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ABSTRACT

The characterization of signals and images in manifolds often lead
to efficient dimensionality reduction algorithms based on manifold
distance computation for analysis or classification tasks. We pro-
pose in this paper a method for the discretization of signal manifolds
given in a parametric form. We present an iterative algorithm for the
selection of samples on the manifold that permits to minimize the
average error in the manifold distance computation. Experimental
results with image appearance manifolds demonstrate that the pro-
posed discretization algorithm outperforms baseline solutions based
on random or regular sampling, both in terms of projection accuracy
and image registration.

Index Terms— Manifold discretization, image appearance
manifolds, manifold distance, pattern transformations

1. INTRODUCTION

Despite the high dimensionality of images, there are many settings
where the visual content has an underlying low-dimensional mani-
fold structure. For example, an image appearance manifold (IAM)
[1] represents a family of images that can be described by a small
set of parameters such as the pose of an object, or the transforma-
tion applied to a visual pattern. Low-dimensional manifolds are
typically used for transformation-invariant analysis or classification
tasks. Transformation invariance is then achieved via the compu-
tation of manifold distance or the utilization of alternative distance
measures such as the tangent distance [2],[3],[4].

While such distance metrics have proven performance in classi-
fication and alignment problems, they are quite expensive in terms of
computational complexity. It may therefore be preferable to approx-
imate the manifold by a discrete set of manifold samples for faster
computation, though at the price of a lower distance accuracy. How-
ever, a regular discretization of a manifold in its parameter space in
general does not lead to good performance. The manifold should
rather be sampled depending on the manifold geometry and the tar-
geted applications.

In this work, we propose a method for discretizing manifolds
of known parameterization, which favors accurate manifold distance
estimation. We describe an algorithm that miminizes the manifold
distance estimation error caused by representing the manifold with
only a finite number of samples. We adopt an iterative approach that
alternates between the computation of partition cells and representa-
tive samples. We demonstrate the performance of our method with
experimentation on two different types of analytically expressible

This work has been partly funded by the Swiss National Science Funda-
tion under grant number 200021 120060.

image appearance manifolds. Our algorithm provides smaller regis-
tration error and better projection accuracy than baseline sampling
solutions based on random and respectively regular sampling of the
manifold.

2. MANIFOLD DISCRETIZATION

Let M ⊂ Rn be a set of signals conforming to a manifold model
defined over the parameter domain Λ ⊂ Rm. ThenM can be writ-
ten as M = {U(η), η ∈ Λ}, where U denotes the mapping from
the m-dimensional parameter domain Λ to the examined set of n-
dimensional signals.

Given a point x ∈ Rn, the distance of x to the manifoldM is
d(x,M) = min{d(x, U(η)), U(η) ∈ M}, where we take the dis-
tance function d(x, y) as the `2-distance ‖x−y‖. The discretization
of the manifold consists in selecting a predetermined number N of
manifold points, i.e. a sample set {Si}Ni=1 = {

SN
i=1 U(ηi), ηi ∈

Λ} ⊂ M.
We would like to select the samples in order to minimize the total

manifold distance estimation errorE overR, whereR = {x ∈ Rn :
ai ≤ xi ≤ bi} is the hyperrectangular region of Rn corresponding
to n-dimensional signals1. We define E by

E =

Z
R

(d2(x, {Si}Ni=1)− d2(x,M)) dx, (1)

where d(x, {Si}Ni=1) = min{d(x, Si) : i = 1, 2, · · · , N} denotes
the distance between x and the sample set {Si}Ni=1.

For a given sample set, one can partition R into N cells as R =SN
i=1Ri, where each cell Ri is a polytope consisting of points with

smaller `2-distance to Si than to any other Sj , i.e., Ri = {x ∈ R :
d(x, Si) < d(x, Sj), ∀j 6= i}. Hence, the total manifold distance
estimation error becomes

E =

NX
i=1

Ei =

NX
i=1

Z
Ri

(d2(x, Si)− d2(x,M)) dx. (2)

In order to minimize the error E, we follow an iterative opti-
mization procedure. In each iteration of the algorithm, we first com-
pute the partition cells corresponding to the samples, and then opti-
mize each sample individually such that the errorEi in the regarding
cell is minimized. Once partition cells are computed, minimization
of the manifold distance estimation errorEi within a specific cellRi

is achieved as follows: Ei can be rearranged as

Ei =

Z
Ri

d2(x, Si) dx−
Z

Ri

d2(x,M) dx,

1The parameters ai and bi have typically the values 0 and 255 for images.



where the second integration depends only on Ri, and is constant
with respect to Si. Therefore, Ei is given by

Ei =

Z
Ri

d2(x, Si) dx+ ci

=

Z
Ri

xTx dx− 2ST
i

Z
Ri

x dx+ ViS
T
i Si + ci,

where Vi =
R

Ri
dx is the volume of the cell Ri. Denoting the

centroid of the cell Ri by Gi = (
R

Ri
x dx)/(

R
Ri

dx), we get

Ei =

Z
Ri

xTx dx+ Vi(−2ST
i Gi + ST

i Si) + ci

= Vi(S
T
i Si − 2ST

i Gi) + c′i,

where we express the sum of the terms independent of Si by c′i. As
Ei differs from ‖Si−Gi‖2 only up to a positive multiplicative factor
and an additive term constant with respect to Si, one can equivalently
minimize

E′i = ‖Si −Gi‖2 (3)

at each iteration of the algorithm, which actually means that Si

should be selected as the manifold point closest to the centroid of
the cell Ri.

To sum up these discussions, the following is a summary of
the procedure we apply for obtaining a manifold discretization that
minimizes the total manifold distance estimation error: Given the
available domain of parameters and the mapping defining the mani-
fold, we begin with an initial sample set {S(0)

i }
N
i=1 on the manifold,

which is possibly randomly selected. We optimize the sample set it-
eratively. In each k-th iteration of the algorithm, we first compute the
cells {R(k)

i }
N
i=1 that partition the hyperrectangular region of interest

of Rn with respect to the manifold samples {S(k)
i }

N
i=1; and then

we perturb each sample S(k)
i individually to obtain the new sam-

ple S(k+1)
i such that the manifold distance estimation error given by

(3) is minimized in the corresponding cell. The new sample S(k+1)
i

is the projection of the centroid G(k)
i onto the manifold. Iterations

are repeated until improvements become negligible. We call this al-
gorithm Registration-Efficient Manifold Discretization (REMD). An
iteration of the algorithm is illustrated in Fig. 1, and the pseudocode
is given in Alg. 1.

Assuming that the feasible domain Λ of parameter vectors is
compact and the mapping U is bounded, for a given number of sam-
ples N , there exists a solution {S∗i }Ni=1 that globally minimizes the
total error E in (1). At each iteration of the discussed method, first
the partition cells are updated and then the samples are readjusted,
both of which are modifications that either reduce E or retain it.
Since the error E is non-increasing throughout the iterations and is
also lower bounded, the algorithm converges. However, in general
the cost function is a non-convex, complicated function of the pa-
rameter vectors; therefore, the algorithm is not guaranteed to con-
verge to the globally optimal solution. Finally, we note that the dis-
cretization algorithm proposed above is similar in several aspects to
the LBG vector quantization algorithm [5], which however targets
the minimization of the error in the signal approximation and not in
the manifold distance.

1S (k+1)M

2S (k+1)
2S (k)

1S (k)

3S (k) 3S (k+1)

G 3
(k)

G 1
(k)

G 2
(k)

Fig. 1. Illustration of a single iteration of the algorithm

Algorithm 1 Registration-Efficient Manifold Discretization
1: Input:

Λ: Feasible domain of parameter vectors
U : Mapping from parameter domain Λ to manifoldM
N : Number of manifold samples

2: Output:
{Si}Ni=1: A set of manifold samples

3: Initialization:
4: Choose an initial set of manifold samples {S(0)

i }
N
i=1.

5: k = 0.
6: while The difference between {S(k)

i }
N
i=1 and {S(k−1)

i }Ni=1 is
above some threshold (handling k = 0 properly) do

7: Determine the partition cells {R(k)
i }

N
i=1.

8: Compute the centroids {G(k)
i }

N
i=1 of partition cells.

9: Update the sample set {S(k+1)
i }Ni=1 by optimizing each sam-

ple such that the manifold distance estimation error E′(k)
i in

(3) is minimized individually in each cell.
10: k = k + 1.
11: end while
12: {Si}Ni=1 = {S(k)

i }
N
i=1.

3. EXPERIMENTAL RESULTS

The performance of the proposed method is evaluated on two dif-
ferent kinds of image appearance manifolds, namely a 2D pattern
transformation manifold, and the manifold generated by the obser-
vations of a synthetical 3D object model under varying illumination
and viewpoint. In both experiments, the algorithm starts with a ran-
domly selected sample set, and the output discretization is compared
to the initial random discretization as well as the one obtained on a
regular grid in the parameter domain.

We achieve the computation of the centroids of partition cells ex-
perimentally. The centroid of a given region of Rn can be estimated
simply by taking random training points in space, checking if they
are in the inquired region, and then computing the arithmetic average
of inliers when a sufficient number of them are accumulated [6]. In
our setup, we do not select training points as arbitrary space points,
instead, we use image databases for training. Actually, in this case
the partition cells Ri can be conceived as special regions of interest
inside n-dimensional polytopes rather than the polytopes themselves
as previously discussed. After the centroids are computed, we esti-
mate their projections onto the manifold with the aid of a dense grid
on the manifold. We first locate the projection coarsely by finding
the grid point that has the smallest distance to the centroid, and then
refine the location of the projection by minimizing its distance to the
centroid using gradient descent tools.



3.1. Results on pattern transformation manifolds

In this experiment, we study the discretization of the pattern trans-
formation manifold generated by the 2D rotation and translation of
a visual pattern. The transformation manifold of a visual pattern p is

M = {U(η)p : η = (θ, tx, ty) ∈ Λ}, (4)

where θ is the rotation parameter, tx and ty are the horizontal and
vertical translation parameters, and Λ is the domain of transforma-
tion parameter vectors.

For experimentation, we use a database of top-view images of
5 different objects, where each object has 500 different images cap-
tured under different orientation and positions. An example image
for each object is displayed in Fig. 2. Note that due to the above
positioning of the camera and the limitations on object positions, the
2D pattern transformation model in (4) constitutes an approximate
model for the observations.

We consider the pattern transformation manifold of each ob-
ject separately. For each of the objects we build the transformation
manifold of a fixed representative pattern which is picked randomly
among the database images. The image set of each object is grouped
randomly into 300 training and 200 test images. For computational
convenience, all images are converted to greyscale, downsampled
to a resolution of 50×60 pixels, and background pixels are set to
the luminance value of 0 by simple thresholding. Manifold points
are generated by rotating and translating the representative pattern
(cropped previously near the boundary) over a 50×60 pixel zero
background within the parameter range θ ∈ [−π, π]; tx ∈ [−7, 7];
ty ∈ [−12, 12]. All images and generated manifold points are nor-
malized to have unit norm.

We compare the sample set obtained by the REMD algorithm to
the initial random sample set and to the sample set given by a regular
grid over the parameter domain, where the performance evaluation
criterion is the accountability of the discretization for accurate man-
ifold distance estimation. For each discretization, the distances of
the test points to the sample set are computed and the average reg-
istration error is calculated. The registration error is taken as the
`2-distance between the exact projection of the test point onto the
manifold and the manifold sample with smallest `2-distance to the
test point. For each object the experiment is repeated 5 times with
different random initializations, where the categorization into train-
ing and test sets is changed randomly at each run. The results pre-
sented in Fig. 3 are averaged over all realizations and all objects. In
Fig. 3(a), average registration errors are plotted for various numbers
of manifold samples. In Fig. 3(b), we illustrate the distribution of test
points in percentage with respect to which set the manifold sample
nearest to them belongs to. Here, we compute the distance of each
test point to the manifold samples coming from all sets, and report
the percentage of the test points that have their closest manifold sam-
ple within the REMD output, random and regular sample sets. These
experiments intend to measure the capability of the discretizations to
provide an accurate approximation of the projection onto the mani-
fold. As demonstrated in the figures, the discretization obtained by
the REMD method yields the least registration error when compared
to the random discretization, and the regular discretization in the pa-
rameter domain. In addition, for the majority of the test points the
most accurate approximation of the projection lies within the REMD
algorithm output sample set.

3.2. Results on synthetical object observation manifolds

Now we evaluate the performance of our method on the observation
manifolds of synthetical 3D objects. For a 3D object model m, we

Fig. 2. Example images from database
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(b) Distribution of test points with respect to closest projection ap-
proximations

Fig. 3. Discretization results on pattern transformation manifolds

Fig. 4. Example objects from the airplane class
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(b) Distribution of test points with respect to closest projection
approximations

Fig. 5. Discretization results on synthetical object observation man-
ifolds

consider the observation manifold of the object defined by

M = {U(η)m : η = (I, θx, θy, θz) ∈ Λ}, (5)

where U(η)m is the image of the object rendered under the illumi-
nation intensity I and the orientation specified by the three rotation
angles θx, θy, θz .

We use the Princeton Shape Benchmark2 database of 3D models,
where we conduct our experiments on 8 different classes of objects
(car, airplane, ship, tank, human, animal, table, bottle) with several
(4-30) objects belonging to each class. Some example objects be-
longing to the airplane class are shown in Fig 4. For each class
we choose a representative object, and sample the observation man-
ifold of the representative object in the parameter range I ∈ [0.5, 1];
θx ∈ [0, π/2]; θy, θz ∈ [−π/4, π/4]. All rendered images are con-
verted to greyscale and downsampled to the resolution 50×50 pix-
els. The training and test sets for each manifold consist of random
observations of the objects belonging to the same class within the

2http://shape.cs.princeton.edu/benchmark

same parameter range. The experimentation setup is the same as in
Sec. 3.1. Experiments are repeated 4 times for each class with differ-
ent random initializations, and the representative object of each class
is changed randomly at each run. The results, which are presented
in Fig. 5, are averaged over all realizations and all objects. In the
computation of the registration errors plotted in Fig. 5(a), the regis-
tration error for each test image is normalized by the image norm.
Fig. 5(b) shows the percentage of test images with most accurate
projection approximations within the REMD output sample set, ran-
dom sample set and the sample set regular in the parameter domain.
The results confirm the findings of Sec. 3.1.

4. CONCLUSIONS

We have proposed a method for the discretization of signal mani-
folds of known parameterization. We optimize manifold samples in
an iterative procedure in order to improve the manifold distance es-
timation error resulting from the approximate representation of the
manifold with the finite set of selected points. Experimentation on
different type and intrinsic dimension of image appearance mani-
folds suggests that the proposed method is capable of determining
samples that yield a fair estimation of the projection onto the man-
ifold. On the other hand, state-of-the-art methods accomplishing
manifold distance computation are considerably demanding in terms
of computation cost. For instance, the algorithm proposed in [2] in-
volves a complexity of O(K · n1 · n2), where K is the number of
atoms used in decomposition and n1 × n2 is the image resolution,
while a similar algorithm complexity is reported in [3]. Considering
that the burden of manifold distance estimation is reduced signifi-
cantly when the manifold is represented by discrete samples, our ap-
proach seems to offer an acceptable compromise between accuracy
and computational effort.
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We would like to thank Ozan Şener for his contribution in the con-
duction of the experiments of Sec. 3.2.

6. REFERENCES

[1] M. B. Wakin, D. L. Donoho, H. Choi, and R. G. Baraniuk,
“The multiscale structure of non-differentiable image mani-
folds,” 2005, vol. 5914, SPIE.

[2] E. Kokiopoulou and P. Frossard, “Minimum distance between
pattern transformation manifolds: Algorithm and applications,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 31, no. 7, pp. 1225–1238, 2009.

[3] N. Vasconcelos and A. Lippman, “A multiresolution manifold
distance for invariant image similarity,” IEEE Transactions on
Multimedia, vol. 7, no. 1, pp. 127–142, 2005.

[4] P. Simard, Y. LeCun, J. S. Denker, and B. Victorri, “Trans-
formation invariance in pattern recognition-tangent distance and
tangent propagation,” in Neural Networks: Tricks of the Trade.
1998, pp. 239–27, Springer-Verlag.

[5] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quan-
tizer design,” IEEE Transactions on Communications, vol. 28,
no. 1, pp. 84–95, Jan 1980.

[6] A. Gersho and R. M. Gray, Vector quantization and signal com-
pression, Kluwer Academic Publishers, Norwell, MA, USA,
1991.


