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Abstract

An adaptive finite element algorithm to compute transonic viscous flows
around a wing is presented. The adaptive criteria is based on an anisotropic
error estimator in the H! semi-norm, justified for an advection-diffusion prob-
lem with stabilized finite elements. The mesh aspect ratio can be arbitrarly
large, upper and lower bounds can be proved, the involved constants being
aspect ratio independent.

Based on this error estimator, an anisotropic mesh adaptation algorithm
is proposed to compute transonic viscous flows around a wing. The mesh is
structured around the wing, while the remaining part of the mesh is adapted
according to the anisotropic error estimator. This anisotropic adaptive algo-
rithm allows shocks and the wake to be captured accurately, while keeping
the number of vertices as low as possible.

Keywords:
advection-diffusion, a posteriori error estimator, anisotropic mesh
adaptation, transonic viscous flow

1. Introduction

Adaptivity with strongly anisotropic meshes is particularly suited to solv-
ing partial differential equations with internal or boundary layers. The use
of strongly anisotropic meshes involves several theoretical and practical is-
sues: design of stable discretization methods [1], error estimates involving
constants which do not depend on the mesh aspect ratio [2, 3, 4, 5, 6], con-
vergence of solvers [7], generation of anisotropic meshes [8, 9, 10, 11]. The
possible gain in memory and computing time is so important that previously
intractable problems may become tractable [12].
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The set of partial differential equations corresponding to transonic viscous
flows is therefore a good candidate to be solved with anisotropic meshes, due
to the presence of both boundary layers and shocks. Strongly anisotropic
structured meshes are already widely used in the aeronautic industry for the
numerical simulation of transonic viscous bodies [13, 14, 15]. However, the
computation of transonic flows on anisotropic structured meshes around the
body and anisotropic unstructured adaptive meshes elsewhere, see figure 1,
has only been tackled recently [16, 17]; it is precisely the goal of this paper.
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Figure 1: Examples of anisotropic meshes for transonic viscous flows around a wing. Left:
structured mesh, right: structured mesh around the wing, adapted mesh elsewhere. Bot-
tom: close view around the wing, at the intersection between the shock and the boundary
layer.

The outline of the paper is the following. An anisotropic error estimator
is presented for a diffusion-convection model problem in the next Section.
Upper and lower bounds can be proved, the involved constants being as-
pect ratio independent. In Section 3, the viscous transonic flow around the
ONERA M6 wing, at Reynolds number 11.72¢6, Mach number 0.84 and in-
cident angle 3.06° is described. Numerical results are presented on industrial
non-adapted anisotropic meshes provided by Dassault Aviation. Finally, an
adaptive algorithm based on the anisotropic error estimator of Section 2 is
proposed. The mesh is kept structured and anisotropic around the wing,
while the remaining part of the mesh is adapted according to the anisotropic
error estimator. Numerical results with such anisotropic adapted meshes are
then presented.



2. A model problem: advection-diffusion

An advection-diffusion model problem is introduced in order to justify
the use of our adaptive criterion. For the sake of clarity, this model problem
is presented in two space dimensions; it can easily be extended in three space
dimensions, all the numerical experiments in this paper being in three space
dimensions.

Let © be a polygon of R?, with boundary 9€, let ¢ > 0 be the diffusion
coefficient, a = (a1, as)” € R? the constant velocity field, f € L2?(Q) the
source term. We are searching for u : {2 — R such that:

—cAu+a-Vu=f in Q,
u=0 on Iy, (1)
Vun=0 on I%,.

Here we have set 00 = I'; UT'y with I'y NI’y = (), I'; has non zero measure
and n is the unit outer normal. Assuming a-n = 0 on I'y, we have

/Q(a~Vu)u:0,

thus the Lions-Lax-Milgram theorem applies and the above problem has a
unique weak solution v € V = {v € H(Q);v = 0 on I'1}. For all h > 0,
consider T}, a conformal mesh of Q2 into triangles K with diameter hy less than
h. In this paper, anisotropic triangles are used, that is to say triangles with
possibly large aspect ratio. The framework of [3, 4] is used to describe the
mesh anisotropy, although the one of [2] could also be used. Let T : K=K
be the affine mapping from the reference triangle K to an arbitrary triangle
K. For any x € K, let x € K be the corresponding vector in triangle K
defined by

X:TK<)A() :MK)A(—FtK, (2)

where tx € R? and M is the jacobian matrix. Since M is invertible, it
admits a singular value decomposition

My = REA Py, (3)

where Ry and Pk are orthogonal matrices and A is a diagonal matrix with
positive entries :

. )\17[( 0 . I‘{K
AK—( 0 AQ,K) and Rg = (réﬁK : (4)

having chosen A\ x > A2 x. The unit vectors ry g and ry g correspond to
the directions of maximum and minimum stretching, the scalars A\; x and
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Ao, i correspond to the amplitudes of maximum and minimum stretching. In
the framework of anisotropic meshes, the ratio between A\ g and A9 x can
be large, however, the number of neighbours of a given vertex of the mesh
should be bounded above. Moreover, due to the use of Clément interpolant,
there is a technical condition involving Ak, the union of triangles sharing a
vertex with K, see [18] for instance; this condition is satisfied whenever the
variations in the direction of stretching are smooth throughout the mesh.

Let V}, be the finite element subspace of V' corresponding to continuous,
piecewise linear functions on the triangles of 7,. The following stabilized
finite element formulation is considered: find w; € V}, such that

/eVuh-Vvh—i-/a-Vuhvh—i- ZTK/(a-Vuh)(a-Vvh)
0 Q K

KeTy

:/vaw ZTK/Kf(a'VUh)a Vo, € Vi

KeTh

(5)

The definition of the stabilization parameter 75 has to be updated in order to
comply with mesh anisotropy. Rather than the usual definition for isotropic
meshes [19], the theoretical and numerical study performed in [1] have shown
that the following choice yields accurate results:

A
Tk = 2|;’Co min(1, Peg) (6)

with |al. = max (|a1], |az|), Pex the Péclet number:

Per —
K 6e

In order to define our error estimator, we need some more notations. The
L? projection onto the piecewise constants needs to be introduced; for any

K €Ty, let
1
Mgf=— | f 8
f |K|/Kf (8)

and let |¢; k|, i = 1,2,3 be the three lengths of edges of K. Then, the
anisotropic error estimator in the H' semi-norm is defined on triangle K by

) 1 1 > |€i,K‘ 2
e =\ ¢ M =2 Vunllgg + 52\ 5000 ) Ve 2l
i=1

ALK A2 K

X wi(u—up),

(9)



where [-] denotes the jump of the inside value across an internal edge, [-] = 0
if the edge belongs to I'y, [-] equals twice the inside value if the edge belongs
to T'y. Also, for all v € H(Q), for all K € Ty, wi(v) is defined by

(wr (v)? = M g (r] kGr(V)r1 k) + A3 & (13 kG (V)T2K) (10)

where Gk (v) is the symmetric positive semi-definite matrix of first order
derivatives in the patch Ag:

2
[ () [ 2o,
Grlv) = | 72x 0xq Ay 011 83:22
/ dv v / (81})
——dzx — | dx
Ax 61'1 @xg Ax (9:152
The following result is a slight modification of [20] for the upper bound and

an extension of [18] for the lower bound. The interested reader is referred to
[21] for the full proof.

(11)

Theorem 1. Let u be the weak solution of (1), let uy, be the solution of (5)
and let n% be defined by (9). Then, there exists C independent of the data
f, €, a, of the mesh size and aspect ratio such that

Mk
IV (u— Uh)”imz) < Cl( Z M + Z 6_2 If = HKinQ(K))' (12)
KeTy, KeTh

Moreover, if there exists Cy independent of the mesh size and aspect ratio

such that, for allv € HY(Q), for all K € Tj:

then there exists Cs independent of the data f, €, a, of the mesh size and
aspect ratio such that

a2,
Z M < C3< Z IV (u — Uh)”i?(AK) (wa + 1>

KeTy KeTy,

Ak
- 5 B i )

KeTh

(14)

Remark 1. The error estimator (9) is not a usual one since u is still involved
in the term wg (u—uy). However, this term can be estimated efficiently using
the celebrated Zienkiewicz-Zhu post-processing [22, 23], which can be justified
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whenever superconvergence occurs, see for instance [24] for a recent result
in the framework of anisotropic meshes. The use of Zienkiewicz-Zhu post-
processing to estimate wi(u — uy) has shown to be successful in [20, 18, 25,
26]. More precisely, in wi(u — uy), the term:

ou  Ouy oup,  Ouy,

— — —— s replaced by I— — —, j=1,2, 15

Or; Ox; b i h(’?azj 0z, J (15)
where 1,0uy,/0x; € V), and is defined, at a given vertex P of the mesh, by the
average value of the neighbouring triangles:

8uh 8Uh .
L="(P) = K ( ) j=1,2. (16)
"o Z K| ; dz;
KGTh

Please note that most of the error estimators used for anisotropic mesh adap-
tation involve an estimate of the second derivatives of u rather than the first
derivatives of u — uy, see for instance [27].

Remark 2. Our error estimator is not robust in the sense of [28]; however,
as soon as vertices are placed in the boundary layer, it is robust, which is
precisely what will be observed in the numerical experiments.

Numerical experiments are presented in three space dimensions. Let 2 =
[0,1]3, a = (1,0,0)T, f = 0, the boundary conditions are reported in figure
2, the exact solution is

6ar:/e _ 61/6

1_ 61/6 ) (17)

u(z,y,z) =
thus there is a boundary layer of width € at x = 1.
ou __
n4 on 0

Figure 2: Boundary conditions.



In order to assess the accuracy of our error estimator, we define the ef-

fectivity index:
1/2
. KETh
el =

V(= )2y

Also, in order to check the accuracy of the Zienkiewicz-Zhu post-processing,

we define:
1/2
(/ |Vuh — IhVuh|2)
YA — Q )

€1l
|V (u — Uh)||L2(Q)

A structured mesh of €2 is considered with N,, N,, N, subdivisions along
each direction, see figure 3.

Figure 3: A structured 10 x 2 X 2 anisotropic mesh.

Numerical results are reported in table 1 when € = 0.01 (resp. € = 0.001)
and aspect ratio 50 (resp. 500). It can be observed that the error is decreased
by a factor two each time N,, N, and N, are multiplied by two, thus the
error is O(h). Moreover, the Zienkiewicz-Zhu effectivity index is close to one
and the effectivity index of our error estimator does not depend on the aspect
ratio.



/2 12
N, x Ny x N, ( Z ni) (/ |V (u— uh)|2> ei?? ei vertices
KeTy, Q
100 x 2 x 2 3.051 1.780 0.834 | 2.139 909
200 x 4 x 4 1.884 0.961 0.939 | 2.437 5025
400 x 8 x 8 1.043 0.497 0.982 | 2.607 | 32481
800 x 16 x 16 0.544 0.252 0.996 | 2.681 | 231489
1000 x 2 x 2 9.608 5.627 0.834 | 2.131 9009
2000 x 4 x 4 5.955 3.035 0.939 | 2.436 | 50025
4000 x 8 x 8 3.345 1.569 0.982 | 2.640 | 324081

Table 1: Numerical results when e = 0.01 (rows 1-4, aspect ratio 50) and € = 0.001 (rows
5-7, aspect ratio 500).
3. High Reynolds compressible flows around bodies

The flow of a viscous, compressible, heat conducting fluid around a wing
is considered. The mass, momentum and energy conservation equations are:

( dp _

, E—FV.(pu) = 0,

%+V.(pu®u) = V.(r —pl), (18)
K 5@?+vymmzzvih—mm—®’

with p the density, u the velocity, F the total energy £ = e + % + k, eis
the specific internal energy, k the turbulent kinetic energy, p = (v — 1)pe the
pressure, and T = 7—1_%16 the temperature (7 = 1.4), where R is a constant
defined as the ideal gas constant divided by the molar mass of the gas. The

heat flux q and the viscous tensor 7 are defined by

2

— (V. ut pk)I,
where £ is the thermal conductivity and a RANS (Reynolds Averaged Navier-
Stokes) model is used to compute the turbulent viscosity p:

]f2
Kt = pcu?-

q = —RrAT and 7= (Vu+ (Vu)")

Here C), is a parameter and € the dissipation of turbulent energy. A two-layer
k — e model is used [29]. The turbulent kinetic energy k satisfies

O(pk) +V-(puk) — V- <<u+&> Vk) =P pkVou—pe, (19)
ot Tk J
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where o, is a parameter and Py is defined by
2
Py =y (Vu+Vu') : Vu— ,utg(v ~u)?.

In the turbulent region, € satisfies an equation similar to (19), whereas in the
viscous region, € is given by an algebraic relation, see [29] for details.

The ONERA M6 wing at Reynolds number 11.72¢6, Mach number 0.84
and incident angle 3.06° is considered [30]. The computations have been
performed using the AETHER Dassault Aviation code [31, 15] on various
parallel clusters using the MPI library, with at most 5000 iterations. It
should be stressed that the AETHER code is based on stabilized finite ele-
ment formulations that allow the use of strongly anisotropic meshes and is
therefore particularly well suited for anisotropic mesh adaptation. The wing
is placed inside a half sphere, the mesh is produced by Dassault Aviation
mesh generators; it is structured around the wing, unstructured (isotropic)
elsewhere; the mesh aspect ratio is large close to the wing, up to 10 000, see
figure 4. Three non-adapted meshes having smallest meshsize at the wing
1mm, 0.1mm and 0.005mm have been used. In the structured region around
the wing, the vertices are placed along the normal direction from a sequence
with geometric progression 1.15; the mesh having smallest meshsize 1mm has
a structured region made out of 30 layers, the mesh having smallest meshsize
0.1mm has a structured region made out of 45 layers, the mesh having small-
est meshsize 0.005mm has a structured region made out of 70 layers. The
corresponding numerical results are reported in figures 5 and 6; the Mach
number in figure 5 and the pressure coefficient

p— Poo
Cr=1—73>
§p00uoo

in figure 6, where Py, ps and u., are the pressure, density and velocity at
infinity. Accurate results are obtained when using the finest mesh. In the
sequel, we will keep a structured mesh around the wing (smallest meshsize
0.005mm, geometric progression 1.15, 40 structured layers) and adapt the
mesh only outside this structured mesh.
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Figure 4: A typical mesh generated by Dassault Aviation. Here the mesh size at the wing,
along the normal direction is 1mm (it is 0.005mm on the finest mesh); the other vertices
in the structured region are placed along the normal direction according to a sequence
with geometric progression 1.15.

10



00000400

Mach
1.3000400
9.750e-01

3.250e-01
00000400

3250601
00002400

Figure 5: Cut at y = 0.7m of the Mach number and mesh with three meshes having
smallest mesh size at the wing 1mm (top), 0.1mm (middle) and 0.005mm (bottom).
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Figure 6: Pressure coefficient along the wing at y = 957.03 (80% of the wing); left: top of
the wing, right: bottom of the wing.
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4. An anisotropic, adaptive algorithm

Our goal is to build an anisotropic mesh for which the relative estimated
error is close to a preset tolerance T'OL:

> ok

KeTpeet

~TOL.
‘ |VMh’ ’LQ(Qemt)

Here Q°** is the part of the computational domain €2 that does not contain a
preset structured mesh of the boundary layer; 7, is a mesh of Q¢**. Also,
Mj, is the computed Mach number corresponding to the exact one:

_ Al
VIRT  \/yp/p

The error estimator nx is defined by:

1 - |fz Kl 1/2
B 52 < ) IV My - ]|l 2y, o wic(M = M), (20)

)\IK)\2K)\3K

where f; i is a face of tetrahedron K and wx (M — M;,) is defined by:

(wr (M — Mh))2 = Z)‘?,K (TZKGK(M - Mh)ri,K) .

i=1

Here G (v) is the 3 x 3 matrix of first order derivatives defined as in (11),
Ik, Ta g, U3 i and A g, Aok, A3 x are defined as in (3) (4), Zienkiewicz-Zhu
post-processing is used to estimate wg (M — M},), as explained in Remark 1.

The reader should note that this error estimator is similar to the one
presented in the inviscid case [32]. Going back to (9), only the term cor-
responding to the jump of the normal gradient has been kept. This choice
led to excellent results for various elliptic, parabolic and hyperbolic problems
[18, 33, 26] and has been justified in [2] in the elliptic case. We have decided
to use wg (M — M,) rather than wg(u — uy) since most of the informations
(shock and boundary layers) are contained in the Mach number M. A theo-
retical justification of such a choice would be needed but is missing. Indeed,
to our knowledge, there are no a posteriori error estimates for the compress-
ible Navier-Stokes equations; an existence result for (18) without the k — €
model has been proved only recently in [34].
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In order to implement (20), a mesh 7,°** is generated such that
0.75° TOL? ||V My|[32(qeery < D i < 1.25° TOL||V M| [32(qeary- (21)
KeTpeet
A sufficient condition to build such a mesh is to enforce, for each tetrahedron
K c Te;rt:
0.75*TOL?||V M| [ 2 ggexy

1.252TOL2||V M| [22 ot
Nezt ‘

ext
NK

2
<77K<

where NiZ* is the total number of tetrahedrons of 7,**. The MMG3D anisotropic
remesher is used to build 7,°** [8]. Given a metric M(P) at each vertex P of
the mesh, the MMG3D remesher builds a new mesh consistent with this metric.
We now explain how to compute this metric.

For each vertex P of the mesh, let n% be the error estimator at vertex P

defined by:
nh= > k.

KeTgt
PeK

We split the error into the three stretching directions:

4 4 4 4
N = NMr1 T N2 T Nk3

where 77%(,1‘ is the error estimator in direction r; -, 1 = 1,2, 3:

1 2 ’
- (52( |fix| ) ||[th.n]|yL2(fj’K)>

g AL KA2 K A3 K
AiK(rZ kGrc(M — My)r i)

The error estimator in direction ¢ and vertex P is now defined by:

4 _ 4 4 _ 4 4 4
Np; = E Nk ,i and np = Np1+Np2 +Np3s-
KeTgeet
PeK

Then

doumb=4> i,

PeTy, KeTy

so that a sufficient condition to satisfy (21) is to insure, for each vertex P of
the mesh 7,

V4
Nea:t

V4
Nleja:t

N OTRTOL [V My [ geety < 1 < TOL||V My 32 geety
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Ng' being the number of vertices in 7,**. The two above inequalities are
satisfied when

5075 TOLY| |V M| |12 (genty

3 (NF)
< 77;13,1' <
4 4 4 4
3 (ngxt)zl'% ToL HVMhHIﬂ(Qezt), (22)

for i = 1,2,3. The algorithm used to build the requested metric M(P)
at each vertex P of 7,%" is then the following. For each vertex P of the
mesh, we compute Gp(M — M), and average value of G (M — M) on the
tetrahedrons K surrounding P :

> Gr(M - M)

Gp(M — M,) = — :
21
KeTy
PeK

where Zienkiewicz-Zhu post-processing has been used to estimate Gy (M —
M},). We then compute an orthonormal basis Q p(M — M},) of the eigenvectors
of Gp(M — Mj,). Our goal is to align the tetrahedrons around vertex P with
the eigenvectors of Gp(M — Mj,). Thus, the metric is defined by

! 0 0
e
Qhl 0 = 0 |aQn (23)
2,P )
0 0 —
hi p

where the desired mesh size at vertex P, hyp, hop, hsp, is prescribed in
order to satisfy (22). Let \; p, ¢ = 1,2,3, be an average value of \; x on the
tetrahedrons K surrounding P. If

4
3(N1%xt)2 O754TOL4||VMFL||%2(QP“) > (T/P,i)47

then the values of h; p are set to 2\, p, 1 = 1,2, 3, if

4 4 4 4 4 4 4 4 4
3(N—£xt)2075 TOL HVMhHLQ(Qem) < (77P,i) < ?)(N—W125 TOL HthHLQ(Qezt)7
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then the values of h; p are set to \; p, 2 = 1,2, 3, if

4
(npa)* > W1.254TOL4 IV M| 72 (et
P

then the values of h; p are set to \; p/2, 1 =1,2,3.

5. Numerical results with adapted meshes

Consider a structured mesh around the wing having smallest mesh size
at the wing 0.005mm, geometric progression 1.15, 40 structured layers. The
adaptive algorithm is run with TOL = 2, the results after 0, 5, 10, 15 mesh
iterations are reported in figure 7. The pressure coefficient is reported in
figure 8. Although the adapted mesh is refined across the shocks and the
wake, the initial (non-adapted) mesh yields the most accurate pressure coef-
ficient. This indicates that the TOL parameter should be further decreased.
The number of vertices and the average mesh anisotropy are reported with
respect to the mesh iteration number in figure 9. The required number of
mesh iterations to observe mesh convergence is between 5 and 10.
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Figure 7: Cut at y = 0.7m of the adapted mesh when running the adaptive algorithm with
TOL = 2. Mach number (left column) and mesh (right column). First row: initial mesh,
second to fourth row: after 5, 10 and 15 mesh iterations.
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Figure 8: Pressure coefficient along the wing at y = 957.03 (80% of the wing) when running
the adaptive algorithm with TOL = 2; left: top of the wing, Tight: bottom of the wing.
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Figure 9: Number of vertices and average mesh anisotropy with respect to the mesh itera-
tion number when running the adaptive algorithm with TOL = 2.

Numerical results are now compared when running the adaptive algorithm
with three different values of TOL, namely TOL =2, TOL =1, TOL = 0.5.
The Mach number is presented after 15 mesh iterations in figure 10, the
pressure coefficient in figure 11; the pressure coefficient is accurate when
TOL = 0.5. The number of vertices and the average mesh anisotropy are
reported with respect to the mesh iteration number in figure 12. When
TOL = 0.5, the required number of mesh iterations increases. The observed
convergence behaviour is the following: the mesh is first refined isotropically
until iteration 10, then coarsened anisotropically.
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Figure 10: Cut at y = 0.7m of the adapted mesh when running the adaptive algorithm with
three values of TOL. Mach number (left column) and mesh (right column). From top to
bottom: TOL =2, TOL =1 and TOL = 0.5.
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Figure 11: Pressure coefficient along the wing at y = 957.03 (80% of the wing) when
running the adaptive algorithm with TOL = 2, TOL =1 and TOL = 0.5; left: top of the
wing, right: bottom of the wing.

18



500000 4000

4 A / _—
50000 A 3500 / T e

400000
3000 -/ /.
350000 /

/
2500 sk e

number of vertices
average mesh anisotropy

300000

\
% 2000 /
250000 NN
e \/ TOL=2 ——
~ — ToL=1 ——
— ToL=05 ——
200000 1500
o 2 4 6 8 10 12 14 16 18 o 2 4 & 8 10 12 14 16 18

mesh iteration number mesh iteration number

Figure 12: Number of vertices and average mesh anisotropy with respect to the mesh
iteration number when running the adaptive algorithm with TOL = 2, TOL = 1 and
TOL =0.5.

Finally, we have compared the solution on the initial non-adapted mesh
and on the final adapted mesh (TOL = 0.5, 15 mesh iterations). Both meshes
have a similar number of vertices, 317005 on the initial mesh, 304539 on the
adapted mesh. Although the pressure coefficient along the wing is similar,
the shocks and wake are better captured on the adapted mesh. Figures 13-16
contain the relevant comparisons. We therefore conclude that a goal oriented
anisotropic error estimator is preferable to obtain a better accuracy on the
pressure coefficient. We refer to [35] for a goal oriented anisotropic error
estimator in the framework of the advection-diffusion problem, to [14] for
goal oriented anisotropic error estimation and adaptivity in 2D compress-
ible viscous flows and to [36] for goal oriented anisotropic adaptivity in 3D
compressible inviscid flows. Preliminar results of the present method on the
ONERA M6 wing with a goal oriented anisotropic error estimator can be
found in [21].
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Figure 13: Cut at z = 0.08m of the mesh and Mach number. Top: initial non-adapted
mesh, bottom: final adapted mesh with TOL = 0.5.
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Figure 14: Cut at y = 0.7m of the mesh and Mach number. Top: initial non-adapted
mesh, bottom: final adapted mesh with TOL = 0.5.
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Figure 16: Zoom at the secondary shock.

6. Conclusions

An anisotropic, a posteriori error estimator for the H' semi-norm of the
error has been presented for a convection-diffusion problem. The equivalence
between the error and the estimator can be proved. Numerical results on
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a 3D boundary layer problem indicate that the effectivity index does not
depend on the mesh aspect ratio.

An anisotropic, adaptive algorithm based on this error estimator is pro-
posed in the framework of a transonic viscous flow around the ONERA M6
wing. A structured layer of tetrahedrons is kept in the boundary layer around
the wing, the mesh is adapted anisotropically outside this structured layer.
The shocks and wake are described with great accuracy.

Focusing on the pressure coefficient along the wing, numerical results in-
dicate that a goal oriented error estimator is needed. Moreover, a structured
adaptation in the boundary layer is also needed to capture with great preci-
sion the interaction between the shock and the boundary layer. This will be
the subject of a future research.
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