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Abstract

This paper addresses the problem of dense estimation of
disparities between omnidirectional images, in a spherical
framework. Omnidirectional imaging certainly represents
important advantages for the representation and processing
of the plenoptic function in 3D scenes for applications in lo-
calization, or depth estimation for example. In this context,
we propose to perform disparity estimation directly in a
spherical framework, in order to avoid discrepancies due to
inexact projections of omnidirectional images onto planes.
We first perform rectification of the omnidirectional images
in the spherical domain. Then we develop a global energy
minimization algorithm based on the graph-cut algorithm,
in order to perform disparity estimation on the sphere. Ex-
perimental results show that the proposed algorithm outper-
forms typical methods as the ones based on block match-
ing, for both a simple synthetic scene, and complex natu-
ral scenes. The proposed method shows promising perfor-
mances for dense disparity estimation and can be extended
efficiently to networks of several camera sensors.

1 Introduction

Dense disparity estimation on omnidirectional images has
become a part of localization, navigation and obstacle
avoidance research. Omnidirectional imaging certainly rep-
resents a great advantage compared to classical projective
camera models in terms of accuracy and efficiency in the
representation of scenes. When several cameras capture the
same scene, the geometry of the scene can be estimated by
comparing the images from the different sensors. The dif-
ferences between the respective positions of a 3D point on
multiple 2D images represent disparities that can be esti-
mated by stereo matching methods. Disparities computed
for each pixel form dense disparity maps, which are in gen-
eral well studied for standard cameras where fast algorithms
have been developed. These fast estimation methods are
generally based on block matching and pixel correlation due
to their simplicity and speed (e.g., [1, 2]). Alternatively,

several works have proposed the use of global energy min-
imization methods for dense disparity estimation on stan-
dard images, and such approaches have become quite popu-
lar with fast and accurate algorithms based on graph-cut [3]
or belief propagation [4]. These methods converge either
to global minimum or to strong local minima in polynomial
time, and become therefore suitable for realtime applica-
tions.

The strategies that have been developed for dense dis-
parity estimation from standard camera images are also ap-
plicable to omnidirectional images. However, dense stereo
matching on omnidirectional camera images is mainly lim-
ited to planar omnidirectional images. The algorithms are
generally based on re-projection of omnidirectional im-
ages on simpler manifolds. For example, Takiguchiet al
[1] re-project omnidirectional images onto cylinders, while
Gonzalez-Barbosaet al [2] and Geyeret al [5] rectify om-
nidirectional images on the rectangular grid. Both cylindri-
cal and rectangular projections are not sufficient to repre-
sent spatial neighborhood and correlations among the pix-
els. However, the equiangular grid on the sphere has a better
representation for the omnidirectional images and it is pos-
sible to map omnidirectional images onto the 2D sphere by
inverse stereographic projection, as shown in [6].

In this paper, we propose to address the problems of
stereo and dense disparity estimation from omnidirectional
images into the spherical framework. We exploit the advan-
tages of the spherical framework for the representation of
3D scenes, and the processing of the plenoptic information.
We first perform rectification of omnidirectional images in
the spherical domain. Then we extend a global energy mini-
mization method based on the graph-cut algorithm to spher-
ical images by considering the typical characteristics of im-
ages on the 2D sphere. In that respect, the work that is
maybe the closest to the approach proposed in this paper
has been performed by Flecket al [7], where 3D modeling
is computed from omnidirectional images using a graph-cut
algorithm. However, the graph-cut algorithm is applied on
planar omnidirectional images, along with post-processing
for refinement of the disparity estimation. Projections on
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planar images certainly introduce discrepancies that we pro-
pose to avoid by working directly in the spherical domain.
We process disparities directly on the 2D sphere in order to
better exploit the geometry of omnidirectional images and
to improve the accuracy of the estimation. Experimental re-
sults show that the proposed method provides efficient dis-
parity estimation, for synthetic and natural scenes. In ad-
dition, the proposed algorithm can be extended to networks
of multiple camera sensors, where the accuracy of the scene
modeling can yet be improved.

The paper is structured as follows. Section 2 describes
the rectification of omnidirectional images in the spherical
domain. Section 3 formulates the dense disparity estimation
problem, and describes the solution based on the graph-cut
algorithm. Experimental results are presented in Section
4, and the extension of the algorithm to networks of three
cameras is presented in Section 5.

2 Rectification of Spherical Images

Rectification is an important step in stereo vision using stan-
dard camera images. It aims at reducing the stereo corre-
spondence estimation to a one-dimensional search problem.
It basically consists in image warping, which is computed
such that epipolar lines coincide with the scan lines. It does
not only facilitate the implementation of disparity estima-
tion algorithms, but also makes computations faster.

Epipole

North

Pole

Figure 1: Relation between longitudes and epipolar great
circles and corresponding rotation.

In the spherical framework, it is also possible to per-
form rectification on spherical images. We simply use the
following observation about epipoles on spherical images:
(i) epipoles resemble the coordinate poles and (ii) epipolar

great circles intersecting on epipoles are like longitude cir-
cles. We therefore rotate spherical image pairs in the spher-
ical domain such that epipoles coincide with the coordi-
nate poles. In this way, epipolar great circles coincide with
the longitudes and disparity estimation becomes a mono-
dimensional problem.

Figure 1 illustrates the rectification strategy used in this
paper. In order to be able to display the spherical images
easily, as well as to use the computation algorithms that
have been optimized for rectangular images, we represent
the spherical images as rectangular images with latitude and
longitude angles as axes. Figure 2 shows original and recti-
fied images in this representation.

At the end of the rectification step, two rectified stereo
spherical images are obtained in the form of rectangular im-
ages on a equiangular grid. It permits to extend the dispar-
ity estimation algorithms developed for standard images to
spherical images, and thus perform fast computations.

Figure 2: Original images (top), and rectified ones (bottom).
Epipolar great circles turn into straight vertical lines inrec-
tified images.

3 Dense Disparity Estimation

In the spherical framework, disparity can be defined as the
difference in angle values between the representation of
the same 3D point, in two different omnidirectional im-
ages. Since pixel coordinates are defined with angles, we
define the disparityγ as the difference between the angles
corresponding to pixel coordinates on the two images, i.e.,
γ = θ − φ,
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Figure 3: 2D representation of the geometry between cam-
eras and the 3D point

Figure 3 shows the 2D representation of the geometry
between cameras and the 3D point. The depthR1 is de-
fined as the distance of the 3D point to the reference camera
center. The relation between the disparityγ, the depthR1
and baseline distanced, is given as

γ = arcsin
dsinθ

R1
(1)

This relation holds for all epipolar great circles on rectified
stereo images.

We now describe the disparity estimation problem, as
an energy minimization problem. LetP denote the set of
all pixels on two rectified spherical images. Let further
L = {l1, l2, . . . , lmax} represent the finite set of discrete
labels corresponding to disparity values. Recall that the dis-
parity estimation problem is mono-dimensional, due to the
image rectification step. A single value per pixel is there-
fore sufficient to represent the disparity, and the disparity
values for each pixel together form the disparity map. If
f : P → L is a mapping so that each pixel is assigned
a disparity label, our aim is to find the optimum mapping
f∗ such that the disparity map is as accurate and smooth as
possible.

The computation of the optimum mappingf∗ can be for-
mulated as an energy minimization problem, where the en-
ergy functionE(f) is built on two componentsEd andEσ,
which respectively represent the data and smoothness func-
tions :

E(f) = Ed(f) + Eσ(f) (2)

The data function first reports the photo-consistency be-
tween the omnidirectional images. It can be written as :

Ed(f) =
∑

(p,q)∈P2

D(p, q), (3)

wherep andq are corresponding pixels in two images under
a mapping functionf . D(., .) is non-positive cost function,
which can be expressed as :

D(p, q) = min{0, (I(p) − I(q))2 − K}, (4)

whereI(i) represents the intensity or luminance of pixel
i and K is a positive constant. In this work, we define
the intensityI(i) in a way that is similar to the function
proposed in Birchfield and Tomasi’s work [8]. It presents
the advantage to be insensitive to image sampling, which is
quite useful since the equiangular grid on the sphere causes
non-uniform sampling.

The smoothness function then captures the variations of
the disparity between neighboring labels. The goal of the
smoothness function is to penalize the estimation of labels
that are different from their neighborhood in order to obtain
a smooth disparity field. The neighborhoodN is generally
represented by the 4 surrounding labels. The smoothness
function under a mappingf can be expressed as :

Eσ(f) =
∑

(p,q)∈N

Vp,q(f(p), f(q)). (5)

The termVp,q = min{|lp, lq|, K} is a distance metric that
reports the difference between labels attributed to neighbor-
ing pixels inN . We use in this work the distance function
proposed in [9].

The dense disparity estimation problem now consists in
minimizing the energy functionE(f), in order to obtain
an accurate and smooth disparity map. Such global en-
ergy minimization problems typically find solutions in al-
gorithms based on graph-cut, or belief propagation meth-
ods. In this paper, we choose to minimize the function
E(f) with a graph-cut algorithm, which has been adapted to
the specificities of the spherical framework. Basically, the
graph-cut algorithm converts the energy minimization prob-
lem into several minimum cut problems. A binary graph is
constructed on the pixels and labels. Since the graph-cut
algorithm is optimum in binary graphs, multiple labels are
processed iteratively by the construction of successive bi-
nary graphs for each label.

Two terminal vertices called source and sink represent
the binary values for a label. That is, the source vertex rep-
resents the labelα and the sink one represents the labelα−.
The pixels represent the other vertices. There are edges be-
tween terminal vertices and pixel vertices to represent the
data costEd and edges between neighboring pixels to rep-
resent the smoothness costEσ. These edges are weighted
by the value of the corresponding cost functions. A cut is
then performed through the edges and the total cost is the
sum of the weights of the edges affected by the cut. The
optimization problem is to find the minimum cut with min-
imum total cost, which corresponds to the minimum of the
energyE(f). Finally, we use theα-expansion method to
find the minimal cut [9, 10]. In the experiments, we use the
graph-cut algorithm based on the implementation proposed
in [9]. We have adapted it to the spherical framework by
taking into account the particular connectivity of the image
boundaries.
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4 Experimental Results

This section evaluates the performance of the dense dispar-
ity estimation algorithm for both synthetic and real images.
We have first generated two synthetic spherical images with
the Blender[11] and Yafray[12] programs. The constructed
scene consists of 4 planes with distances 7,7,8 and 10 units
from the cameras. Figure 4 shows the left and right im-
ages, and the corresponding synthetic scene with a top view.
Cameras are placed 1 unit of distance apart, with no rota-
tion. With these parameters, epipoles are located at90◦ of
latitude,0◦ and180◦ longitude angles for both cameras.

Figure 4: Left and right images, and top view of the syn-
thetic scene.

For real images, we used a catadioptric system with a
paraboloidal mirror. The two images of a room captured
from two different positions are shown in Figure 5. We
map the images on the 2D sphere via inverse stereographic
projection [6]. Images mapped on the sphere and rectified
images are shown in Figure 2.

Figure 5: Captured omnidirectional images.

We compare the performance of the proposed algorithm
(GC) with a block matching algorithm (WTA) based on the
winner-gets-all principle. It consists in a local optimiza-
tion method that tries to find the best match between blocks
of pixels, based on the highest correlation score. Figure 6
shows the disparity maps computed by the proposed algo-
rithm, and the disparity map obtained by the block match-
ing algorithm. It can be seen that the disparity estimation is
more precise in the GC method than in the WTA algorithm,
which is not able to provide a very dense disparity map.

In order to analyze further the performance of the pro-
posed algorithm, we warp the left image using the disparity

Figure 6: Reference image and disparity images calculated
with GC and WTA methods respectively for the real image
set.

maps to get the right image. Figure 7 shows the ground
truth right image, along with the results of warping based
on the disparity maps obtained respectively with WTA and
GC. The images are back projected onto a plane for better
representation. We can see that GC clearly allows to ob-
tain a better estimate of the right image. This is confirmed
by the MSE distortion computed on the right image. The
WTA and GC algorithm respectively results in a distortion
of 1973 and1122 MSE points. Overall, the GC algorithm
gives better performance, both visually and quantitatively.

Figure 7: Right image, and warped images using WTA and
GC respectively

The lack of precision around the epipoles prevents the
GC algorithm to achieve better results due to the global op-
timization characteristics of the graph-cut algorithm. We
therefore run a partial GC algorithm for the central regions
of the omnidirectional images. Figure 8 shows the ground
truth image cropped to the central region, and the same im-
age after warping of the left image based on the disparity
maps computed by GC, and Partial GC. The distortion in
the central region corresponds to486 and401 MSE points
respectively, for the GC and Partial GC algorithms. This
shows that removing the epipolar regions prior to dispar-
ity estimation, gives better results than post-processingthe
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image to remove epipolar regions as performed in [7].

Figure 8: Right image cropped to the central region, warped
images for partial GC and cropped warped image for full
GC

Finally, we analyze the performance of the disparity es-
timation method by computing the distortion on depth val-
ues. As the ground truth depth values are not available for
the real images, we calculate the depth values from the dis-
parity maps on the synthetic images, and we compute the
MSE with respect to the ground truth. Figure 9 shows the
ground truth depth, along with the error on depth when the
WTA and GC methods are used. The distortion respectively
corresponds to10.21 and7.13 MSE points. The GC algo-
rithm is therefore more accurate than the WTA solution for
depth estimation, as expected from the above results. Fi-
nally, when the distortion is calculated only on the central
regions to avoid the inaccuracies around epipoles, the per-
formance is respectively of50.97 and1.25 MSE points for
WTA and GC algorithms.

Figure 9: Ground truth depth values and scaled depth esti-
mation error with WTA and GC algorithms. Note that all
values bigger than 1 are marked with white. Max error is
76.82 for WTA while 16.38 for GC.

5 Depth Estimation with 3 cameras

This section extends the proposed algorithm to scenarios
with three cameras. It can be noted that the addition of one

extra camera is expected to overcome the problem of inac-
curacies around the epipolar regions that appears when only
two images are used for disparity estimation. Unless the
three cameras are co-linear, an area that lies in the epipolar
region for one camera pair, stays inside the central region
for an other camera pair.

Figure 10: Ground truth distances, and distances obtained
with GC on two and three cameras.

In order to demonstrate the benefit of additional cameras,
we generate three images of the synthetic scene described
above, by placing the camerasC1, C2, andC3 on vertices
of an equilateral triangle. The graph-cut algorithm is ap-
plied on two pairs of cameras, respectively,(C1, C2) and
(C2, C3). After rectification, the GC algorithm is run in
parallel to compute the disparities and distances to cameras
C1 andC2. Low precision regions are filled with the dis-
tance values obtained for the cameraC2. Figure 10 shows
that the artifacts on the epipolar regions are effectively re-
moved by the introduction of the third camera. In terms
of distortion, the distance estimation for two and three cam-
eras respectively results in5.11 and2.78 MSE points, which
shows that the distortion is reduced by half due to the pres-
ence of a third view. Finally, we have tested the same pro-
cedure for a more realistic scene, as illustrated in Figure 11.
A clear improvement of the precision around the epipolar
regions is observed, and GC outperforms WTA in such a
scene too. The distortion on estimated depth values corre-
sponds to20.72, 16.11 and36.02 MSE points for GC algo-
rithm with two and three cameras, and the WTA algorithm
with two cameras, respectively. For fair comparisons, erro-
neous excessive distance values are clipped to the maximum
ground truth distance. Even if the GC algorithm provides
promising results when the number of cameras increases,
we have observed that low texture areas still prevent the al-
gorithm to converge to better results.
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Figure 11: Synthetic images forC1, C2 and C3 respec-
tively, in the Room scene.

6 Conclusions

We have addressed the problem of dense disparity estima-
tion from omnidirectional images, in the spherical frame-
work. We have adapted a strong energy minimization al-
gorithm based on graph-cut for estimation of disparities
on spherical images. A simple yet efficient rectification
process based on simple rotation in the spherical frame-
work, combined with an adapted graph-cut algorithm of-
fers promising disparity estimation results. It outperforms a
block matching algorithm based on a Winner-takes-all strat-
egy. Problems however appear in the regions close to the
epipoles, due to lack of precision in disparity estimation
around these regions. The extension of the proposed algo-
rithm with the introduction of additional cameras allows to
overcome these problems. Overall, the proposed approach
offers promising performance for dense disparity estimation
in networks of omnidirectional cameras. We plan to extend
the study to natural scenes with multiple cameras, at arbi-
trary positions. Finally, we will apply the proposed method
to localization, or detection problems, in order to show the
advantage of omnidirectional imaging in popular applica-
tions.
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