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Abstract—Many manifold learning methods require the estimation of
the tangent space of the manifold at a point from locally available
data samples. Local sampling conditions such as (i) the size of the
neighborhood and (ii) the number of samples in the neighborhood affect
the performance of learning algorithms. In this paper, we propose a
theoretical analysis of local sampling conditions for the estimation of
the tangent space at a point P lying on an m-dimensional Riemannian
manifold S in Rn. Assuming a smooth embedding of S in Rn, we estimate
the tangent space TPS by performing a Principal Component Analysis
(PCA) on points sampled from the neighborhood of P on S. Our analysis
explicitly takes into account the second order properties of the manifold
at P , namely the principal curvatures as well as the higher order terms.
Considering a random sampling framework, we leverage recent results
from random matrix theory to derive local sampling conditions for an
accurate estimation of tangent subspace. Our main results state that
the width of the sampling region in the tangent space guaranteeing an
accurate estimation is inversely proportional to the manifold dimension,
curvature, and the square root of the ambient space dimension. At the
same time, we show that the number of samples increases quadratically
with the manifold dimension and logarithmically with the ambient space
dimension.

I. INTRODUCTION

A data set that resides in a high-dimensional Euclidean space
and that is locally homeomorphic to a lower-dimensional Euclidean
space constitutes a manifold. For example, a set of signals that is
representable by a parametric model, such as parametrizable visual
signals or acoustic signals forms a manifold. Data manifolds are
however rarely given in an explicit form. The recovery of low-
dimensional structures underlying a set of data, also known as
manifold learning, has thus been a popular research problem in
the recent years [1], [2], [3]. Importantly, most manifold learning
methods rely on the assumption that the data has a locally linear
structure. Of course, for such an assumption to be valid at some
reference point on the manifold, one has to take into account (i) the
size of the neighborhood from which the samples are chosen and
also, (ii) the number of neighborhood points. For instance, if the
manifold is a linear subspace, then the neighborhood can be chosen
to be arbitrarily large and the number of samples needs to be simply
greater than the dimension of the manifold. However, most manifolds
are typically nonlinear, which prevents the selection of an arbitrarily
large neighborhood size. Hence, one might expect the existence of
an upper bound on the neighborhood size for a given estimation
accuracy. Furthermore, the number of necessary samples is likely to
vary according to the local characteristics of the manifold. In this
work, we present an analysis of the sampling problem and derive
conditions on the size of the sampling region and the number of
samples for an accurate estimation of the tangent space.
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There are many examples of dimensionality reduction algorithms
such as [3], [4], [5], [6], which apply a local Principal Component
Analysis (PCA) for the computation of the tangent space of the
manifold. The performance of Singular Value Decomposition (SVD)
or PCA under noise is a well-studied topic (see [7], [8], [9] and
references within). However these studies do not involve the geomet-
ric structure of the data. Only a few recent works have studied the
relation between PCA performance and data geometry. The work
in [10] generalizes the idea of diffusion maps in dimensionality
reduction [11] to vector diffusion maps. As part of their analysis,
the authors have shown in particular that when the size ε of the
local area for tangent space estimation is set to ε = O(K−

1
m+2 )

with K being the number of samples on the whole manifold and
m being the dimension of the manifold, then the deviation between
the estimated and the true tangent space is typically O(ε3/2). Their
work however considers a global sampling from a compact manifold
while we focus here on the local manifold geometry. Finally, the
accuracy of tangent space estimation from noisy manifold samples
is analyzed in a work parallel to ours [12]. This study focuses on
manifolds that are embedded with exactly quadratic forms and poses
the sampling problem as the selection of a subset of samples from
a set of noisy samples given a priori. On the contrary, we analyze
more generic embeddings with arbitrary smooth functions and we
aim at characterizing a sampling strategy in terms of the sampling
width and density for noiseless manifold samples.

Our contribution in this paper can be summarized as follows.
Firstly, we determine a suitable upper bound on the size of the
neighborhood in the tangent space within which the manifold can be
sampled randomly. In the derivation of this bound, we consider the
asymptotic case K →∞ with arbitrarily many manifold samples so
that the neighborhood size purely depends on the manifold geometry.
In particular, our analysis depends on (i) the maximum principal
curvature of the manifold and (ii) the deviation of the manifold
from its second-order approximation. Secondly, we compute a bound
on the minimum number of samples for accurate tangent space
estimation, given that the sampling is performed randomly in a
neighborhood whose size conforms with the aforementioned bound.
To this end, we utilize recent results from random matrix theory
[13], [14]. Combining the two above results, we give a complete
characterization of the local sampling conditions in Theorem 1.

The rest of the paper is organized as follows. Section II contains
the formal outline of the problem. In Section III we present the main
results along with a discussion. In Section IV we provide concluding
remarks and possible directions for future work.

II. PROBLEM SETUP

We consider an m-dimensional submanifold S of Rn with a
smooth embedding in Rn, n ≥ m + 1. Let P ∈ S be a manifold
point and Nε(P ) denote an ε-neighbourhood of P on S for some



ε > 0
Nε(P ) = {M ∈ S : ‖M − P ‖2 ≤ ε}

where ‖ . ‖2 stands for the `2-norm in Rn. Let TPS denote the
tangent space at P .

In our analysis, we represent the points in Nε(P ) via tangent space
parameterization using local functions fl : TPS → R. There exists
an ε such that all points M ∈ Nε(P ) can be uniquely represented
in the form

[x̄T f1(x̄) . . . fn−m(x̄)]T . (II.1)

Here x̄ = [x1 . . . xm]T denotes the coordinates of the orthogonal
projection of manifold points onto TPS. Note that, in (II.1), the
coordinates are given with respect to the reference manifold point
P , which is taken as the local origin. Furthermore, aligning the coor-
dinate system with the tangent space at P , TPS can be represented
as

TPS = span {ē1, . . . , ēm} ,

where ēj ∈ Rn denote the canonical vectors. Now, we further assume
the smoothness of the embedding to be Cr, r > 2, implying that each

fl : TPS → R, l = 1, . . . , n−m,

is a Cr-smooth function in the variables (x1, . . . , xm). Since
∇fl(0̄) = 0̄, we have the following identity by the Taylor expansion
of fl around the origin (P )

fl(x̄) = fq,l(x̄) +Rl(x̄); l = 1, . . . , n−m (II.2)

where fq,l is a quadratic form and Rl(x̄) is the remainder term of
O(‖ x̄ ‖32). The Hessian of fl at the local origin P can be represented
as

∇2fl(0̄) = VlΛlV
T
l ,

where Λl = diag(Kl,1, . . . ,Kl,m) and Kl,1, . . . ,Kl,m are the prin-
cipal curvatures of the hypersurface

Sl =
{

[x̄T fl(x̄)] : x̄ ∈ TPS
}
⊂ Rm+1

defined by fl. We then define the maximum principal curvature at P
as Kmax := Kl′,j′ where (l′, j′) = argmax

l,j

|Kl,j |. We consider

that the tangent space is estimated from sample points in Nε(P )
through a PCA decomposition. More precisely, let us consider K
points {Pi}Ki=1 sampled from Nε(P ). Let M (K) denote the local
covariance matrix where

M (K) =

K∑
i=1

1

K
PiP

T
i = UΛUT .

The matrices U and Λ ∈ Rn represent respectively the eigenvector
and eigenvalue matrices of M (K) where

U = [ū1 . . . ūm . . . ūn]; Λ = diag(λ1, . . . λm, . . . λn),

with the ordering λ1 ≥ · · · ≥ λm ≥ · · · ≥ λn. The optimal m-
dimensional linear subspace at P in the least squares sense is then
given by the span of the m largest eigenvectors of M (K), i.e.,

T̂PS := span {ū1, . . . , ūm} .

Hence, T̂PS is the estimation of the true tangent space TPS at P
with PCA. This is illustrated in Fig. 1. Finally, we characterize the
accuracy of the tangent space estimation with the angle between T̂PS
and TPS, where we use the angle definition given in [15].

We can now state our problem formally. Given the above setting,
we want to describe the conditions on the manifold samples {Pi}Ki=1
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Fig. 1. The true tangent space TPS and the estimated tangent space T̂PS
at point P .

such that for a given error bound φ ∈ (0, π
2

) on the tangent space
estimation,

|∠T̂PS, TPS| < φ <
π

2

is ensured. In particular, for a given error bound φ, we would like to
answer the following questions:
• Question 1: What would be a suitable upper bound on the

sampling distance; i.e., the distance from Pi to P ?
• Question 2: Given that the points {Pi}Ki=1 are sampled such

that the sampling distance satisfies the sampling distance bound,
what would be a suitable lower bound on the sampling density
K?

In particular, for large embeddding dimensions n, we would like
to determine the the dependency of the above bounds on n,m and
Kmax. In order to address these questions, we consider a random
sampling framework where we assume that the coordinates of the
orthogonal projections of manifold samples on TPS are distributed
uniformly in the region [−ν, ν]m ∈ TPS. In other words, we assume
that

x
(i)
j ∼ U [−ν, ν] i.i.d. i = 1, . . . ,K; j = 1, . . . ,m

where U denotes the uniform distribution. Therefore, we characterize
the sampling distance in Question 1 by the parameter ν, which we
shall refer to as the sampling width in our analysis.

III. MAIN RESULTS

We now present our main results regarding the sampling of a
smooth manifold. First, since we consider the sampling of fl(x̄) over
the compact region [−ν, ν]m, Rl(x̄) is bounded over this region.
Therefore, for each l there exists a constant Cs,l > 0 such that

|Rl(x̄)| < Cs,l ‖ x̄ ‖32 l = 1, . . . , n−m,

where Cs,l depends on the magnitude of the third order derivatives
of fl in Nε(P ). We denote

Cs = max
l
Cs,l, l = 1, . . . , n−m.

The empirical covariance matrix M (K) corresponding to the sam-
ples {Pi}Ki=1 is in the form M (K) = M

(K)
q + ∆(K)

M (K)
q =

[
A(K) B(K)

B(K)T

D(K)

]
, ∆(K) =

[
0 B

(K)
1

B
(K)T

1 D
(K)
1

]
.

Here M (K)
q is the covariance matrix associated with the quadratic

components fq,l(x̄) of the embeddings. The m × m matrix A(K)

gives the covariance of the tangential components x̄i of data points



Pi. As K → ∞, the matrix A(K) → ν2

3
Im×m approaches a

scaled version of the identity matrix; and therefore, the column space
of A(K) approaches the true tangent space TPS. The submatrices
B(K) and D(K) represent the error on account of the nonzero
manifold curvature at P , which stems from the second-order terms
fq,l. Meanwhile, ∆(K) is an additional error term resulting from the
higher-order Taylor terms Rl of the mappings fl. We give the explicit
formulation of B(K)

1 and D
(K)
1 in [16, Section 4.4] and show that

their Frobenius norms ‖B(K)
1 ‖F and ‖D(K)

1 ‖F can be bounded as

‖ B(K)
1 ‖F < ‖ B1 ‖F,bound :=

√
m(n−m)Csm

3/2ν4,

‖ D(K)
1 ‖F < ‖ D1 ‖F,bound

:= (n−m)Csm
5/2ν5(Csm

1/2ν + |Kmax|).

Now let us denote

B1 = E[B
(K)
1 ], D1 = E[D

(K)
1 ], and ∆ = E[∆(K)].

Due to the ergodicity of the sampling process, we have B1 =
limK→∞B

(K)
1 , D1 = limK→∞D

(K)
1 , and ∆ = limK→∞∆(K).

Consequently, one can show that [16]

‖B1‖F < ‖B1‖F,bound, ‖D1‖F < ‖D1‖F,bound.

Equipped with the above definitions and properties, we are now
ready to state our main results about the sampling of smooth mani-
folds. We characterize the sampling conditions for accurate tangent
space estimation by first defining a region of sampling in the tangent
space and then determining the number of samples to be chosen
from this region. We begin with the region of sampling and present
in Lemma 1 the conditions on the sampling width ν that guarantee
an upper bound on the angle between T̂PS and TPS, provided that
the number of samples is arbitrarily large.

Lemma 1: Let the sampling width satisfy

ν <
1

[3((β2 +RL) + β3α+ β4α2)]1/2

where β2 = 4Csm
2(n − m)1/2, β3 = 2(n − m)Csm

5/2|Kmax|,
β4 = 2(n−m)m3C2

s ,

R = n−m, L =
m(5m+ 4)|Kmax|2

180

and

α = min
{

(3(β2 +RL))−1/2, (3β3)−1/3, (3β4)−1/4
}
.

Then, as K →∞,

P
(
|∠T̂PS, TPS| > cos−1

√
(1−mσ2

∞)m
)
→ 0

where

σ∞ =
‖ B1 ‖F,bound

ν2

3
−RLν4 − 2(‖ B1 ‖F,bound + ‖ D1 ‖F,bound)

.

The proof of Lemma 1 is presented in [16, Appendix A.4]. The
stated result is derived from the condition that the spectrum associated
with ν2

3
Im, whose corresponding eigenvectors give the true tangent

space TPS, is separated from the spectrum of the error. There are
two sources of error here; namely, the curvature components fq,l
which give rise to the correlation matrix D = limK→∞D

(K)

and the higher-order terms Rl yielding the perturbation matrix
∆. The lemma states that the angle |∠T̂PS, TPS| between the
estimated and true tangent spaces converges to the residual bound
cos−1

√
(1−mσ2

∞)m as the number of samples tends to infinity.
The error term mσ2

∞ can be interpreted as the bias error resulting

from the fact that a smooth embedding has a non-symmetric structure
around the origin in general. In particular, it is easily verifiable that
σ∞ → 0 as ν → 0; i.e., the bias approaches zero as the sampling
width shrinks to 0. Also note that, when the fl’s are quadratic forms,
this bias term vanishes to yield σ∞ = 0, which is due to the symmetry
of quadratic forms around the origin [16].

We now proceed to the finite sampling case K < ∞ and give
our complete main result. In Theorem 1, we state the sufficient
conditions on the sampling width ν and the number of samples K,
such that the deviation |∠T̂PS, TPS| is suitably upper bounded with
high probability.

Theorem 1: Let s1 ∈ (0, 1) and s2 > e be fixed constants. Assume
that the sampling width ν is such that

ν <

(
s1

3[(β2 + s2RL) + β3α+ β4α2]

)1/2

.

For some τ ∈ (0, 1), let s3 > 0 be chosen such that

s3 <[(s1
ν2

3
− s2RLν4)− 2(‖ B1 ‖F,bound + ‖ D1 ‖F,bound)](

τ2

m
+ σ2

f

)1/2

− ‖ B1 ‖F,bound

where

σf =
‖ B1 ‖F,bound

(s1
ν2

3
− s2RLν4)− 2(‖ B1 ‖F,bound + ‖ D1 ‖F,bound)

.

Finally, let 0 < p1, p2, p3 < 1. Assume that the num-
ber of samples satisfies K > Kbound, where Kbound =
max{K(1)

bound, K
(2)
bound, K

(3)
bound}

K
(1)
bound =

6RM
(1− s1)2

log ((n−m+ 1)/p1) ,

K
(2)
bound =

RD
s2RL

log((n−m)/p2)

log(s2/e)
,

K
(3)
bound =

ν6Rσ + RBν
3s3

3

s23/2
log(n/p3)

and

RM = m+
1

4
(n−m)m2ν2|Kmax|2

RD =
1

4
(n−m)m2|Kmax|2, RB =

1

2
m3/2√n−m|Kmax|

Rσ =
m2|Kmax|2

12
max

{
(n−m),

R(5m+ 4)
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}
.

Then, with probability larger than 1− p1 − p2 − p3,

|∠T̂PS, TPS| < cos−1
√

(1− τ2 −mσ2
f )m.

The proof of Theorem 1 is presented in [16, Appendix A.5]. The
theorem builds on Lemma 1 that considers the case K →∞. In the
proof of the theorem, in order to account for finite K, we use the
results of [13], [14] in order to probabilistically bound how much the
tangent space estimated with K samples deviates from the tangent
space in Lemma 1 estimated with infinitely many samples. The
parameters si are used to make the link between the estimation error
and the sampling conditions (sampling width and sampling density),
whereas the probability constants pi establish the relation between
the error probability and the sampling density K.

Note that the tangent space estimation error in this case consists of
two terms - the variance term τ due to finite sampling and the bias



term σf resulting from the asymmetric manifold geometry, which is
the probabilistic counterpart of the bias term σ∞ in Lemma 1. In
particular, the number of samples K is related to the variance term
τ through the parameter s3, such that a larger number of samples
decreases the variance, bringing thus the estimation error closer to
its asymptotic value given in Lemma 1.

Remark: Let us now interpret our results with respect to the
variation of the sampling conditions with the manifold param-
eters. As shown in [16], the results of our analysis translate
into the fact that the choices ν = O(n−1/2m−1|Kmax|−1) and
K = O(τ−2m2 logn) ensure for large n that |∠T̂PS, TPS| <
cos−1

√
(1− τ2 −O(n−1m|Kmax|−4))m holds w.h.p. In this

work, the sampling width ν is measured on the tangent
space TPS. However, using the estimation ‖.‖ambient space ≈
O(‖.‖tangent space

√
n/m), we see that the stated bound on ν

implies that the sampling width measured in the ambient space
must change at the rate O(ν

√
n/m) = O(m−3/2|Kmax|−1).

This practically means that, when applying PCA, the size of the
neighborhood around a reference point in the ambient space must
get smaller as the intrinsic dimension m or the curvature Kmax of
the manifold increases, whereas it is not affected by the ambient
space dimension n. On the other hand, the number of samples K
increases quadratically with m and logarithmically with n.

Let us now briefly discuss the usage of our results with regards
to two important application areas, namely (i) the discretization of a
manifold with a known parametric model - manifold sampling and
(ii) the recovery of the tangent space of a manifold from a given
set of data samples - manifold learning. In order to use our results
in a real application, the intrinsic dimension m of the manifold,
the curvature parameter Kmax, and the higher-order deviation term
Cs have to be known or estimated. First, in a manifold sampling
application, m is already known and it is possible to estimate Kmax
in the following ways. If the manifold conforms to a known analytic
model, it is easy to compute the values of the principal curvatures
and the higher-order terms from the Taylor expansion of the model.
If an analytic model is not known for the manifold, the curvature
of a manifold of known parameterization can be estimated using
results from Riemannian geometry such as [17, Section V] and [18,
Proposition 2]. On the other hand, in a manifold learning application
where only data samples are available, m, Kmax and Cs are unknown
and need to be estimated. The estimation of the intrinsic dimension
of a data set has been studied in several works such as [19], [20] and
[21]. It is also possible to obtain an estimate of the curvature and the
deviation term Cs from data samples using results such as in [22].

IV. CONCLUSIONS

We have presented a theoretical analysis of the tangent space
estimation at a point on a submanifold of Rn from a set of manifold
samples that are selected locally at random. We have considered
a setting where the manifold is embedded smoothly in Rn and
the tangent space is estimated with local PCA. We have derived
relations between the accuracy of the tangent space estimation and
the sampling conditions. In particular, we have examined the effect
of the local curvature of the manifold in tangent space estimation and
shown that the size of the sampling neighborhood shall be inversely
proportional to the manifold curvature. The presented study can be
used for obtaining performance guarantees in the discretization of
parametrizable data and in manifold learning applications. Finally,
our analysis assumes that the data samples are noiseless, i.e., the
data lies exactly on the manifold. A future research direction resides

therefore in the extension of the current results to a scenario where
data samples are corrupted with noise.
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