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ABSTRACT

This paper proposes a joint reconstruction algorithm fongessed
correlated images that are given under the form of linearsomea

a block based dictionary [6]. It is more generic to assumesipe
nal to be sparse in a structured redundant dictionary siniségtads
to greater flexibility in the choice of the representatiorif signal
and in the construction of the correlation model. Raubat [7] ex-

ments. We first propose a geometry based model in order to dgapq the concept of signal reconstruction from linear mesaments

scribe the correlation between visual information in a @diim-
ages, which is mostly driven by the translational motion lneots
or vision sensors. We consider the particular problem wbee
image is selected as the reference image and it is used agléhe s
information for decoding the compressed correlated imaghksse
compressed images are built on random measurements tHat-are
ther quantized and entropy coded. The joint decoder firdtuicap
the most prominent visual features in the reference imagegus
geometric basis functions. Since images are correlatedetfea-
tures are likely to be present in the compressed images t=3j-p
bly with some small transformation. Hence, the reconsimaobf
the compressed image is based on a regularized optimizaridn
lem that estimates these features in the compressed imadges.
regularization term further enforces the consistency betwthe re-
constructed images and the quantized measurements. Eepea
results show that the proposed scheme is able to efficiestilypate

perform DSC schemes based on unsupervised disparity oomoti
learning as well as independent coding solution based oiGJPE
2000 from a rate-distortion perspective.

1. INTRODUCTION

Distributed source coding (DSC) usually refers to the iraef@nt
encoding and joint decoding of correlated sources. It psriai
design low complexity acquisition systems and to shift tbepu-
tational burden to the decoder. DSC typically finds appiicet in
vision sensor networks where low-power cameras perfornatasp
temporal sampling of the visual information and send thelties)

images to a central decoder. While most common encoders @ DS

systems acquire the entire image before compression, thpler-
ity of the encoders can be further reduced if the sensorsttlire
acquires the compressed image in the form of random projesti
[1, 2]. Such a solution computes only few linear projectiahshe
encoder and thereby significantly reduces the computdtiorst
and the power requirements at the encoder. A joint decodsr-ev
tually reconstructs the visual information from the congses im-
ages by exploiting the correlation between the samples;weér-
mits to achieve a good rate-distortion tradeoff in the repn¢ation
of video or multi-view information.

Duarteet al [3] have proposed distributed compression of cor-
related signals from linear measurements. In particutaeet joint
sparsity models are proposed to exploit the correlatioween sig-
nals at decoder and are used in joint signal reconstructigo a
rithms. These simple joint sparsity models are however dedli
in the case of natural images. Later the concept of randojegro
tions has been then applied for distributed video codingffiorts
to reduce the complexity of the encoding stage [4, 5, 6]. Hane
these coding schemes generally assume that the signalrt&espa
a particular orthonormal basis (e.g., DCT or Wavelet) [4p6]n
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using redundant dictionaries, but this idea has not beemndgrd to
distributed scenarios.

In [8], we studied the problem of estimating the correlation
model between a reference image and a highly compresse@,mag
where the visual information for the compressed image isrgin
the form of few quantized linear measurements. In this paper
build on our previous work [8] and propose a joint recongtanc
algorithm, which estimates the correlation model as welteson-
structs the highly compressed image using the estimateelaor
tion model. We first compute the most prominent visual fesgur
in the reference image and approximate them with geomednic-f
tions drawn from a parametric dictionary. Since the image<ar-
related, the geometric features are likely to appear in cesged
images, possibly after some simple transformations. We the
mulate a regularized optimization framework whose objecis to
compute the visual features in the compressed image, unelast
sumption that they represent shifted versions of visualfes in

%the reference image. We add a regularization constraintdaro

to ensure the reconstructed compressed image to be consiite
the quantized measurements. At the same time we also enf@ce
consistency of the motion information contained by our elation
model. We show by experiments that the proposed algorithm-co
putes a good estimation of the motion or disparity field betwine
pair of images in video or multiview scenarios, respecgivelVe
also show that the inclusion of the consistent reconstindigrm
in the optimization model is very effective in improving thecon-
struction quality of the compressed image. In particulag,show
that the rate-distortion (RD) performance of the proposgtese
outperforms DSC scheme based on unsupervised disparityp-or m
tion learning [9] and independent coding scheme like JPE@® 20
Finally, we show the benefit of geometry based structuretiodic
naries compared to adaptive dictionary built on patches ftoe
reference image [6] for the joint reconstruction of corretiimage
pairs.

2. PROPOSED FRAMEWORK

We consider a framework where a pair of imagieandlI, that rep-
resent a scene at different time instants or from differeawgoints.
The images are correlated through the motion of visual efjec
They are transmitted to a joint decoder that estimates tlagive
motion or disparity between the received signals for efficjeint
reconstruction. The framework is illustrated in Fig. 1.

One of the images is encoded and decoded independently and

serves as a reference image for the joint reconstructionile\iths
image could be encoded with any coding algorithm, we choese h
to represent the reference imagéy random linear measurements
y1 = 11 with a projection matrixp. The measurements are used
by the decoder to reconstruct an approximatipmising a convex
optimization algorithm [10] under the assumption thais sparse
in particular basis (e.g., a Wavelet basis). The second érhag
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Figure 1: Schematic representation of the proposed schEneemages, andl, are correlated through displacement of scene objects, due
to view point change or motion of scene objects.

also projected on a random matixto generate the measurements Now, the main challenge in the joint decoder is to estimate th
Y2 = I2. The generated measuremeyytsire further quantized us- |ocal geometrical transformatid® for each of the atongy, in i1
ing an uniform quantizer and are further entropy coded (&sith-  from the linear measurements We formulate in the next section a
metic encoder). The decoder performs the reverse opesaifin  regularized optimization problem in order to estimateor equiva-
quantization and entropy decoding) to form the measureweor  |ently the relative motion or disparity between imageand|, that

Y2 (see Fig. 1). This measurement vector is finally used by i jo |oo4s to an efficient representation of the imége
decoder to estimate the relative transformation betweeimtges

I, andl, and eventually reconstruct the_second imBge _ 3. JOINT RECONSTRUCTION FROM COM PRESSED
We propose to model the correlation between the images by LINEAR MEASUREMENTS

relative transformation between prominent visual featureboth .

images. We assume that the imaggsndl, can be represented Given the set oN atoms{gy } that approximate the first imade

by a sparse linear expansion of geometric functgriaken from  the joint reconstruction problem consists first in finding ttorre-

a parametric and overcomplete diction&ry= {gy}. The geomet- sponding visual patterns in the second imagewnhile the later is

ric function gy in D is usually called aratom. The dictionary is  given only by compressed random measuremgnt3His is equiv-

constructed by applying a set of geometric transformattorthe  alent to finding the correlation between the images with diet |

generating functioy. These geometric transformations can be rep-sparsity model described in Eq. 3. This correlation is avalft

resented by a family of unitary operatd(y), so that the dictionary ~ used to reconstruct the compressed image.

spanning the input space takes the fdbre= {g, =U(y)g,y e}

for a given set of transformation indexgs Typically this transfor- 3.1 Regularized Energy Model

mation set consists of scalirsg, s, rotation, and translatiofy, ty

) The main challenge is to estimate the seNadfitoms in the second
operators, defined as

imagel, that correspond to the set of visual features in the referenc
) images given by their atom parametéig}. For our convenience
ul_| s 0 cosf sné X—1tx (1)  Wwe denote the set dfl atom parameters ity by A, whereA =
v 0 s —sin6 cos@ Y-l (Vis¥5,---Y()- We propose to estimate this set of parameters in a
regularized energy minimization framework. The energy etéd
where(x,y) defines the image coordinates. Thus, each of the trangsroposed in our scheme is expressed as
formation is indexed by five parameters.
We can then write the approximation of the decoded reference E(A) = Eq(A) + a1Es(A) 4+ a2Et (N), (5)
imagel; with functions inD as
whereEy, Es andE; represent the data term, smoothness term and
N reconstruction term respectively. The regularizationstantsay
1~y ckOy. 2) anda» balance the data, smoothness and reconstruction terms. The
k=1 solution to the correlation estimation (for efficient restraction of
) I2) is given by the set oN atom parameterA* that minimizes the
where{cy} are the set oN coefficients. The approximation of energyE, i.e.,
can be computed by sparse algorithms such as Matching Pursui N =argminE(A) (6)
[11], which greedily picks up th&l atoms{g, } that best match the Aes
imagef;. Under the assumption that the imadesnd|, are cor-  whereSrepresents the search space. The search Siaggven by
related, the second imagecan be approximated with transformed
versions of the atoms used in the approximatiofyofVe can thus S={(Vi,¥o,- W) | k=W +0y,1<k<N,0yez}. (7)
write
b S o (g (3 Where% c RS, and % = [— 5ty Sty x [ty Sty] x [~56k 364 x
2= kzl k PO [— 05 05y] x [~ 35, 0S| wheredty, oty, 56, O, 0S, are the search
a window sizes corresponding to translation paramejeks rotation
whereFK(gy, ) represents a local geometrical transformation applied and scalesy, sy respectively. - _
to the atomgy,. Due to the parametric form of the dictionary, the ~ Now we turn our attention in describing the three cost fori
effect of FX corresponds to a geometrical transformation of the atont'S€d f'n Eq. 5.EG|ven the set k?]fatom pagametensi (W, the dgta
gy that results in another atom in the same dictioriaryrherefore, cost functionEy measures the error between the quantized mea-

AR . . surementys and the orthogonal projection g$ dnto the columns
itis interesting to note that the transformatiehon gy, boils down spanned by, whereWy = W[gy |9y |.....|g, ]. It turns out that
to a transformation of the atom parameters, i.e., ’ %15 8

the orthogonal projection operata? is given by &2 = HJ/\lP;r\,

wherew;f\ represents the pseudo-inverse. Therefore the data term
Fk(gw) =U(0Y)9y =U(¥%k°dY)9 = Qyosy = Oy 4) estimates the set ™ atom parameterd that minimizes the mean
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square error (MSE) w.r.t. quantized measuremgptsMore for-  only on the integer locations of the translational compaorfgaty)

mally, the data codEy is computed as of the atomgy, as our correlation model is based on atom shift that
approximate the motion of objects in the scene. We expetatign
Eq(A) = || §2— q,;/\q;;r\yz I, (8)  showin the next section that such an approximation in threstca-

mationFX gives a good estimation of the correlation model between
Before describing the smoothness tefy we discuss here the images.
the estimation of dense motion field from the atom transfeiona o )
Given a pair of corresponding atorgs, andg,, in the images; 3.2 Optimization algorithm
and |, respectively, we first calculate the mapping of each pixelWe describe here the optimization methodology to solve Eq. 6
z = (XY) in gy, to its corresponding pixet = (X,¥) on 9y, using and estimate the transformatidf for each of the atom. One
~(k)) trivial approach would be to perform an exhaustive searclthen

is ari ionK) — 50 — (x(K) _g(k) (K _
Eq. 1. This grid transformation 2 (X XY ‘ﬂhy ! entire search spac® to estimate the solution. But the cost of
corresponds to the amount of local motion captured byktheair g0, "3 "solution is high, as the number of elements in the Isearc

I(.)sz]it(;n;sgw I?n(tjg%(' Ugin? asirtnk:Iar proceis, t?e m?pping is EStab'spaceS grows exponentially with the window sizéty, oty i.e.,

ished for all atom pairs from the respective transform paeters 1§ = N(@3+)x(204+1) | We rather . )
: . ; = . propose a suboptimal solu

% andy,. Then the grid transformation captured by all tieairs tion that estimates the transformatidigiteratively, by deforming

e i 307 Of el aom pararmeterg b one nrement i he parameter
! space. In particular, as we search for translational mptianfo-

motion Zlik) jil((k) for each locatior, from the set of tr.ansfor.ma- cus on the search space that is given by perturbing the atiorsal
tions {z¥) —z} induced by theN atoms. We first assign weights componentsy andty of each atom position by one unit i.é+1,
{W;k)} based on the response of tki8 atom at the pixel location ty+1 for each atomy,. We first initialize thAe algorithm with zero
z. Then the most confident mapping or equivalently the motton amotion, i.e., the atomégy, } generated fronh; are used in the first
location z is assigned as®) —z(K), wherek (1 <k < N) is the iteration,{y} = {}, and the search spaceSsis formed using
atom index for which the maximum weight is found out. Thus the

horizontal and vertical components of the motion field aatamz S ={(Vis Voo Yoo oo YR 19 = (K + jl,t';+ i2, Gk,i,s{j), (13)
is given by 1<K<N,j1,j2€2,~-1<j1,j2<1}CS
(m"(z),m"(z)) = (x(@ - CRV0 7)7(@) (9)  We then calculate the enerdyin Eq. 5 for the set oN atoms

in the search spacg. It can be easily shown that the size of
the search spac8 is at most 81+ 1, i.e./]S|=8N+1. Once
the energ)E is computed for atoms i, we find the parameters
(V4: Vb, -, Yy) corresponding to the minimum energy. Then a new

search spac8 is formed using Eq. 13 with the current parameter

wherek = arg Tz Nw;k), andw<zk) is the response of tHé" atom

at the locatiore. i.e.,w<zk) =0y (z) = gy (X Y).

We can now compute the smoothness t&gnwhose objective
is to create a consistent correlation estimation betweagas. We
generate a dense motion (or disparity) field from the atomsfa-
mation, and later we penalize the motion (or disparity) fielde
coherent among adjacent pixels. We compute the smoothness ¢
Es using,

gence is reached. The joint decoding algorithm is summaiize
Algorithm 1.
The proposed algorithm is guaranteed to converge. Byete
the initial energy i.e., the energy corresponding to setavhme-
tersy{( = Wk, Vk where 1< k < N. As described above, in the first
iteration we form the search spa&tusing Eq. 13 and then the
set of atom parameters corresponding to the minimum energy i
wherez,z’ are the adjacent pixel locations anél’ is the usual 2 ~computed. LeE; be the corresponding minimum value of the en-
pixel neighborhood. The terM, ,» in Eq. 10 is defined as, ergy found in the first iteration. It is clear th& < Eg, as the
' search spac& includes the initial set of parameteys = y, vk
- he oy ohy s VNVl where 1< k < N. By using the same argument, we conclude that
Va2 = Min([m?(z) —m’(z)| + |m’(z) —m*(z)).K)  (11) Ei < Ej_1, whereE; andEj_; are the minimum value of the en-

h v ) . ergy corresponding to the iterationandi — 1 respectively. As
where m"(z), and m"(z) represent the horizontal and vertical £"2 £, , we therefore conclude that the energy continues to de-
components of the motion field respectively at the pixelfiote  crease for every iteration till it reaches a local or globahima
z = (x,y), and the parameté( is a constant. The parametersets g . \WhenE; = Eyn for some iteration numbéy the energy can-

a maximum limit to the penalty, and thus helps to preservelthie ot decrease beyonBhin, and therefore it remains constant i.e.,

continuities in the motion field [12]. , ) , Ei = Eiy1 = Enin. Thus we conclude that the proposed optimiza-
Finally, we further improve the reconstruction qualityleéim-  tjon scheme converges to a local or global minima and alls®u

agel, by adding a reconstruction terg to the energy model de- estimate a suboptimal solution with tractable computatiaom-

scribed in Eq. 5. The terr; calculates thé, norm error between  plexity.

the measurements generated from the reconstructed image

quantized measuremenys. “In other words, the cost functio 4, EXPERIMENTAL RESULTS

enforces the reconstructed imageo be consistent with the quan-

tized measuremenys. The reconstruction tert; is computed as

Es= z \VA (10)
zz €N

The scheme we proposed is generic and it can be applied for est
mating the disparity from two cameras or the motion field ftoro

. I . A frames in a video sequence. In this section, we present theriex
Et = V2= 207/ ()] =] Y2 - 2[Yl2] | (12) " mental results for both applications.

where2 is the quantizer an®” warps the reference imacﬁgusing 4.1 Disparity Estimation from stereo cameras
the generated motion or disparity field (see Fig. 1).

Finally, note that in general the transformatibi acting on
atomgy, might change the positiofty,ty), rotation 8 and scales
S, Sy of the atomgy, or could be any one or combination of these  11pege image sets are available in

changes. In this work, we approximate the transformafibmo act  http://vision.middlebury.edu/stereo/data. The imagets sare then

We evaluate the performance of our scheme using Sawtootieima
set! with aresolution 144« 176 pixels. As the images are rectified,
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Algorithm 1 Joint Decoder

1: Input N, ay, az, K, dty, oty
: Generate(gy } from iy s.t.iy ~ TN | cc gy
 Initialize (m", mV) = (0,0) i.e., {y} = {}
repeat
: Generate index search sp&eising Eq. 13
for 1:|S| do

Calculate the energly
end for
: Estimate theN atoms indexegy, } corresponding to the mini-

mum energy.
: until convergence is reached

=
o

(&) m" (b) jm" — M| > 1

Figure 2: (a) Disparity fieldn" generated in our scheme from 8870
guantized measurements (corresponds to 35% measurentent r
(b) Error in the disparity field (white pixels denote error).
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Figure 3: RD comparison of the proposed scheme w.r.t.

to N/9.77 horizontally, wheré; x Ny is the size of the image.

The random projections are computed using the scrambled
Hadamard ensemble with block size of 8 [10]. The measuresment
y» are quantized uniformly using a two bit quantizer and furére
coded using an arithmetic coder. The rate control at thedsrds
achieved by varying the measurement rate or the number jgfgro
tionsy,. The reference view; is encoded such that the quality of
I1 is approximately 33 dB. Matching Pursuit is carried outlgn
and the imagé; is approximated usingyl = 60 atoms. In our ex-
periments, the number of atorisis chosen in such a way, that the
selected\ prominent features covers the entire scene given by the
imagel. The search for the transformatiétf is carried out along
the translational componettwith window sizedty = 4 pixels, and
no changes are considered along the translational compgnen

For a given measurement rate, we first estimate the dispar-
ity field using the procedure described in Algorithm 1. Fi¢a)2
shows the estimated disparity fielh" from 8870 quantized
measurements (corresponds to 35% measurement rate).
then compare our results w.r.t. ground tridiP (available in
http://vision.middlebury.edu/stereo/data/) and the jgarison is
available in Fig. 2(b). From Fig. 2(b) it is clear that the posed
scheme gives a good estimation of the disparity field whezeeth
ror is localized along the edges due to the choice of theatiaty
function. Then the estimated disparity field is used to retoit
the imagel, by warping the reference image Fig. 3 shows the
RD comparison for the reconstructed imdgew.r.t. JPEG 2000

ased coding strategy. It is clear that our scheme outpesfan-
dependent coding solution based on JPEG 2000 at low to medium
rates, due to the efficient joint reconstruction. Howevar,anding
performance saturates at 0.7 bpp, as the fine details orédxtthe
scene cannot be captured by the proposed scheme due to tbe cho
of dictionary functions and the limits of the correlation deb in
capturing non-structural components. We then compare theeR-
formance of the reconstructed imagevith, and without activating
the reconstruction terr; (corresponds tar, = 0 in Eq. 5), and
the comparison is available in Fig. 3. From Fig. 3 itis clémtthe
quality of the imagd?, is improved by enabling the reconstruction
termkE;.

We then compare this performance to a DSC scheme, where
the disparity field is estimated at the decoder using Expleldiaxi-
mization (EM) principles [9]. To have a fair comparison, weede
the reference image using similar principles describecatisn 2
and the quality of the imagh in the joint decoder is 33 dB. The
imagel, is first transformed using & 8 DCT, and the resulting co-
efficients are quantized. The quantized DCT coefficientfuatber
encoded using LDPC channel codes, and the resulting syr®drom
are transmitted to the joint decoder. The joint decoder lisas the
side information, and estimates the disparity from the symes

We

DSQ@sing an unsupervised learning scheme via EM. Finally thegin

scheme [9], block based scheme [6] and independent coding s, is reconstructed by compensating the disparity in the eefes

lution based on JPEG 2000.

the disparity estimation problem is simplified to a one disienal
search problem. Therefore, the disparity map can be repexsby
the horizontal componenti of the field given in Eq. 9, with no
changes observed in the vertical componafiti.e.,m" = 0. In our
scheme, the dictionary is constructed using two generdting-
tions, as explained in [11]. The first one consists of 2D Ganss
functions, to capture low frequency component. The secand-f
tion represents Gaussian in one direction, and the secoiie

of 2D gaussian in the orthogonal direction to the capturesdghe
translation parametetg andty take any positive value from one to
the resolution of the image i.etx varies from 1 to 176, whiley,
varies from 1 to 144. Ten rotation parameters are used bat@ee
and m1, with incrementsrt/18. Five scaling parameters are equi-
distributed in the logarithmic scale from 1M /8 vertically, and 1

downsampled to a resolution 144 176 using bilinear filters.

imagely. Fig. 3 compares the quality of the reconstructed image
with our scheme. From Fig. 3 it is clear that the proposedrsehe
outperforms the DSC coding scheme based on EM principles.

Finally, in order to demonstrate the benefit of geometritialic
nary, we compare the results to a scheme that adaptivelyrootss
the dictionary using blocks or patches in the reference @jép In
our experiments, we construct a dictionary in the joint digcdrom
the reference imagh using 8 x 8 blocks. We then used the op-
timization scheme described in algorithm 1 to select th¢ llesk
from the adaptive dictionary, with a search window sizégf= 4
pixels along the horizontal direction. Fig. 3 shows the tyalf re-
construction for such a solution, and it is clear that ouescé out-
performs block-based dictionaries mainly due to rich repn¢ation
of the visual information provided by the structured dintoy.

4.2 Motion estimation from video sequence

We further study the performance of our scheme for the masn
timation problem in video sequences. We built the image sieigu
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the frames 2 and 3 of the Foreman sequence. The frame 2 is st
lected as the reference imabe and approximated with a quality
of approx. 45 dB in the joint decoder. We used the dictionay d
scribed in the previous section for approximating the imagé&or

this particular data set, we approximétaisingN = 60 atoms. The
search window size i8tyx = Sty = 4 pixels for both the translational
componentsy andty.

Fig. 4(a) and Fig. 4(b) compare the residual energy of the re-
constructed imagdez w.r.t. 1> andly respectively. TheAMSE be-
tween the imagek andly is 73, while the MSE between andl;
is 41, and this indicates that the proposed scheme effigieap-
tures the correlation betweg¢pandl. The RD performance of the
reconstructed image is shown in Fig. 5, and it is then compared
to JPEG 2000, DSC and block-based schemes. From the plot i
clear that our coding scheme outperforms these competterso
efficient joint reconstruction. Also from Fig. 5 we obserhatthe
quality of I, is improved by activating the reconstruction teEn
(a2 # 0). It should be noted that wherp = 0 in Eq. 5, we estimate
only the motion field (i.e., no joint reconstruction) as désad in
our previous worKk8].

Finally, we compare our results with a joint encoding scheme
based on H.264, with GOP size 2. In H.264 scheme, the irage
selected as the reference frame, and it is approximated tB46
the joint decoder. We then vary the quantization parametethe
framels,, and the imagé& is reconstructed. We carry out this exper-
iment in two different settings, (1) variable macro blockes{H.264
- variable block size) (2) fixed macro block size 8 (H.264 - block
size 8). The corresponding RD plot for the two cases areablail
in Fig. 5. From Fig. 5, we could infer that our scheme performs
better than the H.264 scheme especially at low rates, whe®a fi
macro block size is used for motion estimation. As the pregdos
scheme fails to capture the fine details or the texture, wé ai®
(approx) far from the H.264 scheme at higher rates.

5. CONCLUSIONS

In this paper we have presented a methodology to computeitite j
reconstruction of the compressed image pairs from quahtizear
measurements. We have used a geometry based structuried dict
nary to capture the prominent geometric features in the @nag/e
have related the corresponding features in the images asgey
ometry based correlation model under translational magsump-
tions. Experimental results demonstrate that the propomitiod-
ology computes a good estimation of dense disparity or motio
field. We have also demonstrated that the geometry basdd-dict
nary captures effectively the correlation between frarcesiparing

to an adaptive block based dictionary. We have also showvirttiba
regularization term based on consistent reconstructiouite effi-
cient in improving the quality of the reconstructed imag@aly,

the proposed scheme outperforms JPEG 2000 and DSC schemes
terms of RD performance, which positions it as an effectofatson

for distributed image processing with low encoding comiijex

(a) MSE: 41 (b) MSE: 73

Figure 4: Comparison of reconstructed imdgew.r.t. 1, andlq
(@) 1—|I2— 12| (b) 1— |l — 11| (white pixel denotes no error). The
imagel, is reconstructed using 3801 quantized measurements.

= JPEG 2000
—&— H.264 - Variable blocks ||
= = =H.264 - Block size 8

—e— Proposed

—— Motion learning
—#&— Block scheme
-« - Proposed (a,=0)

0.25 03 035
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Figure 5: RD comparison of the proposed scheme w.r.t. blaskdt
scheme [6], JPEG 2000, DSC [9] and H.264 coding schemes.
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