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ABSTRACT

This paper proposes a joint reconstruction algorithm for compressed
correlated images that are given under the form of linear measure-
ments. We first propose a geometry based model in order to de-
scribe the correlation between visual information in a pairof im-
ages, which is mostly driven by the translational motion of objects
or vision sensors. We consider the particular problem whereone
image is selected as the reference image and it is used as the side
information for decoding the compressed correlated images. These
compressed images are built on random measurements that arefur-
ther quantized and entropy coded. The joint decoder first captures
the most prominent visual features in the reference image using
geometric basis functions. Since images are correlated, these fea-
tures are likely to be present in the compressed images too, possi-
bly with some small transformation. Hence, the reconstruction of
the compressed image is based on a regularized optimizationprob-
lem that estimates these features in the compressed images.The
regularization term further enforces the consistency between the re-
constructed images and the quantized measurements. Experimental
results show that the proposed scheme is able to efficiently estimate
the correlation between images. It further leads to good reconstruc-
tion performance. The proposed scheme is finally shown to out-
perform DSC schemes based on unsupervised disparity or motion
learning as well as independent coding solution based on JPEG-
2000 from a rate-distortion perspective.

1. INTRODUCTION

Distributed source coding (DSC) usually refers to the independent
encoding and joint decoding of correlated sources. It permits to
design low complexity acquisition systems and to shift the compu-
tational burden to the decoder. DSC typically finds applications in
vision sensor networks where low-power cameras perform a spatio-
temporal sampling of the visual information and send the resulting
images to a central decoder. While most common encoders in DSC
systems acquire the entire image before compression, the complex-
ity of the encoders can be further reduced if the sensors directly
acquires the compressed image in the form of random projections
[1, 2]. Such a solution computes only few linear projectionsat the
encoder and thereby significantly reduces the computational cost
and the power requirements at the encoder. A joint decoder even-
tually reconstructs the visual information from the compressed im-
ages by exploiting the correlation between the samples, which per-
mits to achieve a good rate-distortion tradeoff in the representation
of video or multi-view information.

Duarteet al [3] have proposed distributed compression of cor-
related signals from linear measurements. In particular, three joint
sparsity models are proposed to exploit the correlation between sig-
nals at decoder and are used in joint signal reconstruction algo-
rithms. These simple joint sparsity models are however not ideal
in the case of natural images. Later the concept of random projec-
tions has been then applied for distributed video coding in efforts
to reduce the complexity of the encoding stage [4, 5, 6]. However,
these coding schemes generally assume that the signal is sparse in
a particular orthonormal basis (e.g., DCT or Wavelet) [4, 5]or in

a block based dictionary [6]. It is more generic to assume thesig-
nal to be sparse in a structured redundant dictionary since this leads
to greater flexibility in the choice of the representation ofthe signal
and in the construction of the correlation model. Rauhutet al [7] ex-
tend the concept of signal reconstruction from linear measurements
using redundant dictionaries, but this idea has not been extended to
distributed scenarios.

In [8], we studied the problem of estimating the correlation
model between a reference image and a highly compressed image,
where the visual information for the compressed image is given in
the form of few quantized linear measurements. In this paper, we
build on our previous work [8] and propose a joint reconstruction
algorithm, which estimates the correlation model as well as, recon-
structs the highly compressed image using the estimated correla-
tion model. We first compute the most prominent visual features
in the reference image and approximate them with geometric func-
tions drawn from a parametric dictionary. Since the images are cor-
related, the geometric features are likely to appear in compressed
images, possibly after some simple transformations. We then for-
mulate a regularized optimization framework whose objective is to
compute the visual features in the compressed image, under the as-
sumption that they represent shifted versions of visual features in
the reference image. We add a regularization constraint in order
to ensure the reconstructed compressed image to be consistent with
the quantized measurements. At the same time we also enforcethe
consistency of the motion information contained by our correlation
model. We show by experiments that the proposed algorithm com-
putes a good estimation of the motion or disparity field between the
pair of images in video or multiview scenarios, respectively. We
also show that the inclusion of the consistent reconstruction term
in the optimization model is very effective in improving therecon-
struction quality of the compressed image. In particular, we show
that the rate-distortion (RD) performance of the proposed scheme
outperforms DSC scheme based on unsupervised disparity or mo-
tion learning [9] and independent coding scheme like JPEG 2000.
Finally, we show the benefit of geometry based structured dictio-
naries compared to adaptive dictionary built on patches from the
reference image [6] for the joint reconstruction of correlated image
pairs.

2. PROPOSED FRAMEWORK

We consider a framework where a pair of imagesI1 andI2 that rep-
resent a scene at different time instants or from different viewpoints.
The images are correlated through the motion of visual objects.
They are transmitted to a joint decoder that estimates the relative
motion or disparity between the received signals for efficient joint
reconstruction. The framework is illustrated in Fig. 1.

One of the images is encoded and decoded independently and
serves as a reference image for the joint reconstruction. While this
image could be encoded with any coding algorithm, we choose here
to represent the reference imageI1 by random linear measurements
y1 = ψ I1 with a projection matrixψ. The measurements are used
by the decoder to reconstruct an approximationÎ1 using a convex
optimization algorithm [10] under the assumption thatI1 is sparse
in particular basis (e.g., a Wavelet basis). The second image I2 is
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Figure 1: Schematic representation of the proposed scheme.The imagesI1 andI2 are correlated through displacement of scene objects, due
to view point change or motion of scene objects.

also projected on a random matrixψ to generate the measurements
y2 =ψ I2. The generated measurementsy2 are further quantized us-
ing an uniform quantizer and are further entropy coded (e.g., Arith-
metic encoder). The decoder performs the reverse operations (de-
quantization and entropy decoding) to form the measurementvector
ŷ2 (see Fig. 1). This measurement vector is finally used by the joint
decoder to estimate the relative transformation between the images
I1 andI2 and eventually reconstruct the second imageÎ2.

We propose to model the correlation between the images by
relative transformation between prominent visual features in both
images. We assume that the imagesI1 and I2 can be represented
by a sparse linear expansion of geometric functiongγ taken from
a parametric and overcomplete dictionaryD = {gγ}. The geomet-
ric function gγ in D is usually called anatom. The dictionary is
constructed by applying a set of geometric transformationsto the
generating functiong. These geometric transformations can be rep-
resented by a family of unitary operatorU(γ), so that the dictionary
spanning the input space takes the formD = {gγ = U(γ)g,γ ∈ Γ}
for a given set of transformation indexesΓ. Typically this transfor-
mation set consists of scalingsx,sy, rotationθ , and translationtx, ty
operators, defined as

[

u
v

]

=

[

1/sx 0
0 1/sy

][

cos θ sin θ
−sin θ cos θ

][

x− tx
y− ty

]

(1)

where(x,y) defines the image coordinates. Thus, each of the trans-
formation is indexed by five parameters.

We can then write the approximation of the decoded reference
imageÎ1 with functions inD as

Î1 ≈
N

∑
k=1

ck gγk . (2)

where{ck} are the set ofN coefficients. The approximation ofÎ1
can be computed by sparse algorithms such as Matching Pursuit
[11], which greedily picks up theN atoms{gγk} that best match the
imageÎ1. Under the assumption that the imagesI1 andI2 are cor-
related, the second imageI2 can be approximated with transformed
versions of the atoms used in the approximation ofÎ1. We can thus
write

I2 ≈
N

∑
k=1

ck Fk(gγk ), (3)

whereFk(gγk) represents a local geometrical transformation applied
to the atomgγk . Due to the parametric form of the dictionary, the
effect ofFk corresponds to a geometrical transformation of the atom
gγk that results in another atom in the same dictionaryD. Therefore,
it is interesting to note that the transformationFk ongγk , boils down
to a transformation of the atom parameters, i.e.,

Fk(gγk ) =U(δγ)gγk =U(γk ◦δγ)g = gγk◦δ γ = gγ ′k . (4)

Now, the main challenge in the joint decoder is to estimate the
local geometrical transformationFk for each of the atomgγk in Î1
from the linear measurements ˆy2. We formulate in the next section a
regularized optimization problem in order to estimateFk, or equiva-
lently the relative motion or disparity between imagesI1 andI2 that
leads to an efficient representation of the imageÎ2.

3. JOINT RECONSTRUCTION FROM COMPRESSED
LINEAR MEASUREMENTS

Given the set ofN atoms{gγk} that approximate the first imagêI1
the joint reconstruction problem consists first in finding the corre-
sponding visual patterns in the second imageI2, while the later is
given only by compressed random measurements ˆy2. This is equiv-
alent to finding the correlation between the images with the joint
sparsity model described in Eq. 3. This correlation is eventually
used to reconstruct the compressed image.

3.1 Regularized Energy Model

The main challenge is to estimate the set ofN atoms in the second
imageI2 that correspond to the set of visual features in the reference
images given by their atom parameters{γk}. For our convenience
we denote the set ofN atom parameters inI2 by Λ, whereΛ =
(γ ′1,γ

′
2, ...γ

′
N). We propose to estimate this set of parameters in a

regularized energy minimization framework. The energy model E
proposed in our scheme is expressed as

E(Λ) = Ed(Λ)+α1Es(Λ)+α2Et(Λ), (5)

whereEd , Es andEt represent the data term, smoothness term and
reconstruction term respectively. The regularization constantsα1
andα2 balance the data, smoothness and reconstruction terms. The
solution to the correlation estimation (for efficient reconstruction of
Î2) is given by the set ofN atom parametersΛ∗ that minimizes the
energyE, i.e.,

Λ∗ = argmin
Λ∈S

E(Λ) (6)

whereS represents the search space. The search spaceS is given by

S = {(γ ′1,γ
′
2, ...γ

′
N) | γ ′k = γk +δγ ,1≤ k ≤ N,δγ ∈ U }. (7)

whereU ⊂ R
5, andU = [−δ tx δ tx]× [−δ ty δ ty]× [−δθx δθx]×

[−δ sx δ sx]× [−δ sy δ sy] whereδ tx,δ ty, δθx, δ sx,δ sy are the search
window sizes corresponding to translation parameterstx, ty, rotation
θ and scalessx,sy respectively.

Now we turn our attention in describing the three cost functions
used in Eq. 5. Given the set ofN atom parametersΛ= {γ ′k}, the data
cost functionEd measures the error between the quantized mea-
surements ˆy2 and the orthogonal projection of ˆy2 onto the columns
spanned byΨΛ, whereΨΛ = ψ[gγ ′1 |gγ ′2|.....|gγ ′N ]. It turns out that

the orthogonal projection operatorP is given by P = ΨΛΨ†
Λ,

whereΨ†
Λ represents the pseudo-inverse. Therefore the data term

estimates the set ofN atom parametersΛ that minimizes the mean
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square error (MSE) w.r.t. quantized measurements ˆy2. More for-
mally, the data costEd is computed as

Ed(Λ) = ‖ ŷ2−ΨΛΨ†
Λ ŷ2 ‖2. (8)

Before describing the smoothness termEs, we discuss here
the estimation of dense motion field from the atom transformation.
Given a pair of corresponding atomsgγk and gγ ′k in the imagesI1
and I2 respectively, we first calculate the mapping of each pixel
z = (x,y) in gγk to its corresponding pixel̃z = (x̃, ỹ) on gγ ′k using

Eq. 1. This grid transformationz(k)− z̃
(k) = (x(k)− x̃(k),y(k)− ỹ(k))

corresponds to the amount of local motion captured by thekth pair
of atomsgγk andgγ ′k . Using a similar process, the mapping is estab-
lished for all atom pairs from the respective transform parameters
γk andγ ′k. Then the grid transformation captured by all theN pairs
of atom are fused together to estimate the dense motion field.In the
fusion process, we simply take the most confident transformation or
motionz(k)− z̃

(k) for each locationz, from the set of transforma-
tions{z(k)− z̃

(k)} induced by theN atoms. We first assign weights

{w(k)
z } based on the response of thekth atom at the pixel location

z. Then the most confident mapping or equivalently the motion at
locationz is assigned asz(k̄) − z̃

(k̄), wherek̄ (1 ≤ k̄ ≤ N) is the
atom index for which the maximum weight is found out. Thus the
horizontal and vertical components of the motion field at locationz
is given by

(mh(z),mv(z)) = (x(k̄)− x̃(k̄),y(k̄)− ỹ(k̄)) (9)

wherek̄ = arg max
k=1,2,...N

w(k)
z , andw(k)

z is the response of thekth atom

at the locationz. i.e.,w(k)
z = gγk(z) = gγk(x,y).

We can now compute the smoothness termEs, whose objective
is to create a consistent correlation estimation between images. We
generate a dense motion (or disparity) field from the atom transfor-
mation, and later we penalize the motion (or disparity) fieldto be
coherent among adjacent pixels. We compute the smoothness cost
Es using,

Es = ∑
z,z′∈N

V
z,z′ (10)

wherez,z′ are the adjacent pixel locations andN is the usual 2
pixel neighborhood. The termV

z,z′ in Eq. 10 is defined as,

V
z,z′ = min(|mh(z)−m

h(z′)|+ |mv(z)−m
v(z′)|,K) (11)

where m
h(z), and m

v(z) represent the horizontal and vertical
components of the motion field respectively at the pixel location
z= (x,y), and the parameterK is a constant. The parameterK sets
a maximum limit to the penalty, and thus helps to preserve thedis-
continuities in the motion field [12].

Finally, we further improve the reconstruction quality of the im-
ageÎ2 by adding a reconstruction termEt to the energy model de-
scribed in Eq. 5. The termEt calculates thel2 norm error between
the measurements generated from the reconstructed imageÎ2 and
quantized measurements ˆy2. In other words, the cost functionEt
enforces the reconstructed imageÎ2 to be consistent with the quan-
tized measurements ˆy2. The reconstruction termEt is computed as

Et =‖ ŷ2−Q[ψW (Î1)] ‖=‖ ŷ2−Q[ψ Î2] ‖ (12)

whereQ is the quantizer andW warps the reference imageÎ1 using
the generated motion or disparity field (see Fig. 1).

Finally, note that in general the transformationFk acting on
atom gγk might change the position(tx, ty), rotationθ and scales
sx,sy of the atomgγk or could be any one or combination of these
changes. In this work, we approximate the transformationFk to act

only on the integer locations of the translational component (tx, ty)
of the atomgγk as our correlation model is based on atom shift that
approximate the motion of objects in the scene. We experimentally
show in the next section that such an approximation in the transfor-
mationFk gives a good estimation of the correlation model between
the images.

3.2 Optimization algorithm

We describe here the optimization methodology to solve Eq. 6
and estimate the transformationFk for each of the atom. One
trivial approach would be to perform an exhaustive search onthe
entire search spaceS to estimate the solution. But the cost of
such a solution is high, as the number of elements in the search
spaceS grows exponentially with the window sizeδ tx,δ ty i.e.,
|S̃| = N((2δ tx+1)×(2δ ty+1)). We rather propose a suboptimal solu-
tion that estimates the transformationsFk iteratively, by deforming
each of theN atom parametersγk by one increment in the parameter
space. In particular, as we search for translational motion, we fo-
cus on the search space that is given by perturbing the translational
componentstx andty of each atom position by one unit i.e.,tx ±1,
ty ±1 for each atomγk. We first initialize the algorithm with zero
motion, i.e., the atoms{gγk} generated from̂I1 are used in the first
iteration,{γ ′k}= {γk}, and the search space isS′ is formed using

S′ ={(γ ′1,γ
′
2, ..., γ̂

′
k, ...,γ

′
N)|γ̂

′
k = (tk

x + j1, t
k
y + j2,θ k,sk

x,s
k
y),

1≤ k ≤ N, j1, j2 ∈ Z,−1≤ j1, j2 ≤ 1} ⊂ S.
(13)

We then calculate the energyE in Eq. 5 for the set ofN atoms
in the search spaceS′. It can be easily shown that the size of
the search spaceS′ is at most 8N + 1, i.e.,|S′| = 8N + 1 . Once
the energyE is computed for atoms inS′, we find the parameters
(γ ′1,γ

′
2, ...,γ

′
N) corresponding to the minimum energy. Then a new

search spaceS′ is formed using Eq. 13 with the current parameter
solution(γ ′1,γ

′
2, ...,γ

′
N), and this procedure is repeated until conver-

gence is reached. The joint decoding algorithm is summarized in
Algorithm 1.

The proposed algorithm is guaranteed to converge. LetE0 be
the initial energy i.e., the energy corresponding to set of parame-
tersγ ′k = γk,∀k where 1≤ k ≤ N. As described above, in the first
iteration we form the search spaceS′ using Eq. 13 and then the
set of atom parameters corresponding to the minimum energy is
computed. LetE1 be the corresponding minimum value of the en-
ergy found in the first iteration. It is clear thatE1 ≤ E0, as the
search spaceS′ includes the initial set of parametersγ ′k = γk,∀k
where 1≤ k ≤ N. By using the same argument, we conclude that
Ei ≤ Ei−1, whereEi and Ei−1 are the minimum value of the en-
ergy corresponding to the iterationi, and i − 1 respectively. As
Ei < Ei−1, we therefore conclude that the energy continues to de-
crease for every iteration till it reaches a local or global minima
Emin. WhenEi = Emin for some iteration numberi, the energy can-
not decrease beyondEmin, and therefore it remains constant i.e.,
Ei = Ei+1 = Emin. Thus we conclude that the proposed optimiza-
tion scheme converges to a local or global minima and allows us to
estimate a suboptimal solution with tractable computational com-
plexity.

4. EXPERIMENTAL RESULTS

The scheme we proposed is generic and it can be applied for esti-
mating the disparity from two cameras or the motion field fromtwo
frames in a video sequence. In this section, we present the experi-
mental results for both applications.

4.1 Disparity Estimation from stereo cameras

We evaluate the performance of our scheme using Sawtooth image
set1 with a resolution 144× 176 pixels. As the images are rectified,

1These image sets are available in
http://vision.middlebury.edu/stereo/data/. The image sets are then

1886



Algorithm 1 Joint Decoder

1: Input N,α1, α2, K, δ tx, δ ty
2: Generate{gγk} from Î1 s.t. Î1 ≈ ∑N

k=1ck gγk

3: Initialize (mh,mv) = (0,0) i.e.,{γ ′k} = {γk}
4: repeat
5: Generate index search spaceS′ using Eq. 13
6: for 1: |S′| do
7: Calculate the energyE
8: end for
9: Estimate theN atoms indexes{γ ′k} corresponding to the mini-

mum energy.
10: until convergence is reached

(a) mh (b) |mh −M
h|> 1

Figure 2: (a) Disparity fieldmh generated in our scheme from 8870
quantized measurements (corresponds to 35% measurement rate)
(b) Error in the disparity field (white pixels denote error).
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Figure 3: RD comparison of the proposed scheme w.r.t. DSC
scheme [9], block based scheme [6] and independent coding so-
lution based on JPEG 2000.

the disparity estimation problem is simplified to a one dimensional
search problem. Therefore, the disparity map can be represented by
the horizontal componentmh of the field given in Eq. 9, with no
changes observed in the vertical componentm

v i.e.,mv = 0. In our
scheme, the dictionary is constructed using two generatingfunc-
tions, as explained in [11]. The first one consists of 2D Gaussian
functions, to capture low frequency component. The second func-
tion represents Gaussian in one direction, and the second derivative
of 2D gaussian in the orthogonal direction to the capture edges. The
translation parameterstx andty take any positive value from one to
the resolution of the image i.e.,tx varies from 1 to 176, whilety
varies from 1 to 144. Ten rotation parameters are used between 0
and π, with incrementsπ/18. Five scaling parameters are equi-
distributed in the logarithmic scale from 1 toN1/8 vertically, and 1

downsampled to a resolution 144× 176 using bilinear filters.

to N2/9.77 horizontally, whereN1×N2 is the size of the image.
The random projections are computed using the scrambled

Hadamard ensemble with block size of 8 [10]. The measurements
y2 are quantized uniformly using a two bit quantizer and further en-
coded using an arithmetic coder. The rate control at the encoder is
achieved by varying the measurement rate or the number of projec-
tionsy2. The reference viewI1 is encoded such that the quality of
Î1 is approximately 33 dB. Matching Pursuit is carried out onÎ1,
and the imagêI1 is approximated usingN = 60 atoms. In our ex-
periments, the number of atomsN is chosen in such a way, that the
selectedN prominent features covers the entire scene given by the
imageI1. The search for the transformationFk is carried out along
the translational componenttx with window sizeδ tx = 4 pixels, and
no changes are considered along the translational component ty.

For a given measurement rate, we first estimate the dispar-
ity field using the procedure described in Algorithm 1. Fig. 2(a)
shows the estimated disparity fieldmh from 8870 quantized
measurements (corresponds to 35% measurement rate). We
then compare our results w.r.t. ground truthMh (available in
http://vision.middlebury.edu/stereo/data/) and the comparison is
available in Fig. 2(b). From Fig. 2(b) it is clear that the proposed
scheme gives a good estimation of the disparity field where the er-
ror is localized along the edges due to the choice of the dictionary
function. Then the estimated disparity field is used to reconstruct
the imageÎ2 by warping the reference imagêI1. Fig. 3 shows the
RD comparison for the reconstructed imageÎ2 w.r.t. JPEG 2000
based coding strategy. It is clear that our scheme outperforms in-
dependent coding solution based on JPEG 2000 at low to medium
rates, due to the efficient joint reconstruction. However, our coding
performance saturates at 0.7 bpp, as the fine details or texture in the
scene cannot be captured by the proposed scheme due to the choice
of dictionary functions and the limits of the correlation model in
capturing non-structural components. We then compare the RD per-
formance of the reconstructed imageÎ2 with, and without activating
the reconstruction termEt (corresponds toα2 = 0 in Eq. 5), and
the comparison is available in Fig. 3. From Fig. 3 it is clear that the
quality of the imagêI2 is improved by enabling the reconstruction
termEt .

We then compare this performance to a DSC scheme, where
the disparity field is estimated at the decoder using Expected Maxi-
mization (EM) principles [9]. To have a fair comparison, we encode
the reference image using similar principles described in section 2
and the quality of the imagêI1 in the joint decoder is 33 dB. The
imageI2 is first transformed using 8× 8 DCT, and the resulting co-
efficients are quantized. The quantized DCT coefficients arefurther
encoded using LDPC channel codes, and the resulting syndromes
are transmitted to the joint decoder. The joint decoder usesÎ1 as the
side information, and estimates the disparity from the syndromes
using an unsupervised learning scheme via EM. Finally the image
Î2 is reconstructed by compensating the disparity in the reference
imageÎ1. Fig. 3 compares the quality of the reconstructed imageÎ2
with our scheme. From Fig. 3 it is clear that the proposed scheme
outperforms the DSC coding scheme based on EM principles.

Finally, in order to demonstrate the benefit of geometric dictio-
nary, we compare the results to a scheme that adaptively constructs
the dictionary using blocks or patches in the reference image [6]. In
our experiments, we construct a dictionary in the joint decoder from
the reference imagêI1 using 8 × 8 blocks. We then used the op-
timization scheme described in algorithm 1 to select the best block
from the adaptive dictionary, with a search window size ofδ tx = 4
pixels along the horizontal direction. Fig. 3 shows the quality of re-
construction for such a solution, and it is clear that our scheme out-
performs block-based dictionaries mainly due to rich representation
of the visual information provided by the structured dictionary.

4.2 Motion estimation from video sequence

We further study the performance of our scheme for the motiones-
timation problem in video sequences. We built the image set using
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the frames 2 and 3 of the Foreman sequence. The frame 2 is se-
lected as the reference imageI1, and approximated with a quality
of approx. 45 dB in the joint decoder. We used the dictionary de-
scribed in the previous section for approximating the imageÎ1. For
this particular data set, we approximateÎ1 usingN = 60 atoms. The
search window size isδ tx = δ ty = 4 pixels for both the translational
componentstx andty.

Fig. 4(a) and Fig. 4(b) compare the residual energy of the re-
constructed imagêI2 w.r.t. I2 and I1 respectively. The MSE be-
tween the imageŝI2 andI1 is 73, while the MSE between̂I2 andI2
is 41, and this indicates that the proposed scheme efficiently cap-
tures the correlation betweenI1 andI2. The RD performance of the
reconstructed imagêI2 is shown in Fig. 5, and it is then compared
to JPEG 2000, DSC and block-based schemes. From the plot is
clear that our coding scheme outperforms these competitorsdue to
efficient joint reconstruction. Also from Fig. 5 we observe that the
quality of Î2 is improved by activating the reconstruction termEt
(α2 6= 0). It should be noted that whenα2 6= 0 in Eq. 5, we estimate
only the motion field (i.e., no joint reconstruction) as described in
our previous work[8].

Finally, we compare our results with a joint encoding scheme
based on H.264, with GOP size 2. In H.264 scheme, the imageI1 is
selected as the reference frame, and it is approximated to 45dB in
the joint decoder. We then vary the quantization parameter for the
frameI2, and the imagêI2 is reconstructed. We carry out this exper-
iment in two different settings, (1) variable macro block size (H.264
- variable block size) (2) fixed macro block size 8×8 (H.264 - block
size 8). The corresponding RD plot for the two cases are available
in Fig. 5. From Fig. 5, we could infer that our scheme performs
better than the H.264 scheme especially at low rates, when a fixed
macro block size is used for motion estimation. As the proposed
scheme fails to capture the fine details or the texture, we are4 dB
(approx) far from the H.264 scheme at higher rates.

5. CONCLUSIONS

In this paper we have presented a methodology to compute the joint
reconstruction of the compressed image pairs from quantized linear
measurements. We have used a geometry based structured dictio-
nary to capture the prominent geometric features in the images. We
have related the corresponding features in the images usinga ge-
ometry based correlation model under translational motionassump-
tions. Experimental results demonstrate that the proposedmethod-
ology computes a good estimation of dense disparity or motion
field. We have also demonstrated that the geometry based dictio-
nary captures effectively the correlation between frames,comparing
to an adaptive block based dictionary. We have also shown that the
regularization term based on consistent reconstruction isquite effi-
cient in improving the quality of the reconstructed image. Finally,
the proposed scheme outperforms JPEG 2000 and DSC schemes in
terms of RD performance, which positions it as an effective solution
for distributed image processing with low encoding complexity.

(a) MSE: 41 (b) MSE: 73

Figure 4: Comparison of reconstructed imageÎ2 w.r.t. I2 and I1
(a) 1−|Î2− I2| (b) 1−|Î2− I1| (white pixel denotes no error). The
imageÎ2 is reconstructed using 3801 quantized measurements.
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Figure 5: RD comparison of the proposed scheme w.r.t. block based
scheme [6], JPEG 2000, DSC [9] and H.264 coding schemes.
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