
Bit-error Resilient Packetization for Streaming H.264/AVC
Video

Jari Korhonen
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne

Pascal Frossard
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne

ABSTRACT
Bit errors in the radio channel can severely decrease the
efficiency of the link utilization in wireless multimedia
communications. One possibility to avoid consuming bandwidth
with numerous packet retransmissions and thus improve the
performance of a wireless video streaming system is to pass the
packets to the application layer, even if they are corrupted by bit
errors. In this case, the application layer should be capable of
using partially damaged video data. Unfortunately, the state-of-
the-art video coding standards do not fully support bit error
resiliency. In this paper, we propose bit error resilient
packetization strategies for streaming H.264/AVC video, based on
the use of small slices and protection of the most vulnerable bits
only using the UDP-Lite protocol. The simulation results show
that the resilience against bit errors can be increased with only
slightly decreased compression efficiency, which results in
improved streaming performance.

Categories and Subject Descriptors
H.4.3 [Information systems applications]: Communications
applications – Computer conferencing, teleconferencing, and
videoconferencing.

General Terms
Design, Measurement, Performance.

Keywords
Video streaming, Bit error resilience, H.264/AVC, UDP-Lite.

1. INTRODUCTION
Due to the error prone nature of a typical wireless communication
channel, error recovery represents an important problem in
multimedia delivery in wireless networks. Basically, there are two
approaches to recover from transmission errors. First, the receiver
application can try to reconstruct the missing or damaged parts of
the video stream without any support from the sender application,
for example by interpolation from the correctly received

neighboring parts of the stream (Error Concealment, EC). The
second strategy relies on channel coding or joint source and
channel coding, and attempts to correct the missing parts of data
by using the redundant information that have been added to the
video stream (e.g., Forward Error Correction, FEC) or requesting
retransmissions for the lost data sections (Automatic Repeat
reQuest, ARQ). FEC and ARQ schemes cause transmission
overhead and latency. Efficient strategies therefore result from an
effective compromise between redundancy for error resilience and
overall bandwidth requirements.

In wireless multimedia communications, the last hop in the radio
access network is typically the bottleneck of transmission.
Because radio communications suffer from bit errors especially at
high transmission rates, robust modulation schemes and link layer
retransmissions can increase the link occupancy level
significantly and thus decrease the effective data rates for the
mobile users. One possible approach to reduce the retransmission
overhead is to pass the damaged packets up to the application
layer as such, instead of retransmitting them [3,4]. Of course, in
this case the application layer must be capable of detecting errors
and utilizing the partially damaged data. For this purpose, bit
error resilient coding techniques would be beneficial.

Error concealment mechanisms are typically best applicable if the
damaged regions are small. For example, a large number of small
erroneous sections distributed smoothly over the video stream in
both spatial and temporal dimensions typically result in better
perceived quality than smaller number of large errors. This is the
rationale behind certain techniques facilitating error concealment,
such as slice interleaving and Flexible Macroblock Ordering
(FMO) in H.264/AVC [1,2]. Due to the highly hierarchical data
structure present in the state-of-the-art video codecs, a small error
may still lead to severe error propagation, even in case these
techniques are utilized.

In this paper, we propose to increase the robustness to bit errors,
when corrupted data packets are passed to the application layer in
order to limit the number of retransmissions. We study the bit
error resilience and robust packetization strategies for streaming
video. We propose new schemes for packetizing decodable
elements of a video stream into RTP packets, such that the most
important information receives prioritized treatment, and the
distortion in case of bit error stays limited. We verify the
performance of the proposed approaches in a simulation study
using the recent and popular H.264/AVC codec.

The rest of the paper is organized as follows. In Section 2, we
give a brief overview to the error resilience in multimedia
communications. In Section 3, the proposed packetization scheme

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MV’07, September 28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-779-7/07/0009...$5.00.

25

is explained and its performance is evaluated. Finally, the
conclusions are given in Section 4.

2. ERROR RESILIENCE
Several mechanisms and tools to improve the error resilience in
advanced multimedia coding technologies have been proposed
and even adopted in standards. In general, these mechanisms
target either data losses or bit errors. In the first case, it is
assumed that some data elements may be lost during the
transmission, but the received data is definitely free of errors. In
the latter case, some bits in the received data can be erroneous and
therefore inconsistent with the bitstream syntax.

2.1 Packet Loss Resilience
Typically, advanced multimedia coding standards and packet
payload formats allow detection of lost data elements by using
sequence numbers. When a packet loss is detected, appropriate
error concealment can be applied to replace the missing data.
When packet losses are considered, each transport packet contains
ideally an integral number of individually decodable data
elements, because fragmented elements may become entirely
useless if just one of the fragments is lost.

In H.264/AVC, the basic element for decoding is called Network
Abstraction Layer (NAL) unit. One NAL unit (NALU) may
contain decoding parameters or a slice of picture data for either
predicted or intra frames. Each slice comprises one or more
macroblocks of 16x16 pixels [2,5]. Basically, the slice size can be
selected rather freely from one macroblock even up to the all
macroblocks in the frame. The damage caused by each packet loss
can be minimized if small NALUs are used, and there is only one
NALU in each transport packet. However, the use of small slices
decrease coding efficiency, due to overhead from NALU headers
and transport protocol headers. Even if several small NALUs are
packed in one transport packet, some control information is added
in the payload for each NALU. Therefore, NALU size is a trade-
off between error resilience, bitrate of the transport stream and
coding efficiency.

H.264/AVC standard includes a data partitioning tool that can be
used to allocate the data components of one slice in three different
priority NALU types (A, B, and C) [2,5]. When this technique is
utilized, it is straightforward to apply unequal error protection for
different partitions. For example, packets containing class A
NALUs can be protected by FEC or retransmissions, whereas
packets with class B and C NALUs can get weaker protection, or
even be left unprotected. B and C partitions are useless without
the corresponding A partition.

2.2 Bit Error Resilience
As variable length coding is usually applied in advanced
multimedia compression technologies, even a single bit error can
mutate the length of the codeword seen by the decoder, causing
the decoding of the following codeword start in a wrong position.
This may lead to severe error propagation within the decodable
unit of data. A similar effect may result when a value of a critical
flag is flipped. If the decoder is not designed to detect illegal
codewords and prevent reading data beyond the borders of the
input buffer, decoder may even crash. Even if these error checks
are performed, misinterpreted data may severely damage to the

resulting quality of the decoded stream if errors are not detected.
This is why data losses may be preferred to bit errors.

Several different mechanisms have been proposed to improve the
resiliency against bit errors in multimedia coding. The most
vulnerable parts of data are usually protected by FEC. Error
propagation in variable length coded data can be limited by
adding certain delimiters or using more robust codeword sets,
such as Reversible Variable Length Codes (RVLC). In RVLC,
each codeword can be read from both directions, backward or
forward. If an illegal codeword is detected, decoding process can
continue from the end of the sequence [6]. All these methods add
overhead or decrease the compression efficiency, and are not even
used in the most recent versions of video coding standards.

a) Bit errors in an I-frame

b) Bit errors in a P-frame

Figure 1. Bit errors in different types of video frames.

One interesting method adopted in the error resilience tools of
MPEG-4 advanced audio coding (AAC) is Huffman code
reordering [7]. In this method, priority codewords are allocated in

26

predefined positions. The remaining codewords are written so that
they fill the gaps left between the priority codewords. In this way
the error propagation between priority codewords can be avoided
and only the lower priority codewords would be affected.
Basically, the data partitioning tool could be used to make the
distinction between sensitive and non-sensitive bits in
H.264/AVC. However, since the data partitioning tool has not
been designed for bit error resilience, its efficiency stays limited
in the case of bit errors. For example, Masala et. al. have
proposed a scheme with link layer partial checksum to protect
class A partitions, but they have decided to discard erroneous B
and C partitions directly, even if the related A partition is
correctly received [8].
Unfortunately, H.264/AVC does not support bit error resilience at
syntax level. However, if only the most sensitive data is
protected, a reasonable degree of bit error resilience can still be
achieved by detecting syntax violations and illegal values of
decoded data elements. When an error is detected, damaged

macroblocks can be repaired by using traditional error
concealment schemes. Non-detected errors may cause
misinterpretations of data, such as wrongly decoded motion
vectors in predicted frames or distorted chroma components in
intra frames. Figure 1 shows examples of effects caused by bit
errors in H.264/AVC coded I- and P-frames. Typically, errors in
I-frames are perceptually different than in P-frames, because
macroblocks with erroneous chroma components appear as
clearly visible squares (see Figure 1a) and erroneous motion
vectors appear as misplaced blocks (see Figure 1b).

3. RESILIENT TRANSPORT OF VIDEO
Usually, in wireless packet-switched networks bit errors are
detected at the link layer already, and erroneous packets are
discarded and requested to be retransmitted. However, several
studies show that a considerable amount of wireless link
bandwidth can be saved if erroneous packets are passed up to the
application instead of retransmitting [9, 10, 11]. Of course, in this

a) Bit error resilient packetization scheme for UDP Lite

b) Bit error resilient packetization scheme including checksums for individual slices

Figure 2. Bit error resilient packetization strategies for short NALUs in UDP-Lite packets.

27

case the application must be able to deal with erroneous data. This
is the problem we address with the bit error resilient packetization
strategies proposed below.
In a typical case, packet header and the most critical parts of
multimedia data must be protected against bit errors even in case
errors are allowed in some parts of the data. For this purpose,
UDP-Lite protocol [4] has been proposed. Assuming that the
erroneous packets would reach the transport layer, UDP-Lite uses
a partial checksum to cover only the packet header and the critical
data of the payload located in the beginning of the packet. If a bit
error is detected in the protected part, the whole packet is
discarded. Otherwise, it is passed further up to the application.
When a packet contains several individually decodable data units,
it is necessary to protect the vulnerable data of each of these units
either by using application layer checksums or reallocating the
vulnerable data in the beginning of the RTP payload and covering
it by the UDP-Lite checksum. An example of such packetization
is the payload format for AMR-WB speech codec, where the table
of contents with the critical information (frame types) is allocated
in the beginning of the payload, separately from the actual speech
data [12].
Figure 2a illustrates a bit error resilient packetization strategy for
H.264/AVC video. The NALUs (slices) are split in two parts, the
first part containing the most relevant bytes, including the slice
header. Then, the protected part of each slice is allocated in the
beginning of the packet payload, preceded by the length
information of the slice. This is how the most vulnerable data of
each slice can be protected by the UDP-Lite checksum. The
macroblock data resides in the unprotected part.
If it is not possible to implement bit error resilience features in the
decoder, it would be possible also to use checksums covering the
data for each slice. Together with the slice length information in
the protected area, erroneous slices could be detected before
decoding and skipped. In this case, only the length information
needs to be allocated in the protected area. The setback of this
approach is that the possibly unharmed macroblocks in the
beginning of each slice are lost. This kind of strategy is illustrated
in Figure 2b. It is worth noting that in this case there is no need to
protect the NALU headers separately. This is why shorter
protected portion of UDP-Lite packets can be used and further
reduction in transport layer packet loss rate can be achieved.

4. ANALYSIS

4.1 Simulation Setup
The performance of the proposed packetization strategy has been
evaluated by simulating a UDP-Lite transport system and a
wireless channel with a two-state Gilbert-Elliot model. The
packetization strategies used were similar to those shown in
Figure 2. For the sake of simplicity, we have not used data
partitioning in our experiments, but the protected section is
heuristically defined as six bytes from the beginning of a NALU.
In the simulations, it is assumed that the first reference frame and
the protected parts of the UDP-Lite payloads are always received
correctly. In a real system, this can be achieved by using
retransmissions for the entirely lost packets. The precise
implementation details and performance analysis of the network
protocols are topics for future research.

In the simulations, JM reference codec version 11.0 [13] was
used. Because syntax level bit error resilience is not supported in
H.264/AVC, we have modified the reference codec by adding
simple error detection functionality. If the decoder observes an
illegal codeword or reads beyond the end of the input buffer, the
remaining macroblocks in the slice are marked as corrupted and
recovered by the standard error concealment (motion vector
copy). Two CIF test sequences of 90 frames were used, relatively
static ‘Foreman’ and more demanding ‘Soccer’, both encoded
with target bit rate of 512 kbit/s, (30 frames/s, every ninth frame
is an I-frame, B-frames are not used).
Errors have been applied to the unprotected parts of the UDP-Lite
payloads generated from the encoded bitstream. Then, the
erroneous bitstreams have been decoded and analyzed by
measuring the PSNR compared to the original video. There are
three different versions of the encoded bitstream, with different
maximum NALU sizes (150, 450 and 1350 bytes), packed in
UDP-Lite datagrams with maximum payload size of 1400 bytes.
Depending on the case, there are from one to ten NALUs per
packet, and it is worth noting that if traditional UDP was used
instead of UDP-Lite, loss of one packet would lead to loss of all
these NALUs. To verify the generality of the results, some
experiments were made also with lower bitrate (256 kbit/s).
Tables 1 and 2 summarize the characteristics of the encoded
bitstreams for ‘Foreman’ and ‘Soccer’ sequences, respectively.
The best PSNR value is achieved when the NALU size is largest,
reflecting the reduction in compression efficiency when small
NALUs are used. However, the difference in PSNR between
NALUs of 150 bytes and 1350 bytes is small, around 0.5 dB, in
both cases. Because NALUs are not fragmented, the average
packet size is larger for the small NALUs providing finer
granularity. This reduces slightly the packet header overhead with
small NALUs and compensates partially the loss of compression
efficiency.

Table 1. Characteristics of the encoded ‘Foreman’ sequences

 FM150 FM450 FM1350
PSNR 38.78 39.12 39.32
Avg. NAL size 141 B 399 B 1004 B
Avg. packet size 1397 B 1284 B 1095 B
NALs per packet 9.91 3.22 1.09

Table 2. Characteristics of the encoded ‘Soccer’ sequences

 SO150 SO450 SO1350
PSNR 36.33 36.67 36.84
Avg. NAL size 147 B 404 B 967 B
Avg. packet size 1394 B 1275 B 1087 B
NALs per packet 9.96 3.15 1.12

Bit errors were generated using a two state model with three
different parameter sets as given in Table 3. The model has two
states, the good state and the bad state. In the good state, all bits
are transmitted correctly. In the bad state, the transmitted bit is
corrupted at probability Pb_err. Transition probabilities between
the two states are marked with Pg_b from the good state to the bad
state, and Pb_g. vice versa. In the first test set, bit errors are spread
purely randomly. In the second set, there are short error bursts at

28

relatively high density. In the third set, error bursts are longer, but
they appear at longer intervals. The resulting average proportion
of erroneous bits in all cases is approximately 10-3, even though
the distribution of bit errors is different.

Table 3. Parameters used for the two-state model

 Pg b Pb g Pb corr
1. Random 10-3 1 1
2. Short bursts 10-4 0.05 0.5
3. Long bursts 2·10-5 0.015 0.5

4.2 Simulation Results
Average PSNR values for each test case are shown in Table 4 for
‘Foreman’ sequence and Table 5 for ‘Soccer’ sequence,
respectively. In addition, Table 6 shows the results for the low
bitrate version of the ‘Foreman’ sequence. For each bitstream
with different maximum NALU sizes, two error management
strategies were tested: erroneous NALUs are dropped and
concealed with traditional means (loss), or NALUs are decoded
with the modified decoder that has bit error robustness features
(err). In practice, the loss scenarios with large NALUs (1350
bytes) are roughly comparable to a baseline scenario without
smart packetization and only one NALU per packet. In some
cases, when there are several errors in the long NALUs, the
number of entirely discarded frames becomes so high that reliable
PSNR value could not be derived. These cases are marked with
‘X’.
The results show that bit error resilient decoding outperforms
discarding the damaged NALUs in most cases; the only exception
is observed when the shortest NALUs are used over a channel
with highly bursty bit error pattern. Even is this case, the
difference is small. Short NALUs give better results than long
NALUs, and long bit error bursts at low density have smaller
impact than random bit errors or short bursts at high density,
indicating that one bit error within a slice may be almost as
harmful as a burst of bit errors.
The results are well in line with intuitive analysis. Larger NALUs
are more likely to be hit by bit errors than small NALUs; this is
why the proportion of erroneous slices can be reduced by using
small NALUs. If there are bit errors in a slice comprising several
macroblocks, all the macroblocks prior to the first appearance of
an error can be correctly decoded. This is why it is worthwhile to
attempt decoding the damaged frames instead of discarding them
immediately. However, decoder is not always able to detect
erroneous codewords and, in some cases, undetected errors may
result in severe distortion in decoded macroblocks. This is why
checksum-based approach performs better for some frames even
though the performance in general is better with the decoding
approach.
Figure 3 shows an example of the PSNR values over Soccer
sequence with NALUs of 150 bytes (upper thick curves) and
NALUs of 450 bytes (lower thick curves). The solid thick line
shows the PSNR values when frames containing short bit error
bursts are decoded, and the dotted line shows the PSNR values
when the affected frames are dropped instead of decoding. The
solid thin curves show the PSNR values of the encoded streams
when no error occurs. Under error free conditions, the two curves
are almost identical, showing that the compression efficiency is

not radically decreased even if small slices are used. When there
are errors present, the PSNR curve contains clearly noticeable
“spikes” at the positions of I-frames. This indicates that high
frequency of I-frames is desirable, when there are errors in the
bitstream.

Table 4. PSNR values for ‘Foreman’ sequence (512 kbit/s)

 No bit
errors

Random
errors

Short
bursts

Long
bursts

FM150-loss 38.78 22.83 31.72 35.54
FM150-err 38.78 25.54 32.07 35.25
FM450-loss 39.11 X 26.45 29.99
FM450-err 39.11 21.82 29.00 32.33
FM1350-loss 39.32 X X 27.34
FM1350-err 39.32 18.74 25.66 29.03

Table 5. PSNR values for ‘Soccer’ sequence (512 kbit/s)

 No bit
errors

Random
errors

Short
bursts

Long
bursts

SO150-loss 36.34 22.94 30.51 33.68
SO150-err 36.34 24.50 30.77 32.97
SO450-loss 36.67 X 25.46 29.90
SO450-err 36.67 21.88 26.75 31.62
SO1350-loss 36.84 X X 24.44
SO1350-err 36.84 20.35 23.57 26.28

Table 6. PSNR values for ‘Foreman’ sequence (256 kbit/s)

 No bit
errors

Random
errors

Short
bursts

Long
bursts

FM150-loss 35.99 21.81 30.37 33.50
FM150-err 35.99 25.02 31.23 33.48
FM450-loss 36.53 X X 30.42
FM450-err 36.53 20.99 27.84 30.99

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

Frame number

P
S

N
R

No errors

Erroneous frames decoded

Erroneous frames dropped

SOCCER-450

SOCCER-150

Figure 3. PSNR values in erroneous ‘Soccer’ sequences.

29

Figure 4 illustrates the difference between these two error
management strategies in practice: in Figure 4a, a frame of the
Foreman sequence (slices of 450 bytes) containing bit errors is
decoded as such. In Figure 4b, the affected slices are discarded
and reconstructed with the standard error concealment scheme in
the decoder. As we can see, in the first case the damaged areas are
smaller, as only part of the macroblocks within each slice are
impacted, but the distortion in these areas is more severe. In
contrast, in the latter case, the distorted areas comprise entire
slices. In our experiments, FMO is not used. FMO would be
useful to alleviate the clusterization of damaged macroblocks;
however, the total number of damaged or missing macroblocks
would not change.

a) Erroneous slices decoded

b) Erroneous slices discarded and concealed

Figure 4. Different error management strategies compared.

5. CONCLUSIONS
In this paper, advanced bit error resilient packetization strategies
have been proposed for transporting H.264/AVC video over a
wireless channel utilizing UDP-Lite. It is shown that by packing
several small NALUs in each RTP packet and using a bit error
resilient decoder or individual checksums to detect errors in each
NALU, reasonable robustness against bit errors can be achieved.

According to several other studies, capacity of a wireless link can
be used much more efficiently if erroneous packets are conveyed
to the application instead of discarding and retransmitting.
However, practically all wireless standards perform error
detection already at the link layer. The results suggest that
significant benefits could be gained by allowing delivery of
partially corrupted packets. This should be taken into account into
the development of wireless streaming solutions, in particular in
promising cross-layer architectures.

REFERENCES
[1] Varsa, V., and Karczewicz, M., “Slice Interleaving in

Compressed Video Packetization”, Packet Video Workshop,
Forte Village, Italy (2002).

[2] Wenger, S., “H.264/AVC over IP,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 13, no. 7, pp.645-656
(2003).

[3] Weltzl, M., “Passing Corrupt Data Across Network Layers:
An Overview of Recent Development and Issues”, EURASIP
Journal on Applied Signal Processing, vol., no. 2, pp. 242-
247 (2005).

[4] Larzon, L., Degermark, M., Pink, S., Jonsson, L., and
Fairhurst, G., “The Leightweight User Datagram Protocol
(UDP-Lite)”, IETF RFC 3828 (2004).

[5] ITU-T, “Advanced Video Coding for Generic Audiovisual
Services,” ITU-T Recommendation H.264 (2005).

[6] Takishima, Y., Wada, M., and Hurakami, H., “Reversible
Variable Length Codes,” IEEE Trans. Comm., vol. 43, no.
2/3/4, pp 158-162 (1995).

[7] Sperschneider, R., Homm, D., and Chambat, L., “Error
Resilient Source Coding with Variable-Length Codes and its
Application to MPEG Advanced Audio Coding,” 109th
Audio Engineering Society Convention, Los Angeles,
California, USA (2000).

[8] Masala, E., Bottero, M., and De Martin, J.C., “Link-Level
Partial Checksum for Real-Time Video Transmission over
802.11 Wireless Networks,” Packet Video Workshop, Irvine,
California, USA (2004).

[9] Singh, A., Konrad, A., and Joseph, A., “Performance
Evaluation of UDP Lite for Cellular Video,” NOSSDAV,
Port Jefferson, New York, USA (2001).

[10] Khayam, S., Karande, S., Radha, H., and Loguinov, D.,
“Performance Analysis and Modeling of Bit Errors and
Losses over 802.11b LANs for High Bit-Rate Real-Time
Multimedia,” Signal Processing: Image Communication, vol.
18, no. 7, pp. 575-595 (2003).

[11] Vehkaperä J., Peltola, J., Huusko, J., Myllyniemi, M., and
Majanen, M., “Evaluation of Achieved Video Quality in
Wireless Multimedia Transmission using UDP-Lite,”
IASTED IMSA, Honolulu, Hawaii, USA (2006).

[12] Sjöberg, J., Westerlund, M., Lakaniemi, A., and Xie, Q.,
“RTP Payload Format and File Storage Format for the
Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate
Wideband (AMR-WB) Audio Codecs,” IETF RFC4867
(2007).

[13] H.264/AVC Reference Software Archive. Available online:
http://iphome.hhi.de/suehring/tml/download /old_jm/.

30

