 112.5 [110.8 B THF, Ar, 80 °C, 2 h **L1**/[Rh] = 1:1 1a 2a 112.3 110.6 3a (0.1 mmol) (0.2 mmol) **L1**/[Rh] = 1.5:1 20 30 5 10 15 X L1/[Rh] 1:2 1:1 1.5:1 2:1 3:1 L1/[Rh] = 2:1NMR yield of 3a 50% 76% 80% 80% 85% D 114.6 113.4 139.7 (L1) ee of 3a 97% >99% >99% >99% >99% 115 114 113 112 111 110 109 108 107 141 140 139 138 118 117 116 f1 (ppm)

Liu, C.-X.; Xie, P.-P.; Zhao, F.; Wang, Q.; Feng, Z.; Wang, H.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2023, 145, 4765-4773.

Investigations on the sequence of elementary steps

³¹P NMR experiment: C-H activation

³¹P NMR experiment: oxidative addition

¹⁹F NMR experiment: oxidative addition & reductive elimination

Kinetic studies

Liu, C.-X.; Xie, P.-P.; Zhao, F.; Wang, Q.; Feng, Z.; Wang, H.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2023, 145, 4765-4773.

Kinetic studies

Liu, C.-X.; Xie, P.-P.; Zhao, F.; Wang, Q.; Feng, Z.; Wang, H.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2023, 145, 4765-4773.

DFT calculation

Liu, C.-X.; Xie, P.-P.; Zhao, F.; Wang, Q.; Feng, Z.; Wang, H.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2023, 145, 4765-4773.

Derivation of the Rate Law

- 1. The rate of coordination of 2-pyridinylferrocenes with the Rh-precursors to form **I** is much faster than either the dissociation of **I** or the following C-H activation $(k_1[Fc-Py] \gg k_{-1} + k_2)$.
- 2. the rate of oxidative addition of **II** with aryl bromide is much faster than the C–H activation $(k_3[Ar-Br] \gg k_2)$.

Steady-state approximation for intermediates I, II and III: k_1 [Rh][Fc-Py] = $(k_{-1} + k_2)$ [I] k_2 [I] = k_3 [ArBr][II] k_3 [ArBr][II] = k_4 [III]

Mass balance for all Rh species:

 $[\mathbf{Rh}]_{total} = [\mathbf{Rh}] + [\mathbf{I}] + [\mathbf{III}] + [\mathbf{III}]$

$$=\frac{k_{-1}+k_2}{k_1[\text{Fc}-\text{Py}]}[\mathbf{I}] + [\mathbf{I}] + \frac{k_2}{k_3[\text{ArBr}]}[\mathbf{I}] + \frac{k_2}{k_4}[\mathbf{I}]$$

$$= \left(\frac{k_{-1} + k_2}{k_1 [\text{Fc} - \text{Py}]} + 1 + \frac{k_2}{k_3 [\text{ArBr}]} + \frac{k_2}{k_4}\right) [\textbf{I}]$$

Final reaction rate equation:

rate =
$$k_4[III] = k_2[I] = \frac{k_2[Rh]_{total}}{\frac{k_{-1}+k_2}{k_1[Fc-Py]} + 1 + \frac{k_2}{k_3[ArBr]} + \frac{k_2}{k_4}} \approx \frac{k_2k_4}{k_2 + k_4} [Rh]_{total}$$

When $k_1[Fc-Py] \gg k_{-1} + k_2$ and $k_3[Ar-Br] \gg k_2$.

Conclusion

The rate-determining step:

- 1. NMR experiments
- 2. DFT calculation
- 3. KIE experiments
- 4. Reaction Progress Kinetic Analysis (RPKA)
- 5. Hammett plots
- 6. Derivation of the Rate Law

The sequence of reaction:

- 1. NMR experiments
- 2. HRMS experiments

Thanks very much for your attention.

H/D KIE experiment

It needs to synthesize the substrate and **deuterated substrate**.

The C-H bond cleavage maybe the rate-

determining step of a direct arylation reaction.

Sun, H.-Y.; Gorelsky, S. I.; Stuart, D. R.; Campeau, L.-G.; Fagnou, K. J. Org. Chem. **2010**, 75, 8180-8189.

Generally speaking, $\text{KIE} = k_{\text{H}}/k_{\text{D}} > 2$; C-H bond cleavage maybe the **rate-determining step**.

H: heavy (D) L: light (H)

Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. **2012**, *51*, 3066-3072. Dale, H. J. A.; Leach, A. G.; Lloyd-Jones, G. C. J. Am. Chem. Soc. **2021**, *143*, 21079-21099.

Simmons, E. M.; Hartwig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066-3072.

¹³C KIE experiment: KIE measured at natural-abundance

H: heavy; L: light

Assume that reductive elimination is the rate-determining step.

Same "excess" experiments

The "same excess" protocol: runs (a) and (b) have different initial concentration of substrates 1 and 2, with the difference between the two (defined as the excess = $[2]_0 - [1]_0$) held the same.

This possibility becomes useful to probe reactions for complexities such as product inhibition or catalyst deactivation. ⁴⁰

¹H NMR experiment: C-H activation

¹H NMR experiment: C-H activation

42

Steady-state approximation

$$E + S \xrightarrow[k_1]{k_1} ES \xrightarrow{k_2} E + P$$

1. The overall rate of product formation: v = k₂[ES]

- 2. Rate of formation of [ES]: v_f = k₁[E][S]
- 3. Rate of decomposition of [ES]:

 $v_{d} = k_{-1}[ES] + k_{2}[ES]$

4. Rate of ES formation = Rate of ES decomposition (steady state)

5. So: $k_1[E][S] = k_1[ES] + k_2[ES]$