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Analysis of the finite element heterogeneous multiscale method

for nonmonotone elliptic homogenization problems.

Assyr Abdulle and Gilles Vilmart

Abstract

A fully discrete analysis of the finite element heterogeneous multiscale method for a
class of nonlinear elliptic homogenization problems of nonmonotone type is proposed. In
contrast to previous results obtained for such problems in dimension d ≤ 2 for the H1

norm and for a semi-discrete formulation [W.E, P. Ming and P. Zhang, J. Amer. Math.
Soc. 18 (2005), no. 1, 121–156], we obtain optimal convergence results for dimension d ≤ 3
and for a fully discrete method, which takes into account the microscale discretization.
In addition, our results are also valid for quadrilateral finite elements, optimal a-priori
error estimates are obtained for the H1 and L2 norms, improved estimates are obtained
for the resonance error and the Newton method used to compute the solution is shown to
converge. Numerical experiments confirm the theoretical convergence rates and illustrate
the behavior of the numerical method for various nonlinear problems.

Keywords: nonmonotone quasilinear elliptic problem, numerical quadrature, finite
elements, multiple scales, micro macro errors, numerical homogenization.

AMS subject classification (2010): 65N30,65M60,74D10,74Q05.

1 Introduction

We consider a finite element method (FEM) for the numerical solution of a class of nonlinear
nonmonotone multiscale problems of the form

−∇ · (aε(x, uε(x))∇uε(x)) = f(x) in Ω, (1)

in a domain Ω ⊂ Rd, d ≤ 3, with suitable boundary conditions and where aε(x, u) is a d× d
tensor. Diffusion phenomena in highly heterogeneous medium from a wide range of appli-
cations are modeled by the nonlinear equations (1), where ε represents a small scale in the
problem. For example, the stationary form of the Richards problem [11], problems related
to phase changes in materials [32], the modeling of the thermal conductivity of the Earth’s
crust [35], or the heat conduction in composite materials [30] can be modeled with the help
of (1). Yet, often the multiscale nature of the medium, described in (1) through a nonlinear
multiscale conductivity tensor aε(x, uε(x)), is not taken into account in the modeling due to
the difficulty in solving numerically (1). Indeed, standard numerical methods such as the
FEM or the finite difference method (FD) require a grid resolving the medium’s finest scale
which is often computationally too demanding. Upscaling of equation (1) is thus needed for
an efficient numerical treatment. Rigorously described by the mathematical homogenization
theory [12],[29], coarse graining (or homogenization) aims at averaging the finest scales of a
multiscale equation and deriving a homogenized equation that captures the essential macro-
scopic features of the problem as ε→ 0. The mathematical homogenization of (1) has been
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developed in [9],[14], and [28], where it is shown that the homogenized equation is of the same
quasilinear type as the original equation, with aε(x, uε(x)) replaced by a homogenized tensor
a0(x, u0(x)) depending nonlinearly on a homogenized solution u0 (the limit in a certain sense
of uε as ε→ 0).

Several difficulties arise when trying to compute a numerical solution of the homogenized
equation. Since the tensor is not proportional to the identity in general, the Kirschoff trans-
formation (see for instance [34]) cannot be used to treat the non-linearity. Also, as it depends
on the point x of the computational domain, the tensor a0(x, u0(x)) can only be computed
at a finite number of points. This amounts to define adequate quadrature points and to
define a modified bilinear form based on quadrature formulas (QF). Then, as a0(x, u0(x))
has to be computed numerically, only an approximation of the tensor can be obtained. The
accuracy of the numerical tensors has to be taken into account when solving numerically the
homogenization problems as both the existence and the convergence properties of a numerical
approximation of u0 depend on it. For numerical simulation, a linearization scheme relying
on the modified bilinear form has to be constructed and shown to be convergent. Finally,
a-priori convergence rates have to be derived to control the accuracy of a numerical solution.

While numerical methods for linear elliptic homogenization problems have been studied
in many papers - see [3],[23],[25], and the references therein - the literature for the numerical
homogenization of nonlinear nonmonotone elliptic problems is less abundant. Numerical
methods based on the multiscale finite element method (MsFEM) [25] for nonlinear elliptic
problems of the form −∇ · (aε(x, uε(x),∇uε(x)) = f(x) have been studied in [26],[25], where
a monotonicity assumption has been used to derive convergence rates. This assumption leads
essentially to problems of the type −∇ · (aε(x,∇uε(x)) = f(x). MsFEM has been studied
for problem (1) in [17] and for the finite element heterogeneous multiscale method (FE-
HMM) in [24]. The approaches in these papers rely on the two-grid discretization techniques
introduced in [36]. There, the analysis of FEM for nonlinear partial differential equation
(PDE) relies on the linearization of the equation at the exact solution and the study of its
FEM discretization. However, for numerical homogenization, an additional term arises in
the linearization due to the discrepancy between the exact bilinear form and the bilinear
form based on numerical quadrature. We also note that the analysis in [36] is only valid for
two-dimensional problems as it relies on bounds for discrete Green functions which are not
available for three-dimensional problems [36, p.1760].

In this paper we analyze a numerical homogenization method based on the FE-HMM for
problem (1). First results for the FE-HMM applied to (1) have been obtained in [24]. Our
analysis is different and allows for significant generalizations and new results. It combines
recent results [7] on optimal convergence rates for standard FEMs with numerical quadrature
for nonlinear nonmonotone problems, with the analysis of the FE-HMM for linear problems.
For the convenience of the reader we briefly put our results in perspective.

Our analysis is valid in dimension d ≤ 3 in bounded convex polyhedral domains. The
analysis in [24] relies on the use of a discrete Green functions GzH and the logarithmic bound
supz∈Ω ‖GzH‖W 1,1(Ω) ≤ C| logH| (see [24, equ.(5.16)]). Such an estimate to the best of our
knowledge is not available in dimension d = 3 for arbitrary bounded convex polyhedral
domains.

We propose a fully discrete analysis taking into account the H1 and L2 errors at both
the microscopic and the macroscopic grid of the FE-HMM scheme. In contrast, the results
in [24] were derived for a semi-discrete formulation of the FE-HMM and only for the H1 and
W 1,∞ norms. The derivation of convergence rates in the L2 norm does not follow from a
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standard duality argument (due to the nonlinearity of the problem and the use of numerical
integration). Here we use the new estimates for FEM with numerical quadrature for indefinite
linear elliptic problems obtained in [7].

We also improve the so-called modeling or resonance error (rMOD) obtained in [24] for
locally periodic tensor. In Theorem 3.7 we show the estimate rMOD ≤ C(δ + ε/δ), whereas
rMOD ≤ C(δ +

√
ε/δ) was obtained in [24, Thm. 5.5] (here ε is the size of the period and δ

the length, in each spatial direction, of the sampling domains).
In [24, equ. 5.21] the difference between the weak form for the exact problem and

the discretized problem based on numerical quadrature is estimated by |A(uH ;uH , wH) −
AH(uH ;uH , wH)| ≤ CH`‖wH‖H1(Ω),

1 using results obtained for linear problems [20]. How-
ever, C depends (nonlinearly due to the nonlinearity of the tensor) on the broken norms
of uH in Sobolev spaces of the type W `+1,p(Ω). Thus, a priori bounds (independent of H)
are needed for these high-order broken norms of the solution uH . This issue has not been
discussed in [24] and we do not know how to derive such bounds for P`-simplicial FEs when
` > 2 or for Q`-quadrilateral FEs when ` ≥ 1.2 In contrast, our analysis is valid for arbi-
trary high-order simplicial or quadrilateral FEs. The above estimates involving uH are never
used as we rely on the projection of the exact homogenized solution when estimating the
quadrature error. This allows to use the regularity assumed on the exact solution.

While a local uniqueness of the semi-discrete scheme was proved in [24, Lemma 5.3], we
prove in Theorem 3.1 that any sequence of numerical solutions for the fully discrete scheme
converges with optimal convergence rates (on sufficiently fine meshes) and give in Theorem 3.3
necessary conditions on the parameters of the problem for the numerical solution uH to be
unique. Our results also show that the Newton method, used in practice to compute a solution
of the nonlinear discretized problem, converges (see Theorem 4.11).

A basic assumption in [24] is that the linearized operator of the original homogenized
equation at the exact solution u0 is an isomorphism (which is difficult to check in practice).
Here, we only rely on structure assumptions of the original tensor (see (4), (5)). Of course in
both our proof and in [24], appropriate smoothness of the oscillating and the homogenized
tensors is required.

Finally, we present a post-processing procedure similar as for linear problems, to approx-
imate numerically the oscillating solution uε in the energy norm H1(Ω). As the FE-HMM
yields an approximation uH to the homogenized solution u0 (itself an O(1) approximation of
uε in the energy norm), such reconstruction procedures are needed to capture the oscillating
solution uε in the H1 norm.

Our paper is organized as follows. In Sect. 2 we introduce the homogenization problem
for nonlinear nonmonotone problems and we describe the multiscale method. In Sect. 3 we
state our main results. The analysis of the numerical method is given in Sect. 4. In Sect. 5 we
present and analyze a reconstruction procedure to capture numerically the fine scales of the
oscillatory problem. In Sect. 6 we first discuss an efficient implementation of the linearization
scheme used for solving the nonlinear macroscopic equation and present various numerical
experiments which confirm the sharpness of our a priori error bounds and illustrate the
versatility of our method.

Notations. Let Ω ⊂ Rd be open and denote by W s,p(Ω) the standard Sobolev space. For p =

1Here A(uH ;uH , wH) =
∫

Ω
a0(x, uH)∇uH∇wHdx and AH is a corresponding nonlinear form based on

numerical quadrature.
2For simplicial P2 elements, an a priori bound can be obtained by combining the W 1,∞ estimates in [24]

with the inverse inequality. Unfortunately, these arguments cannot be used for P`, ` > 2 or Q`.
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2 we use the notation Hs(Ω) and H1
0 (Ω), and denote by W 1

per(Y ) = {v ∈ H1
per(Y );

∫
Y v dx =

0}, where Hs
per(Y ) is defined as the closure of C∞per(Y ) (the subset of C∞(Rd) of periodic

functions in Y = (0, 1)d with respect to the Hs norm. For a domain D ⊂ Ω, |D| denotes the

measure of D. Given a d× d tensor a, we denote ‖a‖F =
√∑

m,n |amn|2 its Frobenius norm.

2 Homogenization and multiscale method

Let Ω be a bounded convex polyhedral subset of Rd, where d ≤ 3. We consider the quasi-
linear elliptic problems (1), where for simplicity we take homogeneous Dirichlet boundary
conditions, i.e., uε(x) = 0 on ∂Ω. Associated to ε > 0, a sequence of positive real numbers
going to zero, we consider a sequence of tensors aε(·, s) = (aεmn(·, s))1≤m,n≤d assumed to be
uniformly elliptic and bounded, continuous on Ω×R and uniformly Lipschitz continuous with
respect to s. We further assume that f ∈ H−1(Ω). Under the above assumptions, for all
fixed ε > 0, the weak form of (1) has a unique solution uε ∈ H1

0 (Ω) (see for example [18,
Theorem 11.6]),which satisfies the bound

‖uε‖H1(Ω) ≤ λ−1‖f‖H−1(Ω). (2)

Thus, standard compactness arguments implies the existence of a subsequence of {uε} con-
verging weakly in H1(Ω). The aim of homogenization theory is to provide a limiting equation
for u0. The following result is shown in [14, Theorem 3.6] (see also [28]): there exists a sub-
sequence of {aε(·, s)} (again indexed by ε) such that the corresponding sequence of solutions
{uε} converges weakly to u0 in H1(Ω), where u0 is solution of the so-called homogenization
problem

−∇ ·
(
a0(x, u0(x))∇u0(x)

)
= f(x) in Ω, (3)

u0(x) = 0 on ∂Ω,

and where the tensor a0(x, s), called the homogenized tensor, can be shown to be again
uniformly elliptic, bounded and Lipschitz continuous with respect to s.3 We summarize
next our basic assumptions on the homogenized problem to analyze the proposed numerical
method:

• the coefficients a0
mn(x, s) are continuous functions on Ω× R which are uniformly Lips-

chitz continuous with respect to s, i.e., there exist Λ1 > 0 such that

|a0
mn(x, s1)− a0

mn(x, s2)| ≤ Λ1|s1 − s2|, ∀x ∈ Ω, ∀s1, s2 ∈ R,∀ 1 ≤ m,n ≤ d. (4)

• the tensor a0(x, s) is uniformly elliptic and bounded, i.e., there exist λ,Λ0 > 0 such
that

λ‖ξ‖2 ≤ a0(x, s)ξ · ξ, ‖a0(x, s)ξ‖ ≤ Λ0‖ξ‖, ∀ξ ∈ Rd, ∀s ∈ R,∀x ∈ Ω. (5)

Under these assumptions, the homogenized problem (3) has also a unique solution u0 ∈
H1

0 (Ω). Let us further mention the following characterization of the homogenized tensor,

3With the Lipschitzness assumption on aε, problem (3) also has a unique solution. We emphasize that [14,
Theorem 3.6] holds under weaker assumptions than assumed here. In particular equi-continuity with respect
to s is assumed for aε instead of uniform Lipschitzness.
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instrumental to derive the homogenization result. Let {aε(·, s)} be the subsequence of tensor
considered above, then for all fixed real parameter s, the tensor x 7→ a0(·, s) is the homoge-
nized tensor for the linear problem

−∇ · (aε(x, s)∇vε(x)) = f(x) in Ω, vε(x) = 0 on ∂Ω. (6)

If the homogenized tensor a0(x, s) is locally periodic, e.g., aε(x, s) = a(x, x/ε, s) where
a(x, y, s) is Y periodic with respect to y, then weak convergence of uε to the solution of
(3) holds for the whole sequence. The homogenized tensor can be characterized in the fol-
lowing way [10]:

a0(x, s) =

∫
Y
a(x, y, s)(I + JTχ(x,y,s))dy, for x ∈ Ω, s ∈ R, (7)

where Jχ(x,y,s) is a d×dmatrix with entries Jχ(x,y,s)ij
= (∂χi)/(∂yj) and χi(x, ·, s), i = 1, . . . , d

are the unique solutions of the cell problems∫
Y
a(x, y, s)∇yχi(x, y, s) · ∇w(y)dy = −

∫
Y
a(x, y, s)ei · ∇w(y)dy, ∀w ∈W 1

per(Y ), (8)

where ei, i = 1, . . . , d is the canonical basis of Rd.

2.1 Multiscale method

We define here the homogenization method based on the framework of the HMM [23]. The
numerical method is based on a macroscopic FEM defined on QF and microscopic FEMs
recovering the missing macroscopic tensor at the macroscopic quadrature points. While the
macroscopic FEM will be nonlinear, the microscopic FEMs are modeled as linear problems.

2.1.1 Macro finite element space.

Let TH be a triangulation of Ω in simplicial or quadrilateral elements K of diameter HK and
denote H = maxK∈TH HK . We assume that the family of triangulations {TH} is conformal
and shape regular and that it satisfies the inverse assumption

H

HK
≤ C for all K ∈ TH and all TH . (9)

Notice that (9) is often assumed for the analysis of FEM for non-linear problems, see for
instance [33, 27, 34, 36] in the context of one-scale problems and [24, 16] for multi-scale
problems. In our analysis, the assumption (9) is used only in the proof of an L2 estimate (see
Lemma 4.2 in Sect. 4.1) and for the uniqueness of the numerical solution (Sect. 4.3).

For each partition TH , we define a FE space

S`0(Ω, TH) = {vH ∈ H1
0 (Ω); vH |K ∈ R`(K), ∀K ∈ TH}, (10)

where R`(K) is the space P`(K) of polynomials on K of total degree at most ` if K is a
simplicial FE, or the space Q`(K) of polynomials on K of degree at most ` in each variables
if K is a quadrilateral FE. We call TH the macro partition, K ∈ TH being a macro element,
and S`0(Ω, TH) is called the macro FE space. By macro partition, we mean that H is allowed
to be much larger than ε and, in particular, H < ε is not required for convergence.
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2.1.2 Quadrature formula.

For each element K of the of the macro partition we consider a C1-diffeomorphism FK such
that K = FK(K̂), where K̂ is the reference element (of simplicial or quadrilateral type). For
a given quadrature formula {x̂j , ω̂j}Jj=1 on K̂, the quadrature weights and integration points
on K ∈ TH are then given by ωKj = ω̂j |det(∂FK)|, xKj = FK(x̂j), j = 1, . . . , J . We make
the following assumptions on the quadrature formulas, which are standard assumptions also
for linear elliptic problems [19, Sect. 29]:

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑J

j=1 ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2L2(K̂)
, ∀p̂(x̂) ∈ R`(K̂), where λ̂ > 0;

(Q2)
∫
K̂ p̂(x)dx =

∑J
j=1 ω̂j p̂(x̂j), ∀p̂(x̂) ∈ Rσ(K̂), where σ = max(2`−2, `) if K̂ is a simplicial

FE, or σ = max(2`− 1, `+ 1) if K̂ is a rectangular FE.

2.1.3 Micro finite elements method.

For each macro element K ∈ TH and each integration point xKj ∈ K, j = 1, . . . , J, we define
the sampling domains

Kδj = xKj + δI, I = (−1/2, 1/2)d (δ ≥ ε).

We consider a conformal and shape regular (micro) partition Th of each sampling domain
Kδj in simplicial or quadrilateral elements Q of diameter hQ and denote h = maxQ∈TH hQ.
Usually, the size of δ scales with ε, which implies that the complexity of the FEM presented
below remains unchanged as ε→ 0. We then define a micro FE space

Sq(Kδj , Th) = {zh ∈W (Kδj ); z
h|Q,∈ Rq(Q), Q ∈ Th}, (11)

where W (Kδj ) is either the Sobolev space

W (Kδj ) = W 1
per(Kδj ) = {z ∈ H1

per(Kδj );

∫
Kδj

zdx = 0} (12)

for a periodic coupling or
W (Kδj ) = H1

0 (Kδj ) (13)

for a coupling through Dirichlet boundary conditions. The choice of the Sobolev space
W (Kδj ) sets the coupling condition between macro and micro solvers. It has important con-
sequences in the numerical accuracy of the method as will be discussed in Section 4.2. The
micro FEM problems on each micro domain Kδj is defined as follows. Let wH ∈ S`0(Ω, TH)
and consider its linearization

wHlin,j(x) = wH(xKj ) + (x− xKj ) · ∇wH(xKj ) (14)

at the integration point xKj . For all real parameter s, we define a micro FE function wh,sKj
such that (wh,sKj − w

H
lin,j) ∈ Sq(Kδj , Th) and∫

Kδj

aε(x, s)∇wh,sKj (x) · ∇zh(x)dx = 0 ∀zh ∈ Sq(Kδj , Th). (15)
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2.1.4 Finite element heterogeneous multiscale method (FE-HMM).

We have now all the ingredients to define our multiscale method. The method, essentially
similar to the method proposed in [24] reads as follows4. Find uH ∈ S`0(Ω, TH) such that

BH(uH ;uH , wH) = FH(wH), ∀wH ∈ S`0(Ω, TH), (16)

where

BH(uH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

aε(x, uH(xKj ))∇v
h,uH(xKj )

Kj
(x) · ∇w

h,uH(xKj )

Kj
(x)dx,

(17)
and the linear form FH on S`0(Ω, TH) is an approximation of F (w) =

∫
Ω f(x)w(x)dx, obtained

for example by using quadrature formulas. Here, w
h,uH(xKj )

Kj
denotes the solution of the micro

problem (15) with parameter s = uH(xKj ) (and similarly for v
h,uH(xKj )

Kj
).

Remark 2.1 Provided that we use for FH a QF satisfying (Q2), for f ∈ W `,p(Ω) with
` > d/p and 1 ≤ p ≤ ∞, we have5 [20, Thm. 4]

|FH(wH)− F (wH)| ≤ CH`‖wH‖H1(Ω), ∀wH ∈ S`0(Ω, TH). (18)

If in addition f ∈W `+1,p(Ω), then [20, Thm. 5]

|FH(wH)− F (wH)| ≤ CH`+1
( ∑
K∈TH

‖wH‖2H2(K)

)1/2
, ∀wH ∈ S`0(Ω, TH). (19)

The above constants C depend on ‖f‖W `,p(Ω) and ‖f‖W `+1,p(Ω) respectively, but they are in-
dependent of H.

If we assume a locally periodic tensor, i.e. aε(x, s) = a(x, x/ε, s), Y -periodic with respect
to the second variable y ∈ Y = (0, 1)d, we shall consider the slightly modified bilinear form

B̃H(uH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωKj
|Kδj |

∫
Kδj

a(xKj ,
x

ε
, uH(xKj ))∇v

h,uH(xKj )

Kj
(x)·∇w

h,uH(xKj )

Kj
(x)dx,

(20)

where w
h,uH(xKj )

Kj
is the solution of the micro problem (15) with tensor a(xKj , x/ε, u

H(xKj ))

(and similarly for v
h,uH(xKj )

Kj
), where compared to (17), the tensor a(x, y, s) is collocated in

the slow variable x at the quadrature point xKj .
We shall discuss now the existence of a solution of (16). We first recall here a result for

the analysis of the FE-HMM, shown in [1], [24] in the context of linear problems (see [3, Sect.
3.3.1] for details). The proof is similar in the nonlinear case and is thus omitted.

4In [24] (17) is based on exact micro functions vKj , wKj instead of the FE micro functions vh,sKj
, wh,sKj

and

the micro-problems are nonlinear (see [24, equs. (5.3)-(5.4)]).
5Notice that the assumption (Q1) is not needed for the quadrature formula in FH .
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Lemma 2.2 Assume that (Q1) holds and that the tensor aε satisfies (4),(5). Then the
bilinear form BH(zH ; ·, ·), zH ∈ S`0(Ω, TH) is uniformly elliptic and bounded. Precisely, there
exist two constants again denoted λ,Λ0 > 0 such that

λ‖vH‖2H1(Ω) ≤ BH(zH ; vH , vH), |BH(zH ; vH , wH)| ≤ Λ0‖vH‖H1(Ω)‖wH‖H1(Ω), (21)

for all zH , vH , wH ∈ S`0(Ω, TH). Similar formulas also hold for the modified bilinear form

B̃H(zH ; ·, ·) defined in (20).

Notice at this stage that in Lemma 2.2 no structure assumption (as for example local peri-
odicity) is required for the tensor aε.

Since the micro problems (15) are linear with a uniformly bounded and coercive tensor

(5), their solutions wh,sKj ∈ S
q(Kδj , Th) are always uniquely defined, in particular there is no

restriction on the mesh size h. The macro solution uH of the FE-HMM is solution of the
nonlinear system (16) and the existence of a solution uH of (16) follows from a classical fixed
point argument.

Theorem 2.3 Assume that the bilinear form BH(zH ; ·, ·), zH ∈ S`0(Ω, TH), defined in (17) is
uniformly elliptic and bounded (21), that it depends continuously on zH , and that f ∈W `,p(Ω)
with `p > d. Then, for all H,h > 0, the nonlinear problem (16) possesses at least one solution
uH ∈ S`0(Ω, TH). A solution uH is uniformly bounded in H1

0 (Ω), i.e.

‖uH‖H1(Ω) ≤ C‖f‖W `,p(Ω), (22)

where C is independent of H.

The proof of Theorem 2.3 follows standard argument ([21], see also [15]). It relies on the
Brouwer fixed point theorem applied to the nonlinear map SH : S`0(Ω, TH) → S`0(Ω, TH)
defined by

BH(zH ;SHz
H , wH) = FH(wH), ∀wH ∈ S`0(Ω, TH). (23)

In contrast, the proof of the uniqueness of a solution uH is non trivial and is discussed in
Theorem 3.3.

2.2 Reformulation of the FE-HMM

Similarly to the case of linear multiscale problems, the FE-HMM can be reformulated as a
standard FEM with numerical integration applied to a modified macro problem. We empha-
size that this reformulation is not used for the numerical implementation, but is very useful
for the analysis of the method.

A straightforward computation shows that for all scalar s, the solution wh,sKj of the linear

cell problem (15) is given by

wh,sKj (x) = wHlin,j(x) +

d∑
i=1

ψi,h,sKj
(x)

∂vHlin,j
∂xi

, for x ∈ Kδj , (24)

where ψi,h,sKj
, i = 1, . . . , d are the solutions of the following auxiliary problems. Let ei,

i = 1 . . . d denote the canonical basis of Rd. For each scalar s and for each ei we consider the
problem: find ψi,h,sKj

∈ Sq(Kδj , Th) such that∫
Kδj

aε(x, s)∇ψi,h,sKj
(x) · ∇zh(x)dx = −

∫
Kδj

aε(x, s)ei · ∇zh(x)dx, ∀zh ∈ Sq(Kδj , Th), (25)
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where Sq(Kδj , Th) is defined in (11) with either periodic or Dirichlet boundary conditions.
We also consider for the analysis the following problems (26), (28), which are analogue

to (15),(25), but without FEM discretization (i.e. with test functions in the space W (Kδj )

defined in (12) or (13)): find wsKj such that (wsKj − w
H
lin,j) ∈W (Kδj ) and∫

Kδj

aε(x, s)∇wsKj (x) · ∇z(x)dx = 0 ∀z ∈W (Kδj ). (26)

Similarly to (24), it can be checked that the unique solution of problem (26) is given by

wsKj (x) = wHlin,j(x) +
d∑
i=1

ψi,sKj (x)
∂vHlin,j
∂xi

, (27)

where for each scalar s and for each ei, ψ
i,s
Kj

are the solutions of the following problem: find

ψi,sKj ∈W (Kδj ) such that∫
Kδj

aε(x, s)∇ψi,sKj (x) · ∇z(x)dx = −
∫
Kδj

aε(x, s)ei · ∇z(x)dx, ∀z ∈W (Kδj ). (28)

Consider for all scalar s the two tensors

a0
Kj (s) :=

1

|Kδj |

∫
Kδj

aε(x, s)

(
I + JT

ψh,sKj
(x)

)
dx, (29)

ā0
Kj (s) :=

1

|Kδj |

∫
Kδj

aε(x, s)

(
I + JTψsKj (x)

)
dx, (30)

where JψsKj (x) and J
ψh,sKj

(x)
are d × d matrices with entries

(
JψsKj (x)

)
i`

= (∂ψi,sKj )/(∂x`) and(
J
ψh,sKj

(x)

)
i`

= (∂ψi,h,sKj
)/(∂x`), respectively. The Lemma 2.4 below has been proved in [6],[2]

in the context of linear elliptic problems and is a straightforward consequence of (24),(27).
It permits to interpret the FE-HMM (16)-(17) as a standard FEM applied with a modified
tensor.

Lemma 2.4 Assume that the tensors a0, aε are continuous on Ω × R and satisfy (5). For
all vH , wH ∈ S`0(Ω, TH), all sampling domains Kδj centered at a quadrature node xKj of a
macro element K ∈ TH and all scalar s, the following identities hold:

1

|Kδj |

∫
Kδj

aε(x, s)∇vh,sKj · ∇w
h,s
Kj
dx = a0

Kj (s)∇v
H(xKj ) · ∇wH(xKj ),

1

|Kδj |

∫
Kδj

aε(x, s)∇vsKj · ∇w
s
Kjdx = a0

Kj (s)∇v
H(xKj ) · ∇wH(xKj ),

where vh,sKj , vsKj are the solutions of (15), (26), respectively, and the tensors a0
Kj

(s), a0
Kj

(s)

are defined in (29), (30). Similar formulas also hold for the terms in the right-hand side of
(20), with aε(x, s) replaced by a(xKj , x/ε, s) in the above two identities and in (26), (28),
(15), (25), (29).

As a consequence of the above lemma the form BH in (17) can be rewritten as

BH(uH ; vH , wH) =
∑
K∈TH

J∑
j=1

ωKja
0
Kj (u

H(xKj ))∇vH(xKj ) · ∇wH(xKj ).

9



3 Main results

We shall state in this section the main results of this paper. Given a solution uH of (16) the
aim is to estimates the errors ‖u0 − uH‖H1(Ω) and ‖u0 − uH‖L2(Ω), where u0 is the unique
solution of the homogenized problem (3) and to prove the uniqueness of a numerical solution
uH .

For the analysis of the FE-HMM, we shall consider quantity

rHMM := sup
K∈TH ,xKj∈K,s∈R

‖a0(xKj , s)− a0
Kj (s)‖F , (31)

where a0 is the homogenized tensor in (3) and a0
Kj

is the tensor defined in (29).

Recall from Theorem 2.3 that the FE-HMM solution in (16) exists for all H > 0 and all
h > 0. The first results give optimal H1 and L2 error estimates, as functions of the macro
mesh size H, for the FE-HMM without specific structure assumption on the nature of the
small scales (e.g. as periodicity or stationarity for random problems).

Theorem 3.1 Consider u0 the solution of problem (3). Let ` ≥ 1. Let µ = 0 or 1. Assume
(Q1), (Q2), (9), (18), and

u0 ∈ H`+1(Ω) ∩W 1,∞(Ω),

a0
mn ∈W `+µ,∞(Ω× R), ∀m,n = 1 . . . d.

In addition to (4), (5), assume that ∂ua
0
mn ∈W 1,∞(Ω×R), and that the coefficients a0

mn(x, s)
are twice differentiable with respect to s, with the first and second order derivatives continuous
and bounded on Ω× R, for all m,n = 1 . . . d.

Then, there exist r0 > 0 and H0 > 0 such that, provided

H ≤ H0 and rHMM ≤ r0, (32)

any solution uH of (16) satisfies

‖u0 − uH‖H1(Ω) ≤ C(H` + rHMM ) if µ = 0, 1, (33)

‖u0 − uH‖L2(Ω) ≤ C(H`+1 + rHMM ) if µ = 1 and (19) holds. (34)

Here, the constants C are independent of H,h, rHMM .

The proof of Theorem 3.1 is postponed to Sect. 4.1. In contrast to previous results [24,
Thm 5.4], Theorem 3.1 is also valid for d = 3 and arbitrary high order simplicial and quadri-
lateral macro FEs.

Remark 3.2 We emphasize that the constants H0 and r0 in Theorem 3.1 are independent
of H, h, ε, δ. This makes possible a fully discrete error analysis, where the micro FE
discretization errors are also taken into account by essentially re-using results obtained for
linear problems (see Section 4.2). In contrast the a priori estimates of [24, Thm 5.4] rely,
besides a smallness assumption on H and eHMM (the semi-discrete version of rHMM ) [24,
Lemma 3.3], on a kind of continuity of eHMM (see [24, (5.13)]) which is proved to hold
under some assumptions (see [24, Lemma 5.9]). This latter results seems to be non trivial to
generalize in order to take also into account the micro FEM errors.
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For the uniqueness result, we shall consider the quantity

r′HMM := sup
K∈TH ,xKj∈K,s∈R

∥∥∥∥ dds (a0(xKj , s)− a0
Kj (s)

)∥∥∥∥
F

. (35)

For r′HMM to be well defined and for the subsequent analysis, we need the assumption

s ∈ R 7→ aε(·, s) ∈ (W 1,∞(Ω))d×d is of class C2 and |∂kuaε(·, s)|W 1,∞(Ω) ≤ Cε−1, k ≤ 2,
(36)

where C is independent of s and ε.

Theorem 3.3 Assume that the hypothesis of Theorem 3.1 and (36) hold. Then, there exists
H0, R0, such that if

rHMM ≤ H ≤ H0 and r′HMM ≤ R0,

then the solution uH of (16) is unique.

If the oscillating coefficients are smooth and locally periodic coefficients (see (H1) and (H2)
below), then the assumptions for the uniqueness result can be stated solely in terms of the
size of the macro and micro meshes.

Corollary 3.4 In addition to the hypothesis of Theorem 3.3, assume (H1) and (H2) as
defined below. Assume W (Kδj ) = W 1

per(Kδj ) (periodic coupling conditions), δ/ε ∈ N and

that (20) is used for the solution uH of (16). Then, there exists a positive constant H0 such
that for all

(h/ε)2q ≤ H ≤ H0,

the solution uH of (16) is unique.

Remark 3.5 In Corollary 3.4, if we use the form (17) for the solution uH of (16), to obtain
the uniqueness of of uH , we need to assume in addition that δ is small enough (ε ≤ δ ≤ CH).

We next describe our fully discrete a priori error estimates. For that, let us split rHMM into

rHMM ≤ sup
K∈TH ,xKj∈K,s∈R

‖a0(xKj , s)− ā0
Kj (s))‖F︸ ︷︷ ︸

rMOD

(37)

+ sup
K∈TH ,xKj∈K,s∈R

‖ā0
Kj (s)− a

0
Kj (s))‖F︸ ︷︷ ︸

rMIC

,

where ā0
Kj

is the tensor defined in (30). Here rMIC stands for the micro error (error due to

the micro FEM) and rMOD for the modeling or resonance error. The first result gives explicit
convergence rates in terms of the micro discretization. Some additional regularity and growth
condition of the small scale tensor aε is needed in order to have appropriate regularity of the
cell function ψi,sKj defined in (28) and involved in the definition of ā0

Kj
. We note that if

aεij |K ∈ W 1,∞(K) ∀K ∈ TH and |aεij |W 1,∞(K) ≤ Cε−1, then classical H2 regularity results

([31, Chap. 2.6]) imply that |ψi,sKj |H2(Kδj ) ≤ Cε−1
√
|Kδj | when Dirichlet boundary conditions

(13) are used. If aεij is locally periodic, we can also use periodic boundary conditions (12)

11



and similar bounds for ψi,sKj in terms of ε can be obtained, provided that we collocate the

slow variables in each sampling domain. In that case, higher regularity for ψi,sKj can be shown,

provided aε(·, s) is smooth enough (see e.g., [13, Chap. 3]). As it is more convenient to state
the regularity conditions directly for the function ψi,sKj , we assume

(H1) Given q ∈ N, the cell functions ψi,sKj defined in (28) satisfy

|ψi,sKj |Hq+1(Kδj ) ≤ Cε−q
√
|Kδj |,

with C independent of ε, the quadrature point xKj , the domain Kδj , and the parameter s for

all i = 1 . . . d. The same assumption also holds with the tensor aε replaced by (aε)T in (28).

Theorem 3.6 In addition to the assumptions of Theorem 3.1, assume (H1). Then,

‖u0 − uH‖H1(Ω) ≤ C(H` +
(h
ε

)2q
+ rMOD),

‖u0 − uH‖L2(Ω) ≤ C(H`+1 +
(h
ε

)2q
+ rMOD)

where we also assume (19) for the above L2 estimate. Here, C is independent of H,h, ε, δ.

To estimate further the modeling error rMOD defined in (37), we need more structure as-
sumptions on aε. Here we assume local periodicity as encoded in the following assumption.

(H2) for all m,n = 1, . . . , d, we assume aεmn(x, s) = amn(x, x/ε, s), where amn(x, y, s) is
y-periodic in Y , and the map (x, s) 7→ amn(x, ·, s) is Lipschitz continuous and bounded from
Ω× R into W 1,∞

per (Y ).

Theorem 3.7 In addition to the assumptions of Theorem 3.1 assume (H1) and (H2). Then,
for µ = 0 or 1,

‖u0 − uH‖H1−µ(Ω) ≤



C(H`+µ + (hε )2q + δ), if W (Kδj ) = W 1
per(Kδj ) and δ

ε ∈ N,

C(H`+µ + (hε )2q),
if W (Kδj ) = W 1

per(Kδj ) and δ
ε ∈ N,

and the tensor is collocated at xKj
(i.e. (20) is used)

C(H`+µ + (hε )2q + δ + ε
δ ), if W (Kδj ) = H1

0 (Kδj ) (δ > ε),
(38)

where for µ = 1 we also assume (19) and we use the notation H0(Ω) = L2(Ω). The constants
C are independent of H,h, ε, δ.

4 Proof of the main results

We first show the a priori convergence rates at the level of the macro error (Sect. 4.1) before
estimating the micro and modeling errors (Sect. 4.2). These estimates are useful to prove the
uniqueness of the solution (Sect. 4.3).
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4.1 Explicit convergence rates for the macro error

In this section, we give the proofs of Theorem 3.1. Consider for zH , vH , wH ∈ S`0(Ω, TH),

AH(zH ; vH , wH) :=
∑
K∈TH

J∑
j=1

ωK,ja
0(xKj , z

H(xKj ))∇vH(xKj ) · ∇wH(xKj ), (39)

where a0(x, s) is the tensor defined in (3) and let ũH0 be a solution of

AH(ũH0 ; ũH0 , w
H) = FH(wH), ∀wH ∈ S`0(Ω, TH). (40)

The problem (40) is a standard FEM with numerical quadrature for the problem (3). Con-
vergence rates for this nonlinear problem are not trivial to derive and have recently been
obtained in [7]. For the proof of Theorem 3.1, we first need to generalize several results of
[7]. For that, consider

QH(zH) := sup
wH∈S`0(Ω,TH)

|AH(zH , zH , wH)− FH(wH)|
‖wH‖H1(Ω)

, ∀zH ∈ S`0(Ω, TH). (41)

We observe that QH(ũH0 ) = 0. The three lemmas below have been obtained in [7] for the
special case zH = ũH0 . Allowing for an arbitrary function zH ∈ S`0(Ω, TH) leads to introducing
the additional term QH(zH). The proofs of these more general results remain, however, nearly
identical to [7] and are therefore omitted.

Lemma 4.1 If the hypotheses of Theorem 3.1 are satisfied, then

‖u0 − zH‖H1(Ω) ≤ C(H` +QH(zH) + ‖u0 − zH‖L2(Ω)), (42)

for all zH ∈ S`0(Ω, TH), where C is independent of H and zH .

Proof. Follows the lines of the proof of [7, Lemma 4.1]. �

Lemma 4.2 Assume the hypotheses of Theorem 3.1 are satisfied with µ = 0 or 1. Then, for
all zH ∈ S`0(Ω, TH),

‖u0 − zH‖L2(Ω) ≤ C(H`+µ +QH(zH) + ‖u0 − zH‖2H1(Ω)), (43)

where C is independent of H and zH .

Proof. Follows the lines of the proof of [7, Lemma 4.3]. �

Lemma 4.3 Assume the hypotheses of Theorem 3.1 are satisfied. Consider a sequence {zH}
bounded in H1(Ω) as H → 0 and satisfying QH(zH)→ 0 for H → 0. Then,

‖u0 − zH‖L2(Ω) → 0 for H → 0.

Proof. Follows the lines of the proof of [7, Theorem 2.6]. �
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We next notice that QH(zH) can be bounded in terms of rHMM defined in (31).

Lemma 4.4 Assume that the tensors a0, aε are continuous on Ω×R and satisfy (5). Then

QH(zH) ≤ CrHMM‖zH‖H1(Ω) ∀zH ∈ S`0(Ω, TH), (44)

where the constant C is independent of H,h, δ.

Proof. Using Lemma 2.4 and the Cauchy-Schwarz inequality, we have

|AH(zH ; zH , wH)−BH(zH ; zH , wH)|

=

∣∣∣∣∣∣
∑
K∈TH

J∑
j=1

ωK,j(a
0(xKj , z

H(xKj ))− a0
Kj (z

H(xKj )))∇zH(xKj ) · ∇wH(xKj )

∣∣∣∣∣∣
≤ C sup

K∈TH ,xKj∈K,s∈R
‖a0(xKj , s))− a0

Kj (s))‖F ‖z
H‖H1(Ω)‖wH‖H1(Ω)

where we used the estimate∑
K∈TH

J∑
j=1

ωK,j‖vH(xKj )‖2 ≤ C‖vH‖2L2(Ω),

with vH = zH and vH = wH , which holds for all piecewise continuous polynomials with
respect to the partition TH , with C independent of H (but depending on the maximum
degree of vH). This concludes the proof. �

Corollary 4.5 Consider uH a solution of (16). Then QH(uH) ≤ CrHMM , where QH(uH)
is defined in (41) and the constant C is independent of H,h, δ.

Proof. Follows from Lemma 4.4 and the a priori bound (22) on uH . �

Proof of Theorem 3.1. We apply Lemmas 4.1, 4.2, 4.3 with zH = uH , the solution of (16).
Let µ = 0. This yields, for all H small enough

‖uH − u0‖H1(Ω) ≤ C(H` + rHMM + ‖uH − u0‖L2(Ω)), (45)

‖uH − u0‖L2(Ω) ≤ C(H` + rHMM + ‖uH − u0‖2H1(Ω)), (46)

‖uH − u0‖L2(Ω) → 0 for (H, rHMM )→ 0, (47)

where we recall that QH(uH) ≤ CrHMM . Substituting (46) into (45), we obtain an inequality
of the form

‖uH − u0‖H1(Ω) ≤ C(H` + rHMM + ‖uH − u0‖2H1(Ω))

or equivalently

(1− C‖uH − u0‖H1(Ω))‖uH − u0‖H1(Ω) ≤ C(H` + rHMM ). (48)

Using (45) and (47), we have ‖uH − u0‖H1(Ω) → 0 if (H, rHMM )→ 0. Thus, there exists H0

and r0 such that if H ≤ H0 and rHMM ≤ r0, then 1 − C‖uH − u0‖H1(Ω) ≥ ν > 0 in (48),

independently of the choice of the particular solution uH . This concludes the proof of (33)
for H and rHMM small enough. For µ = 1 inequality (46) can be replaced by

‖uH − u0‖L2(Ω) ≤ C(H`+1 + rHMM + ‖uH − u0‖2H1(Ω)).

This inequality together with the H1 estimate (33) yields (34). �
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4.2 Explicit convergence rates for the micro and modeling error

In this section we give the proof of Theorems 3.6 and 3.7. For that, we need to quantify
rHMM defined in (31) and involved in Theorem 3.1. In view of the decomposition (37) we
shall further estimate rMIC and rMOD. We emphasize that the results in this section can be
derived mutatis mutandis from the results for linear elliptic problems (i.e. when the tensor
a(x, s) is independent of s).

The following estimate of the micro error rMIC was first presented in [1] for linear elliptic
problems, generalized to high order in [3, Lemma 10],[2, Corollary 10] (see also [4]), and to
non-symmetric tensors in [22]. We provide here a short proof which will be further useful in
the proof of Lemma 4.12.

Lemma 4.6 Assume that the tensors a0(x, s), aε(x, s) are continuous on Ω×R and uniformly
elliptic and bounded (5) with respect to s. Assume (H1). Then

rMIC ≤ C
(h
ε

)2q
,

where C is independent of H, h, δ, ε.

Proof. From (29),(30) we deduce

(ā0
Kj (s)− a

0
Kj (s))mn =

1

|Kδj |

∫
Kδj

aε(x, s)
(
∇ψn,sKj (x)−∇ψn,h,sKj

(x)
)
· emdx

=
−1

|Kδj |

∫
Kδj

aε(x, s)
(
∇ψn,sKj (x)−∇ψn,h,sKj

(x)
)
· ∇ψm,sKj (x)dx

where ψ
n,i
Kj , i = 1, . . . , d denote the solutions of (28) with aε(x, s) replaced by aε(x, s)T .

Using (25), (28), the above identity remains valid with ψ
m,s
Kj (x) replaced by ψ

m,s
Kj (x)− zh for

all zh ∈ Sq(Kδj , Th). We take zh = ψ
m,h,s
Kj (the solutions of (25) with aε(x, s) replaced by

aε(x, s)T ), and we obtain

(ā0
Kj (s)− a

0
Kj (s))mn =

−1

|Kδj |

∫
Kδj

aε(x, s)
(
∇ψn,sKj −∇ψ

n,h,s
Kj

)
· (∇ψm,sKj −∇ψ

m,h,s
Kj )dx (49)

The Cauchy-Schwarz inequality then yields

|(ā0
Kj (s)− a

0
Kj (s))mn| ≤

C

|Kδj |
‖∇ψn,sKj −∇ψ

n,h,s
Kj
‖L2(Kδj )‖∇ψ

m,s
Kj −∇ψ

m,h,s
Kj ‖L2(Kδj ).

Using the regularity assumption (H1) and standard FE results [19, Sect. 17], we have

‖∇ψn,sKj −∇ψ
n,h,s
Kj
‖L2(Kδj ) ≤ Chq|∇ψ

n,s
Kj
|Hq+1(Kδj ) ≤ C(h/ε)q

√
|Kδj )|,

and similar estimates for ∇ψm,sKj , which yields |(ā0
Kj

(s)− a0
Kj

(s))mn| ≤ C(h/ε)2q. �
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We can further estimate the modeling error if we make the assumption of locally periodic
tensors.

The following estimates on the modeling error rMOD were first presented in [24, 22] (for
the estimates (52) and (50)) and in [6] (for the estimates (51)), in the context of linear elliptic
homogenization problems. Periodic and Dirichlet micro boundary conditions are discussed.

Lemma 4.7 Assume (4),(5) and (H2). Consider the homogenized tensor a0(x, s) and the
tensor a0

Kj
(s) defined in (30) with parameters x = xKj and s = uH(xKj ).

• If W (Kδj ) = W 1
per(Kδj ) and δ/ε ∈ N then

rMOD ≤ Cδ. (50)

If in addition, the tensor aε(x, s) is collocated at x = xKj (i.e. using (17)) then

rMOD = 0. (51)

• If W (Kδj ) = H1
0 (Kδj ) (δ > ε), then

rMOD ≤ C(δ +
ε

δ
). (52)

All above constants C are independent of H, h, ε, δ.

Proof. The estimates (50), (51), (52) are already known in the context of linear problems [24,
6, 22]. Using the characterization (7), they hold mutatis mutandis for our nonlinear tensor.
�

4.3 Uniqueness of the FE-HMM solution

The proof of the uniqueness of the FE-HMM solution of problem (16) relies on the convergence
of the Newton method used for the computation of a numerical solution. In fact, our results
not only show the uniqueness of a solution of (16) (under appropriate assumptions), but also
that the iterative method used in practice to compute an actual solution converges.

For given zH , vH , wH ∈ S`0(Ω, TH) we consider the Fréchet derivative ∂BH obtained by
differentiating the nonlinear quantity BH(zH , zH , wH) with respect to zH

∂BH(zH ; vH , wH) := BH(zH ; vH , wH) +B′H(zH , vH , wH), (53)

where using Lemma 2.4,

B′H(zH , vH , wH) =
∑
K∈TH

J∑
j=1

ωKj
d

ds
a0
Kj (s)|s=zH(xKj )v

H(xKj )∇zH(xKj ) · ∇wH(xKj ). (54)

The Newton method for approximating a solution uH of the nonlinear FE-HMM (16) by a
sequence {uHk } reads in weak form

∂BH(uHk ;uHk+1 − uHk , wH) = FH(wH)−BH(uHk ;uHk , w
H), ∀wH ∈ S`0(Ω, TH). (55)
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In order for B′H to be well defined, we need, in addition to (4),(5) the assumption (H3). We
also consider

A′H(zH , vH , wH) =
∑
K∈TH

J∑
j=1

ωKj
d

ds
a0(xKj , s)

∣∣
s=zH(xKj )

vH(xKj )∇zH(xKj ) · ∇wH(xKj ).

(56)
and AH as defined in (39). Then, by replacing in (55) BH by AH and ∂BH by ∂AH we obtain
the Newton method for solving (40) (standard FEM with numerical integration)

∂AH(zHk ; zHk+1 − zHk , wH) = FH(wH)−AH(zHk ; zHk , w
H), ∀wH ∈ S`0(Ω, TH), (57)

where ∂AH(zH ; vH , wH) := AH(zH ; vH , wH)+A′H(zH , vH , wH). The convergence of a Newton
method of the type of (57) (single scale nonlinear nonmonotone problem) has been studied
in [7]. These results have to be adapted for the Newton method (55) applied to the problem
(16). We prove in Lemma 4.11 below that the iteration (55) is well defined for all k and that
the sequence of solutions of (55) converges to uH , the solution of (16), provided that the
initial guess uH0 ∈ S`0(Ω, TH) is close enough from uH . This allows to prove Theorem 3.3, i.e.,
the uniqueness of a solution uH of (16). The following quantity will be useful

σH := sup
vH∈S`0(Ω,TH)

‖vH‖L∞(Ω)

‖vH‖H1(Ω)
.

Using (9), one can show the standard estimates6 σH ≤ C(1 + | logH|)1/2 for d = 2 and
σH ≤ CH−1/2 for d = 3, where C is independent of H. We shall also need the following
result.

Lemma 4.8 Assume that the tensors a0, aε satisfy (5),(36). Then

sup
zH ,vH ,wH∈S`0(Ω,TH)

∣∣AH(zH , vH , wH)−BH(zH , vH , wH)
∣∣

‖vH‖H1(Ω)‖wH‖H1(Ω)
≤ CrHMM , (58)

sup
zH ,vH ,wH∈S`0(Ω,TH)

∣∣A′H(zH , vH , wH)−B′H(zH , vH , wH)
∣∣

‖zH‖W 1,6(Ω)‖vH‖H1(Ω)‖wH‖H1(Ω)
≤ Cr′HMM , (59)

where rHMM and r′HMM are defined in (31),(35), respectively and where the constant C is
independent of H,h, δ.

Proof. The proof of (58) follows the lines of Lemma 4.4. The proof of (59) is nearly identical.
Indeed, using Lemma 2.4, the quantity A′H(zH , vH , wH)−B′H(zH , vH , wH) is equal to

∑
K∈TH

J∑
j=1

ωKj

(
d

ds

∣∣∣∣
s=zH(xKj )

(
a0(xKj , s)− a0

Kj (s)
))

vH(xKj )∇zH(xKj ) · ∇wH(xKj ).

We deduce the result using the Cauchy-Schwarz inequality (similarly to the proof of Lemma
4.4) and the estimate

‖vH∇zH‖L2(Ω) ≤ ‖vH‖L3(Ω)‖∇zH‖L6(Ω) ≤ C‖vH‖H1(Ω)‖zH‖W 1,6(Ω)

which is a consequence of the Hölder inequality. �

6These two estimates follow from the inverse inequality ‖vH‖L∞(Ω) ≤ CH−d/p‖vH‖Lp(Ω) and ‖vH‖Lp(Ω) ≤
Cp1/2‖vH‖H1(Ω) with p = | logH| for d = 2, and ‖vH‖L6(Ω) ≤ C‖vH‖H1(Ω) for d = 3.
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Lemma 4.9 Let τ > 0. Under the assumptions of Theorem 3.3, there exist H0, ν, r0 > 0
such that if H ≤ H0, and zH ∈ S`0(Ω, TH) with

‖zH‖W 1,6(Ω) ≤ τ, σH‖zH − u0‖H1(Ω) ≤ ν, and rHMM + r′HMM ≤ r0

where rHMM , r
′
HMM are defined in (31) and (35), respectively, then for all linear form G on

S`0(Ω, TH), there exists one and only one solution vH ∈ S`0(Ω, TH) of

∂BH(zH ; vH , wH) = G(wH), ∀wH ∈ S`0(Ω, TH).

Moreover, vH satisfies
‖vH‖H1(Ω) ≤ C‖G‖H−1(Ω)

where we use the notation ‖G‖H−1(Ω) = supwH∈S`0(Ω,TH)G(wH)/‖wH‖H1(Ω), and C is a con-

stant independent of H,h and zH .

Proof. Lemma 4.9 has been proved in [7, Lemma 4.4] for ∂AH instead of ∂BH and can be
reformulated in terms of the following inf − sup inequality: there exist H0, ν > 0 such that if
H ≤ H0, ‖zH‖W 1,6(Ω) ≤ τ and σH‖zH − u‖H1(Ω) ≤ ν, then

inf
vH∈S`0(Ω,TH)

sup
wH∈S`0(Ω,TH)

∂AH(zH ; vH , wH)

‖vH‖H1(Ω)‖wH‖H1(Ω)
≥ K > 0, (60)

where K is a constant independent of H and zH . Using Lemma 4.8 and the inequality
‖zH‖W 1,6(Ω) ≤ τ , it follows from (53) that for all zH , vH , wH ∈ S`0(Ω, TH),

∂BH(zH ; vH , wH) ≥ ∂AH(zH ; vH , wH)− (qHMM + τq′HMM )‖vH‖H1(Ω)‖wH‖H1(Ω)

≥ (K − C(rHMM + r′HMM )‖vH‖H1(Ω)‖wH‖H1(Ω),

where qHMM , q′HMM are the left-hand sides of (58),(59), respectively. We deduce the inf-sup
inequality (60) for ∂BH with rHMM + r′HMM ≤ r0 where r0 is chosen small enough so that
K − Cr0 > 0. This concludes the proof. �

In the next lemma we show that {uH} can be bounded in W 1,6(Ω).

Lemma 4.10 Under the assumptions of Theorem 3.1 and if rHMM ≤ CH, there exists τ > 0
such that ‖uH‖W 1,6(Ω) ≤ τ, where τ is independent of H,h.

Proof. Using (9) we have the inverse estimate ‖vH‖W 1,6(Ω) ≤ H−1‖vH‖H1(Ω) for all vH ∈
S`0(Ω, TH) (see [19, Thm. 17.2]) which yields

‖uH‖W 1,6(Ω) ≤ ‖uH − IHu0‖W 1,6(Ω) + ‖IHu0‖W 1,6(Ω)

≤ C(H−1(H` + rHMM ) + ‖u0‖H2(Ω)) ≤ τ,

where IH : C0(Ω)→ S`0(Ω, TH) denotes the usual nodal interpolant [19, Sect. 12]. �
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We can now prove that the Newton method (55) converges at the usual quadratic rate.

Lemma 4.11 Assume that the hypothesis of Theorem 3.3 hold. Let uH be a solution of (16).
Then, there exists H0, R0, ν > 0, such that for

rHMM ≤ H ≤ H0, r′HMM ≤ R0, (61)

and for all uH0 ∈ S`0(Ω, TH) satisfying

σH‖uH0 − uH‖H1(Ω) ≤ ν (62)

the sequence {uHk } of the Newton method (55) with initial value uH0 is well defined, and
ek = ‖uHk − uH‖H1(Ω) is a decreasing sequence that converges quadratically to 0 for k → ∞,
i.e.,

ek+1 ≤ CσHe2
k, (63)

where C is a constant independent of H,h, k.

The proof is very similar to the one of [21, Theorem 2] (see [7, Theorem 4.5] for details in the
context of FEM with numerical quadrature). For completeness we sketch it in the appendix.

We can now prove the claimed uniqueness result.
Proof of Theorem 3.3. Let uH , ũH be two solutions of (16). We consider the Newton
method {uHk } defined by (55) with the initial guess uH0 = ũH . Using Theorem 3.1, we have
σH‖ũH − uH‖H1(Ω) ≤ C(σHH

` + σHrHMM ) and thus σH‖ũH − uH‖H1(Ω) satisfies (62) for
rHMM ≤ H with H small enough. Provided H, rHMM , r

′
HMM are such that (61) is satisfied,

ek = ‖uHk − uH‖H1(Ω) converges to 0 for k → ∞ by Lemma 4.11. Since uHk = uH0 = ũH , we

obtain uH = ũH . �

If we want further to characterize uniqueness in terms of the macro and micro meshes,
we need to estimate rHMM , r

′
HMM in terms of these quantities. This can be done for locally

periodic tensors. The quantity rHMM has been estimated in terms of h, ε, δ in Section 4.2.
Using similar techniques, the quantity r′HMM defined in (31) can be estimated as described
in the following lemma whose proof is postponed to the Appendix.

Lemma 4.12 Assume that the hypothesis of Corollary 3.4 hold. Then

r′HMM ≤ C
(h
ε

)2
. (64)

If we use the form (17) instead of (20) for the solution uH of (16) then

r′HMM ≤ C(
(h
ε

)2
+ δ). (65)

Proof the Corollary 3.4. Follows from Theorem 3.3, Lemmas 4.12, 4.6 and 4.7. �
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5 Corrector and finescale approximation

We explain in this section how to obtain numerically an approximation of the oscillating
solution uε of the non-linear problem (1) by using a reconstruction procedure identical to the
one presented in [23] for HMM.

We recall that, while the the convergence, up to a subsequence, uε → u0 is strong in
L2(Ω), it is only weak in H1(Ω). The fine scale oscillation of uε introduce usually a O(1)
discrepancy between ∇uε and ∇u0 and the quantity ‖uε−u0‖H1(Ω) does not converge to zero
in general as ε → 0. One needs therefore to introduce a corrector u1,ε to bound the error
‖uε − u0 − u1,ε‖H1(Ω) in terms of ε [12],[29].

We first review the classical construction of such corrector and explain then their numer-
ical approximation using the FE-HMM.

Corrector. Following [14], we consider the following linear homogenization problem: find
ūε such that

−∇ · (aε(x, u0(x))∇uε(x)) = f(x) in Ω, uε(x) = 0 on ∂Ω. (66)

where compared to the non-linear problem (1) the tensor is evaluated at u0 instead of uε,
with u0 the unique solution of (3). Then [14, Sec. 3.2] up to a subsequence, we have for
ε→ 0 the weak convergence

uε ⇀ u0 in H1(Ω).

We next assume that (H2) holds (we have thus the characterization (7) for the homogenized
tensor), that u0(x) is smooth (e.g., u0(x) ∈ C2(Ω̄)) and that a(x, y, s) is smooth enough to
ensure that the solution χi of (8) satisfies χi ∈W 1,∞(Ω×Y ×R). We then have the following
estimate from linear homogenization [29, Sect. 1.4]

‖uε − u0 − u1,ε‖H1(Ω) ≤ C
√
ε,

where C is independent of ε, and u1,ε is called a corrector and is defined by

u1,ε(x) = ε

d∑
j=1

χj(x, x/ε, u0(x))
∂u0(x)

∂xj
. (67)

Remark 5.1 In [14, Sect. 3.4.2], it is shown that any corrector for uε is also a corrector for
the solution uε of the nonlinear problem (1). In our situation, we have

∇rε → 0 strongly in (L1
loc(Ω))d where rε(x) := uε(x)− u0(x)− u1,ε(x). (68)

It would be interesting to derive a rate for the convergence (68). For instance in the linear
case (i.e. for aε(x, s) independent of s), one has the classical estimate ‖rε‖H1(Ω) ≤ C

√
ε (see

[29, Sect. 1.4]).

FE-HMM reconstruction. Consider uH the solution of (16) in S1
0(Ω, TH) using the form

(20). We also assume that simplicial elements are used. In this case, we have only one
quadrature point xK and one sampling domain Kδ centered at the barycenter of each macro
element K. The idea of the numerical reconstruction procedure is to consider the micro
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function uh − uH available on Kδ ⊂ K centered around the quadrature point xK , and to
extend it on the whole element K

up,ε(x)|K := uH(x) + (uhK − uH)(x− [x]Kδ) for all x ∈ K ∈ TH , (69)

where for x ∈ Rd, [x]Kδ ∈ δZd is such that x− [x]Kδ ∈ Kδ.

Remark 5.2 Notice that the above formulation is equivalent to apply the (standard) FE-
HMM post-processing [1],[3] procedure to the linear problem

−∇ ·
(
aε(x, uH(x))∇ũε(x)

)
= f(x) in Ω, ũε(x) = 0 on ∂Ω, (70)

provided one uses a bilinear form collocated at the integration point xK for the FE-HMM.

Since up,ε(x) may be discontinuous on the boundaries of the elements K ∈ TH , we define a
broken H1 norm by

‖u‖H̄1(Ω) = (
∑
K∈TH

‖∇u‖2L2(K))
1/2.

Motivated by the convergence (68) shown in [14], we obtain the following theorem.

Theorem 5.3 Let ` = q = 1. Consider a macro triangulation TH with P1-simplicial ele-
ments. Assume that the assumptions of Theorem 3.1 with ` = 1 are satisfied. Assume (H1),
(H2) with q = 1, δ/ε ∈ N, and that a periodic coupling is used in the micro problems of the
FE-HMM, i.e. W (Kδ) = W 1

per(Kδ). We also assume that (20) is used. Assume further that

u0 ∈ C2(Ω). Consider the solution uε of (1) and the corrector up,ε defined in (69). Then

‖uε − up,ε − rε‖H̄1(Ω) ≤ C(H + h/ε+ ε).

where C is independent of H,h, ε and rε is defined in (68).

Proof. We consider the decomposition

uε − up,ε(x)− rε(x) = (u1,ε − ũ1,ε) + (u0 + ũ1,ε − up,ε(x))

where ũ1,ε is the corrector associated to the linear problem (70), defined by

ũ1,ε(x) = ε
d∑
j=1

χj(x, x/ε, uH(x))
∂u0(x)

∂xj
.

Using the Lipschitzness of ∂xiχ
j(x, y, ·) (a consequence of (H2)) and∇u0 ∈ L∞(Ω), we obtain

‖u1,ε − ũ1,ε‖H1(Ω) ≤ C‖uH − u0‖H1(Ω) ≤ C(H + (h/ε)2).

Using Remark 5.2, we deduce using the corrector argument from the linear case theory [1]

‖u0 + ũ1,ε − up,ε(x)‖H̄1(Ω) ≤ C(H + h/ε+ ε).

This concludes the proof. �
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We deduce from Remark 5.1 and Theorem 5.3 that if H, h/ε, and ε tend simultaneously to
zero, then

∇uε − ∇̄up,ε → 0 strongly in (L1
loc(Ω))d

where ∇̄up,ε is defined piecewisely as ∇̄up,ε
∣∣
K

= ∇up,ε|K for all K ∈ TH .

6 Numerical experiments

In this section, we first present an efficient numerical implementation of the Newton method
(55), whose theoretical convergence is shown in Lemma 4.11. We then illustrate numerically
that the theoretical a priori convergence rates derived in this paper are optimal for P1-
triangular FEs or Q1-rectangular FEs.

6.1 Newton method

To solve the non-linear problem (16) with the newton method, we consider a sequence of {zHk }
in S`0(Ω, TH) and express each function in the FE basis of S`0(Ω, TH) as zHk =

∑Mmacro
i=1 U ikφ

H
i .

We further denote Uk = (U1
k , . . . , U

Mmacro
k )T . The Newton method (55) translate in terms of

matrices as (
B(zHk ) +B′(zHk )

)
(Uk+1 − Uk) = −B(zHk )Uk + F, (71)

where B(zHk ), B′(zHk ) are the stiffness matrices associated to the bilinear forms BH(zH ; ·, ·),
B′H(zH ; ·, ·) defined in (17) and (54), respectively. Here, F a vector associated the source
term (16), which also contains the boundary data.

Stiffness matrix B(zHk ). Following the implementation in [5] we consider for each ele-
ment K ∈ TH the FE basis functions {φHK,i}

nK
i=1 associated with this element and the local

contribution BK(zHk ) to the stiffness

(BK(zHk ))nKp,q=1 =
J∑
j=1

(BK,j(z
H
k ))nKp,q=1 (72)

=
J∑
j=1

ωKj
|Kδj |

∫
Kδj

aε(x, zHk (xKj ))∇ϕ
h,zH(xKj )

Kj ,p
(x) · ∇ϕ

h,zH(xKj )

Kj ,q
(x)dx,

where ϕ
h,zH(xKj )

Kj ,p
, ϕ

h,zH(xKj )

Kj ,q
are the solutions of (15) constrained by φHK,p, φ

H
K,q, linearized at

xKj , respectively.

Stiffness matrix B′(zHk ). Differentiating (72), we see that the stiffness matrix B′(U) in
(71) associated to the non-symmetric form B′H(zH ; ·, ·) defined in (54) is given by the sum of
J products of nK × nK matrices

B′K(zHk ) =

J∑
j=1

(
∂

∂s
(BK,j(s))

∣∣∣∣
s=zH(xKj )

)(
Uk(φ

H
K1

(xKj ), . . . , φ
H
KnK

(xKj ))
)

22



for the macro element K ∈ TH . Here, the derivative with respect to s of the nK ×nK matrix
BK,j(s) can be simply approximated by the finite difference

∂

∂s
(BK,j(s)) ≈

BK,j(s+
√
eps)−BK,j(s)√
eps

,

where eps is the machine precision. Therefore, the cost of computing together the stiffness
matrix B(zHk ) and B′(zHk ) is about twice the cost of computing the stiffness matrix B(zHk )
alone.

Remark 6.1 The computational cost in the Newton method (55) can be further reduced by
taking a coarser mesh in the micro problems for the first few Newton iterations for both
matrices B(zHk ) and B′(zHk ).

We emphasize that the FE-HMM is embarrassingly parallel as the micro problems are in-
dependent one from another. For the numerical tests in Section 6.2, we consider a Matlab
implementation of the nonlinear FE-HMM, where the stiffness matrices BK(zHk ), B′K(zHk )
associated to each element K ∈ TH of the triangulation are computed in parallel (here on 8
processors).

6.2 Numerical examples

In this section, we shall illustrate the sharpness of the H1 and L2 a priori error estimates
of Sections 3 and 4. First, we consider a simple test problem where the exact homogenized
tensor and the exact solution are known analytically. Second, we apply our multiscale method
to a steady state model of of Richards equation for porous media flows.

6.2.1 Convergence rates: test problem

We recall that for a tensor of the form aε(x, s) = a(x, x/ε, s) where a(x, y, s) is periodic with
respect to the fast variable y and collocated in the slow variable x (i.e. (17) is used), the H1

and L2 errors satisfy (see the second case in (38) with ` = q = 1)

‖uH − u0‖H1(Ω) ≤ C(H + ĥ2), ‖uH − u0‖L2(Ω) ≤ C(H2 + ĥ2), (73)

where ĥ := h/ε is the scaled micro mesh size. In the above estimates, periodic boundary
conditions are used for (15) and we assume that the micro sampling domains cover one period
of the oscillating tensor in each spatial dimension. For rectangular elements, we consider the
Gauss quadrature with J = 4 nodes (1/2±

√
3/6, 1/2±

√
3/6), while for triangular elements,

we consider the quadrature formula with J = 1 node located at the barycenter. Notice that
we obtain similar results when considering either rectangular or triangular elements.

We consider the non-linear problem (1) on the domain Ω = (0, 1)2 with homogeneous
Dirichlet boundary conditions and the following anisotropic oscillatory tensor

aε(x, s) =
1√
3

(
(2 + sin(2πx1/ε))(1 + x1 sin(πs)) 0

0 (2 + sin(2πx2/ε))(2 + arctan(s))

)
.

The homogenized tensor can be computed analytically and is given by

a0(x, s) =

(
1 + x1 sin(πs) 0

0 2 + arctan(s)

)
.
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(a) Optimal H1 refinement strategy with
NMicro ∼

√
NMacro where NMicro = 4, 8, 16, 32,

NMacro = 4, 16, 64, 256 respectively.
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(b) Optimal L2 refinement strategy with
NMicro = NMacro = 4, 8, 16, 32, 64.

Figure 1: Nonlinear homogenization test problem of Sect. 6.2.1. eL2 error (dashed lines) and
eH1 error (solid lines) as a function of the size NMacro of the uniform mesh with MMacro =
NMacro ×NMacro Q1-quadrilateral elements.

The source f(x) in (1) is adjusted analytically so that the homogenized solution u0 is

u0(x) = 8 sin(πx1)x2(1− x2), (74)

The H1 and L2 relative errors between the exact homogenized solution u0 and the FE-HMM
solution uH can be estimated by quadrature with

e2
L2 := ‖u0‖−2

L2(Ω)

∑
K∈TH

J∑
j=1

ωKj |uH(xKj )− u0(xKj )|2,

e2
H1 := ‖∇u0‖−2

L2(Ω)

∑
K∈TH

J∑
j=1

ωKj‖∇uH(xKj )−∇u0(xKj )‖2,

so that

eL2 ≈
‖u0 − uH‖L2(Ω)

‖u0‖L2(Ω)
, eH1 ≈

‖∇(u0 − uH)‖L2(Ω)

‖∇u0‖L2(Ω)
.

We now let ε = 10−2 . We emphasize that ε is needed for the algorithm but its precise
value is not important, as for locally periodic problem solved with periodic micro boundary
conditions, the convergence rate and the computational cost are independent of ε (see (73)).
We consider a sequence of uniform macro partitions TH with meshsize H = 1/NMacro and
NMacro = 4, 6, 8, . . . , 256. We choose Q1-rectangular elements with size H = 1/NMacro in the
experiments below; the results are silimar for P1-triangular elements.

In Figure 1 the H1 an L2 relative errors between the exact homogenized solution and
the FE-HMM solutions are shown for the above sequence of partitions using a simultaneous
refinement of H and ĥ according to ĥ ∼ H (L2 norm) and ĥ ∼

√
H (H1 norm). We observe

the expected (optimal) convergence rates (73) in agreement with Theorem 3.1.
We next show that the ratio between the macro and micro meshes is sharp. For that,

we refine the macromesh H while keeping fixed the micro mesh size. This is illustrated in
Figure 2, where we plot the H1 an L2 relative errors as a function of H = 1/NMacro. Five
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Figure 2: Nonlinear homogenization test problem of Sect. 6.2.1. eL2 error (dashed lines) and
eH1 error (solid lines) as a function of the size NMacro of the uniform mesh with MMacro =
NMacro ×NMacro Q1-quadrilateral elements. The lines correspond respectively to NMicro =
4, 8, 16, 32, 64.

sizes of micro meshes are chosen with size ĥ,= 1/NMicro and N = Micro = 4, 8, 16, 32.
We observe that for small values of H = 1/NMacro, the error due to the macro domain
discretization is dominant. 7 For large values of NMacro = 1/H, the error due to the micro
domains discretization becomes dominant and the H1 and L2 errors becomes independent of
NMacro (horizontal lines). We observe that when NMicro = 1/ĥ is multiplied by 2, both the
H1 and L2 errors are divided by 4, which corroborates Theorem 3.6: the micro error has size
O(ĥ2). This experiments illustrate that simultaneous refinement of macro and micro meshes
(at the right ratio) is needed for optimal convergence rates with minimal computational cost.

6.2.2 Richards equation for multiscale porous media

We consider the Richards equation for describing the fluid pressure u(x, t) in an unsaturated
porous medium, with multiscale permeability tensor Kε and volumetric water content Θε,

∂Θε(uε(x))

∂t
−∇ · (Kε(uε(x))∇uε(x))) +

∂Kε(uε(x))

∂x2
= f(x) in Ω,

where x2 is the vertical coordinate, and f corresponds to possible sources or sinks. We choose
an exponential model for the permeability tensor Kε similar to the one in [16, Sect. 5.1],

Kε(x, s) = αε(x)eα
ε(x)s where αε(x) =

1/117.4

(2 + 1.8 sin(2π(2x2/ε− x1/ε)))
. (75)

For our numerical simulation, we consider the steady state ∂Θε(uε)/∂t = 0.

−∇ · (Kε(uε(x))∇(uε(x)− x2)) = 0 in Ω = (0, 1)2, (76)

where for simplicity we set f(x) ≡ 0. Notice that (76) can be cast in the form (1) by
considering the change of variable vε(x) = uε(x) − x2. We add mixed boundary conditions

7Notice that the curves for the H1 error are nearly identical for NMicro = 32, 64.
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(a) FE-HMM. macro and micro
meshes of size 8× 8.

(b) FE-HMM. macro and micro
meshes of size 16× 16.

(c) FE-HMM. macro and micro
meshes of size 32× 32.
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(d) FE-HMM. L2 relative error. (e) FEM. mesh size: 32 × 32
(unresolved).

(f) FEM. mesh size: 1024× 1024
(finescale).

Figure 3: Richards problem (75)-(76). Top pictures: level curves of the FE-HMM solutions
with NMacro = NMicro. Fig. (d): L2 relative error for uH − uε versus N = NMacro = NMicro

(optimal L2 refinement strategy). Figs. (e)-(f): level curves of the standard FEM solutions.

of Dirichlet and Neumann types. We put Neumann conditions on the left, right and bottom
boundaries of the domain (n denotes the vector normal to the boundary) and a Dirichlet
condition on the top boundary. Precisely, we take

uε(x) = −1.9x2
1 on ∂ΩD = [0, 1]× {1},

n · (Kε(uε(x))∇(uε(x)− x2)) = 0 on ∂ΩN = {0, 1} × [0, 1] ∪ [0, 1]× {0}.

We refine the macro and micro meshes according to the optimal strategy as seen in the
above test problem. The numerical results are compared to a resolved standard FE solution
for the fine scale problem where ε = 10−2 using ∼ 106 degrees of freedom, and plotted
in Fig. 3(f). As we compare the fine scale solution with the FE-HMM solution (without
reconstruction) we restrict ourselves to comparison in the L2 norm. From the results in
Sections 3 and 4 we know that

‖uH − uε‖L2(Ω) ≤ C(H2 + ĥ2) + ηε

where ηε := ‖u0 − uε‖L2(Ω) → 0 for ε → 0. We first see in Figure 3(d) the expected
convergence rate for the L2 error when macro and micro meshes are refined at the same
speed NMacro = NMicro = N , and the horizontal line corresponds to the term ηε, which
numerically appears to be of the size8 of ε. In Figures 3(a)-(c), we plot the level curves of
the FE-HMM solution for problem (3), where we consider uniform N × N macro meshes
with couples of P1-triangular FEs, and uniform N × N micro meshes with Q1-rectangular
FEs. For comparison, we also plot the standard FEM solution of (1) with a coarse 32 × 32
mesh (unresolved) and a finescale solution on a fine 1024× 1024 mesh. We observe that the

8Recall that for linear homogenization problems, one has ‖u0 − uε‖L2(Ω) ≤ Cε [29, Sect. 1.4].
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unresolved FEM does not yield a qualitative correct result. In contrast, the FE-HMM permits
to capture the correct behavior of the resolved solution at a much lower computational cost.

7 Appendix

We provide in this appendix a proof of Lemmas 4.11 and 4.12. We start with Lemma 4.11.
As mentioned earlier we only sketch its proof.
Proof of Lemma 4.11. The proof is a consequence of Lemma 4.9 which can be applied
in the special case zH = uH thanks to Lemma 4.10 and the estimate σH‖uH − u0‖H1(Ω) ≤
CσHH

` ≤ ν for all H small enough (using (33)).
Given the Newton interation uHk , we show by induction on k the following two statements:

(i) the next Newton iteration uHk+1 exists and is uniquely defined by (55),

(ii) σHek+1 ≤ ν and the estimates (63) holds.

Since the linear system (55) is of finite dimension, to prove the point (i) it is sufficient to
show that he homogeneous problem ∂B(uHk ; vH , wH) = 0 has only the trivial solution vH = 0
for all wH ∈ S`0(Ω, TH). Using the Hölder inequality and the Lipschitzness of a0

K(s) and
∂a0

K(s)/∂s with respect to s, one can show for all wH ∈ S`0(Ω, TH),

∂B(uH ; vH , wH) = ∂B(uH ; vH , wH)− ∂B(uHk ; vH , wH)

≤ C‖uH − uHk ‖L∞(Ω)‖wH‖H1(Ω)(‖vH‖H1(Ω) + ‖vH‖L3(Ω)‖uH‖W 1,6(Ω))

+ C‖vH‖L∞(Ω)‖uH − uHk ‖H1(Ω)‖wH‖H1(Ω)

≤ CσH‖uH − uHk ‖H1(Ω)‖vH‖H1(Ω)‖wH‖H1(Ω).

Using ∂B(uHk ; vH , wH) = 0, we deduce from Lemma 4.9 and the induction hypothesis σHek ≤
ν that ‖vH‖H1(Ω) ≤ Cν‖vH‖H1(Ω), which implies vH = 0 if ν is chosen small enough so that
Cν < 1. The proof of (i) is achieved. For the proof of (ii), using (55), one can show the
following estimates

∂BH(uH ;uHk+1 − uH , wH) = {∂BH(uH ;uHk+1 − uHk , wH)− ∂BH(uHk ;uHk+1 − uHk , wH)}
+ {∂BH(uH ;uHk − uH , wH) +BH(uH ;uH , wH)

−BH(uHk ;uHk , w
H)}

≤ CσH(ekek+1 + e2
k)‖wH‖H1(Ω)

for all wH ∈ S`0(Ω, TH), where we used the C2 regularity with respect to s of the tensor
a0
K(s), two integrations by parts (see [21, Theorem 2]) and the Hölder inequality. We notice

that the C2 regularity of a0
K(s) and the boundedness of ∂a0

K(s)/∂s, k ≤ 2 can be shown from
(36) using the idea of the proof of Lemma 7.1 (see below). Using again Lemma 4.9 with
zH = uH , we deduce ek+1 ≤ CσH(ekek+1 + e2

k), which yields (1 − Cν)ek+1 ≤ CσHe
2
k. This

gives (63) for ν small enough and the estimates σHek+1 ≤ ν follows immediately from (63)
and CσHek ≤ Cν ≤ 1. We thus obtain (ii). �
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We shall now prove Lemma 4.12. For that, we will often use the following inequality (77).
Given a closed subspace H of W (Kδj ), let ψi, i = 1, 2 be the solutions of∫

Kδj

ai(x)∇ψi(x) · ∇z(x)dx = −
∫
Kδj

fi(x) · ∇z(x)dx, ∀z ∈ H,

where a1, a2 ∈ L∞(Kδj )
d×d are elliptic and bounded tensors and f1, f2 ∈ L2(Kδj )

d. A short
computation shows

‖∇ψ1 −∇ψ2‖L2(Kδj ) ≤ λ−1 sup
x∈Kδj

‖a1(x)− a2(x)‖F ‖f2‖L2(Kδj ) + ‖f1 − f2‖L2(Kδj ), (77)

where λ is the minimum of the ellipticity constants of a1, a2. We also need a regularity result
for the solutions of (25).

Lemma 7.1 Assume that aε is uniformly elliptic and satisfies (36) with k = 1. Consider
the solution ψi,sKj of (25). Then, the map s 7→ ψi,sKj ∈ H

1(Kδj ) is of class C1 and satisfies

∂

∂s
ψi,sKj = φi,sKj ,

∂

∂s
∇ψi,sKj = ∇φi,sKj , (78)

where for all z ∈W (Kδj ),∫
Kδj

aε(x, s)∇φi,sKj (x) · ∇z(x)dx = −
∫
Kδj

∂ua
ε(x, s)(∇ψi,sKj (x) + ei) · ∇z(x)dx. (79)

A similar statement holds also for the FEM discretization ψi,h,sKj
defined in (28), where

∂
∂sψ

i,h,s
Kj

= φi,h,sKj
satisfies (78) and (79) with ψi,sKj , φ

i,s
Kj

and z replaced by ψi,h,sKj
, φi,h,sKj

and

zh ∈ Sq(Kδj , Th) respectively.

Proof. We consider twice the problem (28) with parameters s and s+ ∆s, respectively. We
deduce from (77) with H = W (Kδj ), and the smoothness of s 7→ aε(x, s) that

‖ψi,s+∆s
Kj

(x)− ψi,sKj (x)‖H1(Kδj ) → 0 for ∆s→ 0.

Consider now the identity∫
Kδj

aε(x, s)∇(ψi,s+∆s
Kj

(x)− ψi,sKj (x)) · ∇z(x)dx (80)

= −
∫
Kδj

(aε(x, s+ ∆s)− aε(x, s))(∇ψi,s+∆s
Kj

(x) + ei) · ∇z(x)dx

Dividing (80) by ∆s and subtracting (79), we deduce from (77)

‖(ψi,s+∆s
Kj

(x)− ψi,sKj (x))/∆s− φi,sKj (x)‖H1(Kδj )

≤ C‖
(

(aε(x, s+ ∆s)− aε(x, s))/∆s− ∂uaε(x, s)
)

(∇ψi,s+∆s
Kj

(x) + ei)‖L2(Ω)

+C‖∂uaε(x, s)∇(ψi,s+∆s
Kj

(x)− ψi,sKj (x))‖L2(Ω) → 0 for ∆s→ 0,

which shows that ∂
∂sψ

i,s
Kj

(x) exists and that (78),(79) hold. Using again the property (77),

we obtain similarly the continuity of s 7→ φi,sKj ∈ H
1(Kδj ). This concludes the proof for ψi,sKj .

The proof for ψi,h,sKj
is nearly identical, using the property (77) with H = Sq(Kδj , Th) �
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Proof of Lemma 4.12. We first prove the estimate (64). We set x = xKj in (7). A change
of variable y → xKj + x/ε shows that

(a0(xKj , s))mn =
1

|Kδj |

∫
Kδj

a(xK , x/ε, s)(en +∇χn(xK , x/ε, s)) · em (81)

where χn(xK , x/ε, s) solves for all z ∈W (Kδj ),∫
Kδj

a(xK , x/ε, s)∇χn(xK , x/ε, s) · ∇z(x)dx = −
∫
Kδj

a(xK , x/ε, s)en · ∇z(x)dx, (82)

As the tensor aε is (locally) periodic and δ/ε ∈ N, if we collocate aε in (30) and in (7) at
x = xKj , we obtain a0(xKj , s) = a0

Kj
(s) and ψn,sKj (x) = εχn(xKj , x/ε, s).

We consider the elliptic system −∇· (A∇Ξ) = ∇·Fi formed by problems (28)-(79), where

A =

(
a(xKj , x/ε, s) 0
∂ua(xKj , x/ε, s) a(xKj , x/ε, s)

)
, F =

(
a(xKj , x/ε, s)en 0

0 ∂ua(xKj , x/ε, s)en

)
and Ξ = (ψn,sKj , φ

n,s
Kj

)T . It follows form well known H2 regularity results [13, Sect. 3.4-3.6] that

φn,sKj , ψ
n,s
Kj
∈ H2(Kδj ) and ‖φn,sKj ‖H2(Kδj ) + ‖ψn,sKj ‖H2(Kδj ) ≤ Cε−1

√
|Kδj |. From standard FEM

results [19, Sect. 17], we deduce that the corresponding FEM discretization (ψm,h,sKj
, φm,h,sKj

)
satisfies

‖∇ψn,sKj −∇ψ
n,h,s
Kj
‖L2(Kδj ) ≤ Ch‖ψn,sKj ‖H2(Kδj ) ≤ C(h/ε)

√
|Kδj |,

‖∇φn,sKj −∇φ
n,h,s
Kj
‖L2(Kδj ) ≤ Ch‖φn,sKj ‖H2(Kδj ) ≤ C(h/ε)

√
|Kδj |.

Now, using Lemma 7.1 and differentiating the identity (49) with respect to s, we deduce from
the Cauchy-Schwarz inequality

| d
ds

(ā0
Kj (s)− a

0
Kj (s))mn| ≤

1

|Kδj |

(
‖∇ψn,sKj −∇ψ

n,h,s
Kj
‖L2(Kδj )‖∇ψ

m,s
Kj −∇ψ

m,h,s
Kj ‖L2(Kδj )

+ ‖∇φn,sKj −∇φ
n,h,s
Kj
‖L2(Kδj )‖∇ψ

m,s
Kj −∇ψ

m,h,s
Kj ‖L2(Kδj )

+ ‖∇ψn,sKj −∇ψ
n,h,s
Kj
‖L2(Kδj )‖∇φ

m,s
Kj −∇φ

m,h,s
Kj ‖L2(Kδj )

)
≤ C(h/ε)2,

where we used similar FEM estimates (as obtained for ψn,h,sKj
, φn,h,sKj

) for ψ
m,h,s
Kj , φ

m,h,s
Kj . This

concludes the proof of (64).
We now focus on the proof of the estimate (65) where the formulation (17) is used. We

notice that the Lipchitzness of the tensors a(x, y, s), ∂ua(x, y, s) with respect to x ∈ Kδj

yields for k = 0, 1,

sup
x∈Kδj ,s∈R

‖∂kua(x, x/ε, s)− ∂kua(xKj , x/ε, s)‖F ≤ Cδ

Using the inequality (77) with H = Sq(Kδj , Th), this perturbation of the tensors a, ∂ua

induces a perturbation of ψn,h,sKj
and φn,h,sKj

of size ≤ Cδ
√
|Kδj |, which yields

r′MOD ≤ C
((h

ε

)2
+ δ

)
and this concludes the proof of (65). �
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